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Abstract: Climate change has significantly increased the frequency of our exposure to heat, adversely
affecting human health and industries. Heat stress is an environmental stress defined as the exposure
of organisms and cells to abnormally high temperatures. To comprehensively explain the mechanisms
underlying an organism’s response to heat stress, it is essential to investigate and analyze genes that
have been under-represented or less well-known in previous studies. In this study, we analyzed heat
stress-responsive genes using a meta-analysis of numerous gene expression datasets from the public
database. We obtained 322 human and 242 mouse pairs as the heat exposure and control data. The
meta-analysis of these data identified 76 upregulated and 37 downregulated genes common to both
humans and mice. We performed enrichment, protein–protein interaction network, and transcription
factor target gene analyses for these genes. Furthermore, we conducted an integrated analysis of these
genes using publicly available chromatin immunoprecipitation sequencing (ChIP-seq) data for HSF1,
HSF2, and PPARGC1A (PGC-1α) as well as gene2pubmed data from the existing literature. The
results identified previously overlooked genes, such as ABHD3, ZFAND2A, and USPL1, as commonly
upregulated genes. Further functional analysis of these genes can contribute to coping with climate
change and potentially lead to technological advancements.

Keywords: heat stress; meta-analysis; public databases; gene expression; RNA-seq; ChIP-seq analysis

1. Introduction

Climate change is expected to result in higher average temperatures and an increased
intensity and frequency of heat waves, thereby increasing the adverse effects of high
temperatures. For example, it has been reported that the average temperature on land
where humans reside was projected to be 0–6 ◦C higher in the summer of 2021 than that in
the years 1986–2005. Moreover, an increase in the number of heat-wave days experienced
by children under the age of 1 year and adults over the age of 65 years, which are the
age groups vulnerable to high temperatures, has been observed. These phenomena are
anticipated to cause heat-related diseases (e.g., heat stroke) and are considered as indicators
of the adverse effects of climate change on human health [1–3]. Visual climate change
data are available at https://www.lancetcountdown.org/data-platform/ (accessed on 1
August 2023).

High-temperature environments impose stress on organisms and cause various cellular
changes. Heat stress (HS, also known as heat shock or hyperthermia) is an environmental
stress that occurs when organisms and cells are exposed to abnormally high temperatures,
which are thought to increase with climate change. HS has diverse effects on the elements
that form cells [4]. At the cellular level, it causes the uncoupling of oxidative phosphory-
lation in the mitochondria, which are cellular organelles, and promotes the generation of
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reactive oxygen species (ROS) [5,6]. Additionally, it causes physical changes in the biomem-
brane, such as changes in membrane fluidity [7]. HS exerts various effects at the molecular
level; for example, it can inhibit DNA repair pathways and cause DNA damage [8–10]. HS
can also denature intracellular proteins and lead to their aggregation [11].

A programmed gene expression response called the heat shock response (HSR) is a
cellular response to HS. The HSR is primarily regulated by a group of transcription factors
called heat shock factors (HSFs); of them, HSF1 plays a central role in the response. When
triggered by HS, HSF1 forms a trimer and binds to heat shock elements (HSEs) in DNA,
which induces the expression of genes encoding heat shock proteins (HSPs). The main
HSP members are important proteins that function as molecular chaperones and maintain
protein homeostasis (proteostasis) by interacting with other proteins, stabilizing them, and
helping them to acquire functional conformations. These members are mainly classified as
HSP40, HSP60, HSP70, HSP90, HSP100, and sHSPs (small HSPs), and they allow cells to
maintain proteostasis and survive [12–14].

To date, HS-related studies have primarily focused on proteins that function as molecu-
lar chaperones, accumulating knowledge regarding their role in maintaining cell proteosta-
sis and protecting cells under stress conditions, including heat stress. However, heat affects
numerous cellular components [4]; moreover, proteins induced by heat stress have been
proposed to be classified into functional classes such as nucleic acids and metabolism [12].
Despite this classification, limited studies have been available on the genes encoding these
proteins induced by HS. Therefore, a comprehensive analysis, including previously unchar-
acterized or poorly known HS-related genes, is essential to deeply understand the heat
stress response.

One approach to solving this problem is data-driven research using meta-analysis.
Meta-analysis is a research method that integrates the results of multiple studies to obtain
new insights. Specifically, a meta-analysis of gene expression data has been made possible
by the increasing amount of data accumulated in public databases and by developing
comprehensive methods for analyzing data from multiple studies [15]. This approach
has led to the meta-analysis of gene expression data focused on various phenomena
and species.

For example, meta-analyses incorporating a medical perspective have focused on
hypoxia and oxidative stress. These studies collected, integrated, and analyzed human
transcriptome data, abundant in public databases, to identify novel genes and pathways
involved in responses to these specific stressors [16,17]. The importance of meta-analysis
has also been pointed out in basic biology [18]. In addition to contributing to medi-
cal insight research, studies focusing on hypoxia in rice and Arabidopsis [19], as well
as density-dependent polyphenism in insects [20], have demonstrated the versatility of
meta-analysis, expanding its application across a diverse range of organism species and
phenomena. Furthermore, attempts are being made to combine gene expression data with
data from ChIP-seq and previous information from the existing literature to gain deeper
insights [15,16].

Given this background, this study aimed to analyze genes involved in heat stress (HS)
by collecting HS-related gene expression data from public databases on humans and mice
and performing a meta-analysis. Unlike previous hypothesis-driven studies, this approach
may yield novel insights into the mechanisms underlying HS. The dataset collected in this
study and the selected gene set will contribute to a more comprehensive understanding of
organisms’ responses to HS.

2. Results
2.1. Overview of Analysis Scheme

The basic scheme of the analysis is shown in Figure 1. In Section 2.2, “Characteristics
of HS-related High-Throughput Sequencing Data”, we describe the collection of gene
expression data from public databases. Section 2.3, “Verification of Upregulated and Down-
regulated Genes in Each Organism”, details the calculation of HN-ratios and the HN-score,
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along with the extraction and evaluation of gene groups. In Section 2.4, “Identification of
Common Upregulated or Downregulated Genes in Human and Mouse”, common genes
are identified and subjected to various analyses, including enrichment analysis. Section 2.5,
“Integration of HN-score, Transcription Factor-binding Information, and Literature Informa-
tion”, integrates and analyzes ChIP-seq data, as well as gene2pubmed data as information
from the existing literature.
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Figure 1. Flowchart of the analysis process. The flow of the analysis is shown, along with the analyses
and figures performed in each section.

2.2. Characteristics of HS-Related High-Throughput Sequencing Data

In this study, we obtained 66 Sequence Read Archive (SRA) IDs and a total of 564 pairs
of gene expression data. The gene expression data consisted of 322 pairs of human and
242 pairs of mouse data, which compared HS and non-treatment (control) conditions. We
searched for RNA sequencing (RNA-seq) data but encountered reports using different
sequencing methods. Therefore, we collected gene expression data for various sequencing
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methods, such as RNA-seq and Ribo-seq (also known as ribosome profiling) to obtain a
broader dataset. A summary of the sample types, temperature conditions, and treatment
times for the collected data is shown in Figure 2. In the human samples, primarily cultured
cells were collected, while in the mouse samples, both cultured cells and tissues were
collected. The samples with the most data included cultured human cells (MRC5-VA:
55 pairs), mouse cells (Mouse embryonic fibroblast (MEF) cells: 52 pairs), and mouse tissues
(kidneys: 23 pairs) (Figure 2A). In the human samples, 172 pairs (30.5%) were derived from
cancer cells. The most common conditions were a temperature of 42 ◦C for the human and
mouse samples, and a treatment time of 60 min for the human samples and 30 min for the
mouse samples (Figure 2B,C). The conditions included in the “other” category comprised
samples with discontinuous treatment times, such as a sample in which the temperature
was changed midway from 42 ◦C to 48 ◦C, or samples exposed to high-temperature
conditions repeatedly for 3 h per day for over 1 week (Figure 2B,C). Metadata, including
detailed information on temperature conditions, sample types, sequencing methods, etc.,
are available in the figshare file (Tables S1 and S2) [21] and provide a background on the
collected data.
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Figure 2. Summary of the contents of the heat stress-related dataset. (A) The stacked bar graph
shows the number of data pairs collected from the sample. From left to right: human cell, mouse cell,
and mouse tissue types. (B,C) The dataset summary for (B) temperature condition (degree, ◦C) and
(C) treatment time.

2.3. Verification of Upregulated and Downregulated Genes in Each Organism

After quantifying the expression using the analysis pipeline ikra [22], expression
ratios (HN-ratios) were calculated for the data collected in pairs of HS and non-treatment
conditions. The HN-ratios calculated for all genes were then classified as “upregulated”,
“downregulated”, or “unchanged” if neither threshold was met, according to a defined
threshold (5-fold or 1/5-fold in this study). This classification facilitates the interpretation
of complicated gene expression data [15]. Next, the HN-score was calculated for all genes
as an index of analysis to detect genes with variable expression. The HN-score is the
number of study data classified as “upregulated” minus the number of study data classified
as “downregulated”. The HN-scores for all human and mouse genes are visualized in
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Figure 3A,D scatter plots, respectively. Using the gene (HSPA6) with the highest HN-score
in Figure 3A as an example, the data counted as “upregulated” 247 times, “downregulated”
2 times, and “unchanged” 73 times; the HN-score is calculated to be 245 (247-2). HN-ratios
and HN-scores for all human and mouse genes, respectively, are available in the figshare
file (Tables S3–S6) [21].
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Figure 3. Scatter plots of the HN-score and gene set enrichment analysis of upregulated and down-
regulated human and mouse genes. (A,D) Scatter plots of HN-scores for all genes in (A) humans
and (D) mice. Red and blue dots represent upregulated gene group (500 genes with high HN-scores)
and downregulated gene group (500 genes with low HN-scores). Genes shown at the top right and
top left indicate genes with the highest or lowest HN-score. (B,E) Results of gene set enrichment
analysis of upregulated genes in (B) humans and (E) mice. (C,F) Gene set enrichment analysis of the
downregulated genes in (C) humans and (F) mice.

Gene sets were extracted based on HN-score, and a gene set enrichment analysis
was performed using Metascape [23]. The top 500 genes with high HN-scores and the
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bottom 500 genes with low HN-scores were extracted from the human and mouse samples,
respectively. The top 500 genes were designated as the “upregulated gene group” (red dots
in Figure 3A,D), while the bottom 500 genes were referred to as the “downregulated gene
group” (blue dots in Figure 3A,D). In the upregulated gene group, “protein folding” (Gene
Ontology (GO):0042026) was the most significantly enriched GO term for humans and mice
(Figure 3B,E). In contrast, in the downregulated gene group, “chromosome organization”
(GO:0051276) was the most enriched GO term in human samples, while “mitotic sister
chromatid segregation” (GO:0000070) was the most enriched GO term in mouse samples
(Figure 3C,F).

2.4. Identification of Common Upregulated or Downregulated Genes in Human and Mouse

From the obtained upregulated and downregulated human and mouse gene sets,
we extracted sets of genes common to both human and mouse samples to analyze the
genes with a typical response to HS. We accessed Mouse Genome Informatics (MGI) [24], a
database that compiled a variety of information on mice, and used the Batch Query function
to convert the gene symbols of the human upregulated and downregulated gene sets into
the corresponding mouse ortholog gene symbols denoted by “Current Gene Symbol”
(e.g., HSPA1A→ Hspa1a). Consequently, 410 upregulated genes and 406 downregulated
genes from the human set were converted into mouse orthologs. Of them, 76 genes
were commonly upregulated, and 37 were commonly downregulated (Figure 4A,B). A
scatter plot was created to evaluate the distribution of the HN-scores for the common
genes using the HN-scores of the corresponding orthologous human and mouse genes
(Figure 4C). In the scatter plot, the 76 commonly upregulated genes are shown in red, and
the 37 commonly downregulated genes are shown in blue. As shown in Figure 4C, a notable
pattern was observed for HSPA1A and HSPA1B, which encode the HSP70 family of proteins.
Various stressors, including HS, induce the expression of these genes. Using ShinyGO
(ver. 0.77) [25], the common upregulated and downregulated genes were plotted against
the human genome, revealing their distribution (figshare file Figure S1) [21]. Among the
76 common upregulated genes, 10 genes, including HSPA1A and HSPA1B, were annotated
as “response to heat” (GO:0009408). The list of upregulated and downregulated genes
with symbols and the HN-score data for humans and mice are available in the figshare file
(Tables S7 and S8) [21]. In addition, HN-scores were calculated for each sample, sequencing
method, and experimental condition (temperature and exposure time) and represented in a
stacked bar graph (figshare file Figure S2) [21].

We performed a gene set enrichment analysis with human gene symbols using Metas-
cape [23], as previously conducted in the “Verification of upregulated and downregulated
genes in each organism” section, to characterize the 76 common upregulated genes and
37 common downregulated genes (Figure 5A,B). Additionally, the search results using
mouse gene symbols are shown in the figshare file (Figure S3) [21]. Among the common
upregulated genes, “response to topologically incorrect protein” (GO:0035966) was the
most enriched (Figure 5A). Within this term, the following genes were found: (1) heat shock
70 kDa proteins (HSPA): HSPA1A, HSPA1B, HSPA1L, HSPA4L, HSPA8, HSPH1; (2) DNAJ
(HSP40) heat shock proteins: DNAJA1, DNAJA4, DNAJB1, DNAJB4; (3) small heat shock
proteins (HSPB): HSPB1, HSPB8; (4) chaperonins: HSPD1, HSPE1; (5) heat shock 90 kDa
proteins (HSP90): HSP90AA1; (6) BAG cochaperones (BAG): BAG3; and (7) serpin pep-
tide inhibitors (SERPIN): SERPINH1 (also known as hsp47). Thus, the term covers genes
encoding various classes of molecular chaperones and cofactors, and these genes, which
play a role in maintaining proteostasis, are commonly expressed in both humans and mice.
Alternatively, the term “negative regulation of chromosome organization” (GO:2001251)
was found to be the most enriched among the common downregulated genes (Figure 5B).
This term includes genes that play essential roles in the regulation of mitosis, such as PLK1
and HASPIN.
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Figure 4. Overlaps of 76 upregulated and 37 downregulated human and mouse genes using mouse
gene symbols. (A) Venn diagram of the upregulated genes in humans (UP_Hs) and mice (UP_Mm).
(B) Venn diagram of downregulated genes in humans (DOWN_Hs) and mice (DOWN_Mm). (C) Scat-
ter plots of common upregulated and downregulated human and mouse genes. The x-axis represents
the human HN-score, and the y-axis represents the mouse HN-score. The red plot indicates the
76 common upregulated genes, whereas the blue plot indicates the 37 common downregulated genes,
with the upper right indicating a higher HN-score and the lower left indicating a lower HN-score.
The gene symbols shown in the figure indicate genes with HN-scores of 50 or higher in humans and
mice, respectively.

Protein–protein interaction networks were analyzed for more detailed information
on the commonly upregulated and downregulated genes annotated in the enriched GO
terms (Figure 5C,D). For common upregulated genes, a cluster of genes encoding molecular
chaperones was visualized using the Molecular Complex Detection (MCODE) algorithm
(Figure 5C; shown in red). Groups of genes classified as immediate early genes (IEGs),
including FOS, FOSB, and JUN, which encode transcription factor activator protein 1 (AP-1),
were also clustered (Figure 5C; shown in blue). IEGs are a group of genes that are rapidly
expressed in response to cellular stimuli. The FOS and JUN genes extracted in this study
have been well-characterized in previous studies. EGR1, EGR2, FOS, FOSB, and the ARC of
IEGs in this blue cluster were annotated in the “NGF-stimulated transcription” pathway
(R-HSA-9031628). Additionally, actin alpha 1 skeletal muscle (ACTA1), which belongs to
the actin family, was also found in the protein–protein interaction network, although it was
not included in the cluster. In contrast, no closely linked networks were formed for the
downregulated genes compared to those observed for the upregulated genes (Figure 5D).

We conducted an enrichment analysis to obtain an overview of the gene expres-
sion regulatory information for common upregulated genes and common downregulated
genes (Figure 5E,F). Gene sets were obtained from the Molecular Signatures Database
(MSigDB) [26]. Among the commonly upregulated genes, PPARGC1A_TARGET_GENES
(systematic name M30124) was the most enriched (Figure 5E). PPARGC1A encodes peroxi-
some proliferator-activated receptor gamma coactivator 1α (PGC1-α), a critical regulator of
mitochondrial biogenesis. Terms related to HSF1 and HSF2, the central regulators of HS,
such as HSF2_TARGET_GENES (systematic name: M30020), TTCNRGNNNNTTC_HSF_Q6
(systematic name: M16482), and RGAANNTTC_HSF1_01 (systematic name: M8746), were
also included. Genes common to these four sets, such as HSPA1A, which encodes a
molecular chaperone, were also included. The common genes are available on figshare
(Figure S4) [21]. Based on these results, we conducted a detailed analysis of HSF1, HSF2,
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and PPARGC1A. A gene set related to serum response factor (SRF), SRF_C (systematic
name: M12443), was also found in the enrichment analysis, although it was not as enriched
(Figure 5E). This gene set contained IEGs (FOS, FOSB, EGR1, and EGR2) included in the
blue cluster shown in Figure 5C, and ACTA1, which was not included in the blue clus-
ter. On the other hand, in the common downregulated genes, the enrichment analysis
results were inconclusive (Figure 5F). This observation, along with the strong enrichment
of target genes by transcription factors such as HSF1, HSF2, and PPARGC1A in common
upregulated genes (Figure 4E), led to our decision to focus further analysis on common
upregulated genes.
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Figure 5. Various functional analyses of common upregulated/downregulated genes. (A,B) Gene set
enrichment analysis of common (A) upregulated genes and (B) downregulated genes. (C,D) Protein–
protein interaction network analysis of common (C) upregulated genes and (D) downregulated genes.
(E,F) Transcription factor target gene enrichment analysis of common (E) upregulated genes and
(F) downregulated genes.
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2.5. Integration of HN-Score, Transcription Factor-Binding Information, and
Literature Information

In the previous section, we further explored the enrichment analysis of transcription
factor target genes. This analysis revealed that the target genes of HSF1, HSF2, and
PPARGC1A were strongly enriched in the common upregulated genes compared to the
common downregulated genes (Figure 5E,F). To further analyze the binding information
of these three transcription factors, we integrated ChIP-seq data from the ChIP-Atlas
database [27] processed using the MACS2 program, with the HN-score results obtained
in this study. In ChIP-Atlas, the ChIP-seq data from multiple studies are integrated and
analyzed, and MACS2 scores for each gene can be obtained by querying the transcription
factors and the range around the transcription start sites [27]. Scatter plots illustrating the
ChIP-seq and HN-scores were used for visualization (Figure 6). Additionally, we used
gene2pubmed data to visualize the number of reports registered in PubMed for each of
the 76 common upregulated genes. The source data can be obtained from the figshare file
(Table S9) [21]. As shown in Figure 6A, in addition to HSP genes such as HSPA1A, which
are known to be targets of HSF1, abhydrolase domain-containing 3 (ABHD3) was identified
as a target candidate among genes with fewer research reports. In contrast, genes with low
ChIP-seq scores were observed. EGR1 and ACTA1, the target genes of SRF (Figure 5C,E),
showed such characteristics, suggesting that they belong to pathways unrelated to HSF1.
Common genes with high ChIP-seq scores were found not only for HSF1 (Figure 6A), but
also for HSF2 (Figure 6B) and PPARGC1A (Figure 6C). In addition to the HSP genes, zinc
finger AN1-type containing 2A (ZFAND2A) and ubiquitin-specific peptidase-like 1 (USPL1),
had high ChIP-seq scores (Figure 6).
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Figure 6. Integrated scatter plots using HN-score, average MACS2 score, and gene2pubmed data for
several transcription factors. (A–C) Scatter plots from integrating the HN-score, ChIP-seq data, and
gene2pubmed data. X-axis “Total HN-score” means (human HN-score) + (mouse HN-score). Y-axis
indicates the average MACS2 score (peak mean) for the transcription factors (A) HSF1, (B) HSF2,
and (C) PPARGC1A. Average MACS2 scores were calculated from human information. ChIP-seq
data counts are (A) HSF1:105, (B) HSF2:25, and (C) PPARGC1A:1. Using gene2pubmed data, yellow
diamonds were plotted against common upregulated genes if the number of reported papers was
less than 50, large red circles if the number of reported papers was between 50 and 200, and small red
circles if the number of reported papers was 200 or more.

3. Discussion

In this study, we manually curated 322 human and 242 mouse pairs of heat-exposed
and untreated sample data from public databases for gene expression data, and performed
HS-related gene analysis. The top 500 genes with the highest HN-scores in humans and mice
were selected as upregulated genes, and the bottom 500 were selected as downregulated
genes for the gene set enrichment analysis. GO terms associated with protein folding
were the most enriched in the upregulated gene dataset for both species (Figure 3A,D).
Considering that HS disrupts proteostasis [4,12], this gene set seems to reflect the variation
in gene expression under HS conditions reported in previous studies. It is important to note
that this study did not take comprehensive statistical methods, including gene extraction,
so interpretation should be done with caution. However, our approach using the HN-ratio
and HN-score suggests the potential to extract HS-related genes, though further validation
may be required.

To identify common heat shock response (HSR) mechanisms, we narrowed down our
results to the upregulated and downregulated genes common to both humans and mice
and identified 76 upregulated genes and 37 downregulated genes (Figure 4A,B). Detailed
information on these two gene sets was obtained via protein–protein interaction network
analysis, transcription factor target gene enrichment analysis, and gene set enrichment
analysis (Figure 5). Several genes encoding molecular chaperones, including HSPA1A and
HSPA1B, were included in the common upregulated genes, and clusters of these genes were
created (Figure 5A,C). Results from the meta-analysis have also revealed this response to
proteostasis induced by HS. In contrast, genes associated with different processes, such as
IEGs and ACTA1, were also present in the common upregulated genes (Figure 5C). These
genes are also targets of the transcription factor SRF, which is distinct from HSF1, the
master regulator of the HSR (Figure 5E). It is already known that SRF is associated with
the expression of IEGs (e.g., FOS) [28]. In addition, genome-wide analysis has revealed
that SRF mainly regulates genes induced early in HS in an HSF1-independent manner, and
many of these genes are related to the cytoskeleton [29]. Therefore, genes associated with
HSF1-independent pathways were identified.

Moreover, in addition to the HN-score data for each gene calculated in this study, the
ChIP-seq data as transcription factor-binding information and the gene2pubmed data as
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information from the existing literature were integrated to visualize the characteristics of
each gene, and information on the common upregulated human and mouse genes was
added (Figure 6). In the ChIP-Atlas database, registered ChIP-seq data were scored using
the MACS2 score program, with higher scores suggesting a direct binding of transcription
factors [27]. This information can be used to filter genes that are directly or indirectly
regulated by the transcription factor of interest, in addition to knowing the potential target
genes of the transcription factor [15]. As shown in Figure 6A, genes directly regulated
by HSF1, the master regulator of the response to HS, as well as genes thought to be
indirectly regulated, were included in the common upregulated genes. In addition to
HSF1, we targeted HSF2, a member of the HSF family, and PPARGC1A (PGC1-α), which
is associated with various metabolic events because of the enrichment of genes encoding
different transcription factors (Figure 5E). HSF2 interacts with HSF1, forming a heterodimer
with HSF1 under HS conditions [13,30]. On the contrary, PPARGC1A (PGC1-α) may be
associated with the induction of the expression of representative HSP genes in the red
cluster in Figure 5C and has been shown to activate Hspa1a transcription by interacting
with HSF1 in mouse 10T1/2 cells [31]. Thus, the regulation of gene expression in response
to HS may be co-ordinated with transcription factors other than HSF1. However, further
investigation is needed because it has not been possible to identify all the transcription
factors involved in transcriptional regulation in response to heat stress. The results of this
study also suggest that this is a common gene with a high ChIP-seq score, as shown in
Figure 6. Thus, the integration and use of transcription factor-binding information suggest
that it may be a helpful method for a more detailed analysis of the response to HS.

In addition to the information on transcription factor regulation using the ChIP-seq
data, gene2pubmed data were used to assess gene attention and visualize the results
(Figure 6). We investigated 76 common upregulated genes with high ChIP-seq scores. As
shown in Figure 6A, ABHD3, with a high ChIP-seq score, was implicated in the degradation
of oxidatively truncated PCs (oxPCs) generated by oxidative stress as well as medium-
chain phospholipids [32]. It has been suggested that heat alters biomembranes [7]. Heat
can also affect mitochondria, which are cellular organelles, and may contribute to the
production of ROS [5]. ABHD3 may contribute to biomembrane homeostasis by removing
oxPCs generated by ROS during HS. In contrast, we found that ZFAND2A and USPL1
had high ChIP-seq scores for the three transcription factors (Figure 6A–C). ZFAND2A is a
gene whose expression is induced by heat, and HSF1 has been suggested to be involved in
this process [33]. Notably, there have been few reports of this gene, despite reports of its
association with HS. These examples indicate that HS research focuses on the expression
and functional analysis of molecular chaperones. However, there is no current evidence
suggesting that USPL1 is associated with HS. It has been suggested that USPL1 encodes a
protein that does not target ubiquitin but functions as a small ubiquitin-related modifier
(SUMO) isopeptidase [34]. However, according to the gene2pubmed data, there have been
very few reports of this (20 articles published as of April 2023), and its functions still need
to be fully understood.

While comprehensive analyses and new candidate HS-responsive genes have been
selected, limitations of this study exist. Broadly categorized, there are (1) biases due to
data from diverse backgrounds, including sequencing methods, cell types, and experiment
conditions, and there is also (2) the interpretation of the results from a biological perspective.
Regarding the former issue (1), the transparency of the study was improved by disclosing
metadata about the collected data (Tables S1 and S2) and by visually representing the con-
tribution of each sample to the HN-score in a stacked bar graph (Figure S2) [21]. However,
caution should be exercised in interpreting the results, as there may still be bias due to
factors not considered, such as conditions not mentioned in the metadata. In viewpoint
(2), several points must be made. For example, this is an area where the complexity of the
HSR is not captured. Some mechanisms have not been focused on, such as the perspective
of the hierarchical levels of regulation in multicellular organisms [12] and the regulation
of expression by transcription factors that have not been identified in this study. Further-
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more, careful interpretation must include considerations such as the backgrounds (genetic,
physiological, and evolutionary aspects) that humans and mice do not share.

In addition to addressing these research limitations, a detailed functional analysis of
genes (such as USPL1), whose response mechanisms and functions have not been eluci-
dated in detail, could further expand the scope of heat stress research. Further functional
analysis should include the use of genome editing tools such as CRISPR-Cas9, which enable
the precise manipulation of target genes and are especially useful for the functional analysis
of genes whose functions are unknown for the HS data extracted in this study. Furthermore,
by utilizing tools such as Metascape [23], which integrates various information resources
(Gene Ontology, KEGG Pathways, etc.) to provide multifaceted insights into the functional
significance of the identified gene expression changes, and facilitate more targeted experi-
mental validation, it is expected that this study will serve as a basis for subsequent in-depth
functional analysis studies. Therefore, the genes identified and validated in this study may
serve as candidates for novel genome-editing target genes.

In this study, a meta-analysis of the human and mouse gene expression data facilitated
the extraction of genes not yet known to be associated with HS, in addition to the responses
of organisms to heat derived from previous findings. Such findings from data-driven
studies can potentially provide novel insights. However, it is unclear whether the genes
identified in this study are as widely conserved in species as molecular chaperone genes;
therefore, a meta-analysis of gene expression data on a broader range of species should be
conducted to identify novel common mechanisms of HS responses. This knowledge could
contribute to addressing the increased exposure to and frequency of high temperatures due
to climate change. With growing concerns about increased health hazards and impacts on
industries such as crop production [1], this research lays the groundwork for developing
countermeasures to these problems and may lead to new knowledge and technological
advances in future research.

4. Materials and Methods
4.1. Curation of Gene Expression Data from Public Database

The public database Gene Expression Omnibus (GEO) [35] was used to obtain gene
expression data associated with human and mouse HS. GEO is operated by the National
Center for Biotechnology Information (NCBI) and archives gene expression data obtained
by RNA sequencing (RNA-seq) using Next-Generation Sequencing (NGS) and expression
microarrays. To narrow down the gene expression data, we used keywords related to heat
exposure such as “heat stress”, “heat shock”, “hyperthermia”, “thermal stress”, “heat-shock
treatment”, and “heat stroke”. Additionally, “Expression profiling by high throughput
sequencing” was added to the search formula as a study-type condition. Data collection
was done manually. Data from heat stress and non-treatment conditions were collected if
they could be made as a pair or if the data were from a study examining heat stress, and if
deemed appropriate.

4.2. Quantification of Gene Expression Data Using the Analysis Pipeline

The gene expression data retrieval, processing, and quantification were performed
using ikra (ver. 2.0.1) [22], an automated human and mouse RNA-seq data analysis pipeline
that can automatically perform all of the following processes: retrieve FASTQ format files
using the fasterq-dump program in the NCBI SRA tool kit (ver. 3.0.0) [36], read quality
control, and read trimming using Trim_galore (ver. 0.6.6) [37] as well as transcript quantifi-
cation using Salmon (ver. 1.9.0) [38]. Pre-processing through Trim_galore, the step prior
to expression quantification, strictly filters out low-quality reads and adapter sequences
that could affect results, ensuring the reliability and accuracy of the gene expression data
curated [37]. This study used a different version of the tool compared to that used in
previous studies [16,17]: the SRAtoolkit, Salmon. Different versions of the reference se-
quence sets that were used as indices in Salmon were also used, including GENCODE
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Release 37 (GRCh38.p13) for the human data and GENCODE Release 26 (GRCm39) for the
mouse data.

4.3. Calculation of HN-Ratio

Expression ratios (henceforth referred to as the HN-ratio) were calculated for all genes
from the gene expression data paired with HS and non-treatment. The HN-ratio for each
gene was calculated using the following Equation (1)

HN − ratio =
THS + 1

Tnon−treatment + 1
(1)

THS and Tnon-treatment refer to scaled Transcripts Per Million (scaled TPM) [39] under HS
and non-treatment conditions, respectively, and indicate the quantified expression levels.
When calculating the HN-ratio, 1 was added to the expression value to avoid calculation
with a zero value [17,40].

4.4. Classification of Genes Based on HN-Ratio

Using the calculated HN-ratio, all genes were classified into three groups: upregulated,
downregulated, and unchanged. If the HN-ratio was higher than a threshold, the gene was
considered “upregulated”. Conversely, if the HN-ratio was less than the reciprocal of a
threshold, the gene was considered “downregulated”. Genes not classified in either group
were considered “unchanged”. For genes that were upregulated, we tested 2-fold, 5-fold,
and 10-fold thresholds and selected the 5-fold threshold; for genes that were downregulated,
we tested 1/2-fold, 1/5-fold, and 1/10-fold thresholds and selected the 5-fold threshold for
classification.

4.5. Calculation of HN-Score

To evaluate the genes whose expression was altered by HS, an index called the heat
stress and non-treatment score (HN-score) was calculated for each gene in humans and mice.
The HN-score was calculated by subtracting the number of instances of genes classified as
downregulated from those of genes classified as upregulated. The HN-ratio and HN-score
were calculated using a script from a previous study (https://github.com/no85j/hypoxia_
code, accessed on 1 August 2023) [16]. Python scripts were created to visualize the HN-score
values for each gene using a scatter plot (https://github.com/yonezawa-sora/HS_code,
accessed on 1 August 2023).

4.6. Analysis of Selected Gene Sets in Human and Mouse

From each human and mouse dataset, the top and bottom genes were selected based
on the HN-score, and a gene set enrichment analysis was performed using the web tool
Metascape [23] (accessed November 2022). The Batch Query function of mouse genome
informatics [24] (accessed November 2022) was used to extract genes that are commonly
conserved between humans and mice. Scatter plots of the HN-scores of human genes
corresponding to the mouse “Current gene symbol” and the HN-scores of mouse genes
were created using a Python script. The scripts used are available on GitHub (https:
//github.com/yonezawa-sora/HS_code, accessed on 1 August 2023). Gene set enrichment
analysis, protein–protein interaction networks, and transcription factor target gene set
enrichment analyses were performed using Metascape [23]. The protein–protein interaction
networks were processed using Cytoscape [41]. The genome mapping was performed
using ShinyGO [25] (ver. 0.77) (accessed February 2023). A Python script was used to
create a stacked bar graph to visualize the contribution of each sample to the HN-score.
The script is available on GitHub (https://github.com/yonezawa-sora/HS_code, accessed
on 1 August 2023).

https://github.com/no85j/hypoxia_code
https://github.com/no85j/hypoxia_code
https://github.com/yonezawa-sora/HS_code
https://github.com/yonezawa-sora/HS_code
https://github.com/yonezawa-sora/HS_code
https://github.com/yonezawa-sora/HS_code
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4.7. Comprehensive Analysis of Common Upregulated Genes in Human and Mouse

The ChIP-Atlas Database [27] (accessed February 2023) was accessed, and the “Target
Genes” function was used to retrieve an average model-based analysis of ChIP-seq (MACS2)
scores for all genes. HSF1, HSF2, and PPARGC1A (PGC1-α) were used as “antigens”.
MACS2 scores were obtained at distances of ±5 kb from the transcription start site. The
numbers of the ChIP-seq experiment data (accessions are indicated by SRX ID) used to
calculate the average MACS2 score are HSF1:105, HSF2:25, and PPARGC1A:1. For genes for
which a MACS2 score was not calculated by ChIP-Atlas, this MACS2 score was considered
to be 0. For each gene, the calculated HN-score, MACS2 score, and the number of reports
in the existing literature on the human gene in the gene2pubmed data (accessed February
2023) were visualized by creating a scatter plot using a Python script. The script used for
the visualization is available on GitHub (https://github.com/yonezawa-sora/HS_code,
accessed on 1 August 2023)).

Supplementary Materials: The following supporting information can be downloaded together from
figshare (https://doi.org/10.6084/m9.figshare.c.6564487) [21].
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