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Abstract: Atopic dermatitis (AD) is a chronic inflammatory skin disorder that is the result of various
environmental, bacterial and genetic stimuli, which culminate in the disruption of the skin’s barrier
function. Characterized by highly pruritic skin lesions, xerosis and an array of comorbidities among
which skin infections are the most common, this condition results in both a significant loss of quality
of life and in the need for life-long treatments (e.g., corticosteroids, monoclonal antibodies and
regular antibiotic intake), all of which may have harmful secondary effects. This, in conjunction
with AD’s rising prevalence, made the development of alternative treatment strategies the focus
of both the scientific community and the pharmaceutical industry. Given their potential to both
manage the skin microbiome, fight infections and even modulate the local immune response, the use
of antimicrobial peptides (AMPs) from more diverse origins has become one of the most promising
alternative solutions for AD management, with some being already used with some success towards
this end. However, their production and use also exhibit some limitations. The current work seeks to
compile the available information and provide a better understanding of the state of the art in the
understanding of AMPs’ true potential in addressing AD.

Keywords: AMPs; atopic dermatitis; chronic inflammatory disease; skin infection; barrier disruption;
skin microbiome

1. Introduction

To understand the dos and don’ts of peptide applications in human skin one must first
understand not only the skin’s role and characteristics, but also what makes skin diseases,
such as atopic dermatitis, so hard to treat and manage.

Considered by most to be the largest organ in the human body (as it possesses a surface
area of approximately 2 m2) the skin’s main function is to be a physical barrier, which
protects us from the external surrounding environment [1]. While this barrier function is
mostly physical, there is also a “gatekeeper” aspect to it, as the combination of the cells and
matrix elements that constitute the skin acts as a “custom agent” that permits or denies
microorganism colonization of the skin surface and determines which compounds can
migrate through the various layers and either reach the bloodstream or leave the body [2].

From a structural perspective, the skin is constituted of three major layers, which
are, from inside out, the hypodermis, the dermis and the epidermis (Figure 1). As can
be seen from Table 1, each layer comprises different cellular constituents having different
functions and is home to different structures, such as blood vessels in the hypodermis and
dermis, mechanoreceptors in the dermis, and a stratified keratinized epithelium in the
epidermis [1,2].
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Figure 1. Schematic 3D representation of the human skin. Image produced using Biorender. 

Table 1. Major constituents and functions of the different skin layers. 

Layer Major cellular Constituents Major Functions References 

Hypodermis 
Adipocytes, fibroblasts, 

endothelial and muscle cells 
Insulation, mechanical integrity, support, 

conductance of vascular and neural signals [1,2] 

Dermis 
Endothelial cells, fibroblasts, 
Langerhans and muscle cells 

Mechanical integrity, support, thermal barrier, 
energy storage, protection from physical injury [2,3] 

Epidermis Keratinocytes, melanocytes, 
Langerhans and Markel cells 

Outermost barrier, immune function, protection 
from oxidative and mechanical stress 

[4,5] 

When one considers the skin complexity a compound’s biological activity will be 
mainly influenced by two layers, the epidermis followed by the dermis. The reason for 
this is that, within these layers, all physical and chemical resistance to compound 
penetration, immunological response to outside factors, and the management of microbial 
colonization and infection resistance is provided [3,4]. When alterations to these layers 
occur, there is a window for the appearance of abnormal conditions within the skin and 
the development of hard-to-treat-and-manage diseases, such as AD. 

2. Atopic Dermatitis 
Atopic dermatitis is one of the most common and recurrent chronic non-infectious 

skin inflammatory diseases, which is characterized by a persistent itching sensation in the 
skin. It is a skin disorder that usually appears in early childhood (about 80% of the cases) 
and is reported to affect 15–20% of children. Although ca. 70% of paediatric patients 
outgrow the disease, the prevalence in adults remains around 1–3%, although the figures 
vary greatly from country to country [6–9]. AD’s worldwide prevalence is rising, with 
two- to three-fold increases in incidence in industrialized countries being reported for the 
last decades, having reached a plateau only in countries where its prevalence is highest 
[7,10]. In contrast to most allergic diseases, AD has a high social and economic impact. The 
chronic skin inflammation with continuous itching leads to skin thickening, lichenification 
and overall discomfort. This will lead to a compromise in sleep patterns, which have social 
consequences and create economic burdens. All of these social and economic impacts are 
what makes AD a disease with a high toll on patients and their families [11,12]. 

From a clinical standpoint, AD belongs to the spectrum of atopic disorders, such as 
allergic asthma or food allergies. Coincidently, these are companion diseases of AD 
patients due to the commonly denominated “atopic march”, a curious denomination 
given to the range of allergic disorders that, in later years, manifest in AD patients [13–
15]. Atopic dermatitis clinical diagnostics are characterized by eczema-like eruptions, 
papules, exudative lesions, and various degrees of skin dryness. In addition, there are 
several comorbidities, such as skin infections and cardiovascular and neuropsychiatric 
disorders, which have also recently been associated with AD, despite the mechanism 
behind these associations being still unknown [11,16–20]. As with most atopic diseases, 
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Table 1. Major constituents and functions of the different skin layers.

Layer Major cellular
Constituents Major Functions References

Hypodermis

Adipocytes,
fibroblasts,

endothelial and
muscle cells

Insulation,
mechanical integrity,
support, conductance

of vascular and
neural signals

[1,2]

Dermis

Endothelial cells,
fibroblasts,

Langerhans and
muscle cells

Mechanical integrity,
support, thermal

barrier, energy
storage, protection

from physical injury

[2,3]

Epidermis

Keratinocytes,
melanocytes,

Langerhans and
Markel cells

Outermost barrier,
immune function,
protection from
oxidative and

mechanical stress

[4,5]

When one considers the skin complexity a compound’s biological activity will be
mainly influenced by two layers, the epidermis followed by the dermis. The reason for this
is that, within these layers, all physical and chemical resistance to compound penetration,
immunological response to outside factors, and the management of microbial colonization
and infection resistance is provided [3,4]. When alterations to these layers occur, there is a
window for the appearance of abnormal conditions within the skin and the development
of hard-to-treat-and-manage diseases, such as AD.

2. Atopic Dermatitis

Atopic dermatitis is one of the most common and recurrent chronic non-infectious
skin inflammatory diseases, which is characterized by a persistent itching sensation in
the skin. It is a skin disorder that usually appears in early childhood (about 80% of the
cases) and is reported to affect 15–20% of children. Although ca. 70% of paediatric patients
outgrow the disease, the prevalence in adults remains around 1–3%, although the figures
vary greatly from country to country [6–9]. AD’s worldwide prevalence is rising, with two-
to three-fold increases in incidence in industrialized countries being reported for the last
decades, having reached a plateau only in countries where its prevalence is highest [7,10].
In contrast to most allergic diseases, AD has a high social and economic impact. The chronic
skin inflammation with continuous itching leads to skin thickening, lichenification and
overall discomfort. This will lead to a compromise in sleep patterns, which have social
consequences and create economic burdens. All of these social and economic impacts are
what makes AD a disease with a high toll on patients and their families [11,12].

From a clinical standpoint, AD belongs to the spectrum of atopic disorders, such
as allergic asthma or food allergies. Coincidently, these are companion diseases of AD
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patients due to the commonly denominated “atopic march”, a curious denomination given
to the range of allergic disorders that, in later years, manifest in AD patients [13–15].
Atopic dermatitis clinical diagnostics are characterized by eczema-like eruptions, papules,
exudative lesions, and various degrees of skin dryness. In addition, there are several
comorbidities, such as skin infections and cardiovascular and neuropsychiatric disorders,
which have also recently been associated with AD, despite the mechanism behind these
associations being still unknown [11,16–20]. As with most atopic diseases, there is a strong
environmental link with immunoglobulin E (IgE)-related environmental responses, with
this factor being one of the primary drivers of AD outbreaks [21]. However, AD is a
complex multifactorial disease that cannot be attributed to one single cause.

From a pathophysiologic standpoint, AD results from several genetic defects that
potentiate the immune response and disrupt the skin barrier. The most reported mutations
are associated with filaggrin (FLG) production, which have been recognized as some of
the most relevant, with various authors reporting that up to 60% of Europeans with AD
exhibit alterations in FLG expression [11]. Another defect which plays a key role in AD are
tight junctions (TJs) mutations and alterations. These are structures that have a connection
role between cells, exist in every human epithelium, and have various roles depending
on the tissue they are located in (e.g., homeostasis control in the central nervous system
or impeding the penetration of pathogens in the intestine) [22,23]. In healthy skin, TJs are
part of the mechanism for managing cellular differentiation, proliferation and cascading
processes involved in maintaining and managing skin homeostasis and permeability [24,25].
On the other hand, in AD patients, TJs are normally dysfunctional and contribute to the
irregular barrier function of the skin. They appear to impede stratum corneum (SC, the
outermost layer of the epidermis) formation due to increased pH values and, among other
effects, affect the processing of polar lipids and profillagrin, both of which are critical for
SC formation. All these alterations lead to increased permeability to exogenous material
and bacteria, which results in an increased inflammatory condition and a vicious circle,
where the barrier dysfunction potentiates the skin’s inflammatory response. Interestingly,
the TJ dysfunction is not directly affected by the FLG mutation, with both mechanisms
appearing to be independent [26,27].

In addition to these two main alterations, several other structural proteins have been
described as downregulated in AD, such as desmogleins, desmocolins, involucrin and
keratins [28–32]. These alterations to expression and mutations again result in compromise
of the skin’s shield function, increased transepidermal water loss (i.e., higher dehydration),
and an increased exposure to external toxins and allergens that translates into activation of
the local immune system.

Of all the identified changes, the FLG mutation is a particularly interesting one when
seeking to understand the cascade of potential problems that arise from a single mutation:
(1) it disrupts the production of moisturizing factors in the skin’s stratum granulosum;
(2) it disrupts lamellar body secretion and, therefore, alters the composition of the SC;
(3) it arrests the metabolic pathway part-way through resulting in the absence of acidic
metabolites. This translates into an upswing of the SC pH and allows for an increase in
proteolytic enzyme activity (increased desquamation) and the proliferation of Staphylococcus
aureus (S. aureus), a bacterial species whose predominance in skin flora has been strongly
associated with AD flares [17,33–35].

While the pathophysiology of AD is mainly attributed to the above-referenced FLG
and TJs disruptions it is in fact a very complex process. So complex that, when talking
about this topic, one must consider four fields or target areas. The first is the environmental
area, the second is the skin microbiome, the third is the epidermal barrier, and the fourth
is the immune/inflammatory response [36–38]. The first consists of the sum of all the
environmental (the “exposome”) influences that may affect AD pathogenesis and progres-
sion. It includes factors such as air pollutants, allergens and microorganisms (bacteria,
viruses and fungi) and spans all domains of everyday life, including an individuals’ diet
and behaviour [39]. The skin microbiome (second field/target area) relates strongly to
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S. aureus-exacerbated skin colonization and infection, which, in conjunction with imbalances
in skin microbiota in AD lesions, strongly influence AD progression in patients, particularly
due to the expression by S. aureus of several superantigens, cytolytic α- and δ-toxins, and
clumping factor B, which allows it to adhere to deformed corneocytes in AD skin, and pro-
teases which further degrade the epidermis [21,40,41]. Epidermal barrier (third field/target
area) disruption is a hallmark of AD and is mostly due to a combination of two factors: first,
mutations or alterations in the genes encoding the structural-filament-associated protein
filaggrin that binds to keratin fibres in epithelial cells [42], and, second, the overexpression
of inflammatory cytokines, such as IL-13, which will further disrupt the epidermal layer
and impair or dysregulate epidermal barrier function, leading to increased skin permeabil-
ity [43,44]. Last, but not least, we have the activity of the immune/inflammatory response
as, in AD patients, there is an overall dysregulation or impairment of genes involved in the
innate response, which leads to a lack of production of the cytokines involved in fighting
pathogen skin colonization [44,45]. Similarly, dysregulation of the adaptative immunity in
AD patients, particularly in the response of CD4+ T-helper cells, leads to the overexpression
of IL-17 and IL-22 cytokines, both of which have been associated with acute and chronic
AD lesions [45,46].

Considering the pathophysiology of AD, it would be natural to expect that its treatment
would involve a multifaceted approach capable of mitigating or ameliorating several facets
of the disease, with a multitude of approaches and options for patients. However, this
could not be further from reality. As AD is considered as being only a skin disorder,
the treatments follow the paradigm “one-size-fits-all”, with solutions being very limited,
and an almost recipe-like approach being followed by physicians all over the world [21].
In fact, most AD patients’ treatment has, as a first line of approach, anti-inflammatory
treatment, more particularly, topical corticosteroids or topical calcineurin inhibitors, in
conjunction with an antimicrobial ointment to help with S. aureus control [47,48]. For more
severe cases, this is normally followed by the use of ultraviolet light and potent cocktails
of immunosuppressant drugs, such as ciclosporin A, methotrexate and mycophenolate
mofetil [21,47,49]. These regimens, while mostly effective, are not without costs, as several
side-effects related to cutaneous application of immunosuppressants are well-described in
the literature [50,51]. Thus, there has been an increasing demand for alternative solutions
to AD treatment.

Currently, there are already some therapeutic alternatives being tested, such as
Janus kinase inhibitors (e.g., Delgocitinib and Ruxolitinib), phosphodiesterase-4 inhibitors
(e.g., Crisaborole and Difamilast) and aryl hydrocarbon receptor agonists (e.g., Tapinarof),
all of which, through topical application, target the inhibition of enzymes, receptors or
transcriptional factors involved in AD [52–54]. Another option is the use of human mono-
clonal antibodies (mAbs), which are also already being applied in AD patients via systemic
application [55,56]. However, both of these alternatives are used mainly for moderate to
severe cases and, thus, are not suitable for everyday applications [57]. Thus, alternatives
are still required for the daily management of AD. Among the natural alternatives currently
being studied, antimicrobial peptides (AMPs) are some of the most promising.

3. Antimicrobial Peptides

By definition, AMPs are small molecules that are widely present in nature and are
part of the immune response of most human inflammatory responses. They are generally
constituted by 100 amino acid residues or less and have a positive net charge and am-
phiphilic structure, which provides these molecules enhanced biological potential due to
their natural strong interaction with hydrophobic surfaces and membranes [58]. In terms of
their characterization, AMPs can be divided according to their structure (α-helical, β-sheets,
extended peptides and loop peptides) and covalent bonds (class I to IV) [59]. Their typical
characteristics are described in Table 2.
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Table 2. Classification of AMPs according to their structure and bonds.

Structure

Class Characteristics Examples References

α-helical

Contains <40 amino acids and forms
an α-helical secondary structure in a

non-polar environment.
Antimicrobial activity correlates with
α-helical content; these AMPs are
mostly membrane disruptive and

exhibit activity against fungi, viruses,
bacteria, and even drug-resistant

pathogens.

Cathelicidins and Magainins. [60–62]

β-sheets

Contain conserved cysteine residues
which form disulphide bonds

between anti-parallel strands with
helical fragments. Target

Gram-positive and negative bacteria
and complex with bacterial

lipopolysaccharides.

Defensins and Tachyplesins. [63–65]

extended peptides

The presence of glycine, histidine,
arginine, and tryptophan instead of a

structural pattern is the defining
characteristic. Engage with

membrane lipids and produce
hydrogen bonds and van der Waals

interactions.

Histatins and Indolicidin. [61,66]

loop peptides

Distinguished by a single bond
(disulphide or amide), which leads to

a loop structure. Shows activity
against a broad range of

Gram-positive and Gram-negative
bacteria. Only 1 AMP has been

identified with this structure and is
constituted by 21 amino acids.

Thanatin [67,68]

Covalent Bond

Class Characteristics Examples References

I Linear or open chains with only one
chain. No bonding registered. Magainin and Cecropins. [69]

II

Side-chain–side-chain with either one
or two chains. Single chains with no

bonding or two chains with
disulphide bonds.

Enterocin L50 and Geobacillin
I. [70,71]

III

Side-chain–backbone bonding pattern
with only a single chain present.
Bonding is through either amide,

ester or thioether bonds.

Capistruin and Huazacin. [72,73]

IV
A backbone-to-backbone bonding

pattern with only one chain present.
Bonding through amide bonds.

RTD-1 and Kalata B1. [74]

In the context of the epidermis, naturally produced AMPs play a crucial role in the
maintenance of a healthy skin microbiome through modulation of the microbiota composi-
tion, proliferation and death, and, thus, also play a role in the metabolites produced by them.
Produced within the epidermis, primarily in keratinocytes, this family of ca. 20 peptides
not only exhibits antibacterial activity, but these peptides also exert immunomodulatory
effects as they activate various cell-related functions, such as migration and proliferation,
regulate cytokine production and help maintain the skin’s barrier function, and play crit-
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ical roles in both innate and adaptative immunity [75]. In this family, the most studied
AMPs are defensins, LL-37, RNase 7, psoriasin and dermcidin, with most of these AMPs
being expressed at basal or low levels in healthy skin, with the only exception being the
β-defensin AMPs which are crucial for the homoeostasis of healthy skin and its protection
against infections [76]. For the ones that are expressed at basal levels, their production is
normally induced in injury, inflammation or infection scenarios (Table 3) [12,75,76].

Table 3. Examples and functions of AMPs produced in human skin. Crystalline structures obtained
via accession of the Protein databank.

AMP Expression Conditions Major Functions Crystaline Structure References

Defensins

β-defensins expressed
continuously; other

defensins expressed by
infection, injury, or
pro-inflammatory

cytokines

Antimicrobial defense of
skin, synergistic effect with

LL-37, potent Candida
albicans and anaerobic

pathogen inhibitor

[75,76]

LL-37 Induced by injury and
inflammation

Broad antimicrobial
activity, chemotactic

capacity to recruit
neutrophils, T- and mast

cells and monocytes.
Promotes angiogenesis

[12,16]

Psoriasin
Induced by inflammatory

conditions and barrier
disruption

Immunomodulatory
properties and strong

inhibitor of Escherichia coli
and other bacteria

[77,78]

Rnase7
Induced by

pro-inflammatory
cytokines

Strong inhibitor of S. aureus [79,80]

Dermcidin Expressed in sweat glands;
not found in keratinocytes

Active against S. aureus
and C. albicans [81,82]

Disruptions to AMP production or activity have been shown to contribute significantly
to the increased susceptibility of AD patients to skin infections by fungi, bacteria and viruses
and, thus, are perceived as an important factor in AD pathophysiology [11]. In fact, in
AD patients AMPs such as Dermcidin, LL-37 and β-defensins are un-der-expressed, a
fact that has been shown to directly influence the progression of AD. This is due to these
AMPs being involved in numerous adaptative and innate immune responses (through
the recruitment of a broad range of leukocytes) among which are: (i) the regulation of the
itch sensation; (ii) secretion of IL-31 from mast cells induced by β-defensins and LL-37;
(iii) under expression of AMPs, due to overexpression of Th2 cytokines, hampering S.
aureus killing in keratinocytes [12,16]. On the other hand, under AD conditions, some
AMPs are overexpressed, such as Rnase7, leading to imbalances in the skin microbiota.
There is also the curious case of β-defensins and LL-37, which can be the cause of their
own inhibition, as they recruit and activate a broad range of leukocytes. This leads to the
production of IL-4, IL-13 and IL-31, the major interleukins involved in the development
of AD, thus creating a perfect inflammatory environment for the pathogenesis of AD and
their own inhibition [83].

With this clear influence upon various and critical factors involved in AD pathogenesis,
AMPs have risen to prominence as valid alternatives for the treatment/management of
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AD. In recent years, research has centered on the use of AMPs either as an alternative
to antimicrobials or as a pharmaceutical agent capable of exerting immunomodulatory
activity, with several natural and synthetic sources being explored. A total of 3324 AMPs
has now been registered with the Antimicrobial Peptide Database from sources of the six
traditional kingdoms (bacteria, archaea, protists, fungi, plants and animals) (Figure 2) [84].
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From a mechanistic standpoint, the application of AMPs as pharmacodynamic agents
is dependent on a variety of factors (such as peptide concentration, tissue location, the
local environment and the target pathogen) that one must consider when evaluating AMP
potential application in skin and AD in particular [85]. While there are some disadvantages
regarding the clinical application of AMPs, like their rapid degradation by esterases or
aminopeptidases and their low stability in vivo, there are also advantages to their use.
These include their capability for penetrating deeper skin layers, as shown by their presence
in viable skin even 24 h after application, and the fact that AMP-based treatment provides
opportunities for interventions that closely resemble natural pathways and represent more
of a replacement therapy than conventional treatment. In this regard, they supplement
patients with AMPs in locations where their endogenous levels are low or absent and,
consequently, are less likely to promote adverse responses [84,86]. Furthermore, even the
previously mentioned disadvantages do not represent a limitation to AMP application in
AD management, as, nowadays, there are several strategies to enhance their bioavailability
and overcome their limitations. These include, penetration enhancers, encapsulation, or
even chemical modification to increase AMP permeability through the skin [87].

3.1. Human AMPs

One example of a human source AMP is AMP-IBP5. This is derived from the insulin-
like growth factor binding protein 5 (IBP-5), which is obtained through proteolytic cleavage
and has been found to be expressed in various cells, including keratinocytes and fibroblasts.
This AMP has been reported to accelerate diabetic wound healing through protection
against glucotoxicity and increased angiogenesis. Furthermore, it was reported as being
capable of inducing the proliferation of keratinocytes and fibroblasts through the activation
of the low-density lipoprotein receptor-related protein 1 (LRP1), a receptor which is mainly
expressed in the stratum granulosum in the epidermis and in dermal fibroblasts [88–90].
This AMP has been shown by Nguyen, Peng, Trujillo-Paez, Yue, Ikutama, Takahashi,
Umehara, Okumura, Ogawa, Ikeda and Niyonsaba [16] to be capable of improving the
skin’s barrier function, as it upregulated TJ-related protein (claudin-1, -4 and -7, occluding
and ZO-1) expression, with an even distribution of the expressed proteins throughout the

https://aps.unmc.edu
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epidermis, and led to increases in barrier function over a 48 h period after its application.
Additionally, a cellular model showed that this AMP was capable of ameliorating IL-4/IL-
13-driven TJ barrier dysfunction. From a mechanistic standpoint, the reported data showed
that this peptide activated the atypical protein kinase C ζ and ras-related C3 botulinum
toxin substrate 1 expression. This has been shown to be linked to TJ barrier function and to
the activated LRP1 receptor.

Another example of a human-derived or obtained AMP is DPK-060, or, as it is also
known, GKH17-WWW. This is a chemically synthesized AMP, structurally derived from
kininogen, a protein found in humans, and to which three tryptophan residues were
added to the C-terminal side. This grants this AMP increased resistance to enzymatic
degradation without added cytotoxic effects. From a functional standpoint, this AMP has
strong antimicrobial activity against various Gram-positive and Gram-negative bacteria,
including methicillin-resistant S. aureus. A clinical trial where a DPK-060-formulated
ointment was applied to AD patients showed that this compound was well-tolerated and
led to a reduction of 94 to 99% of microbial load in lesions after 14 d of application [59,91].

3.2. Microbial AMPs

Bacterial AMPs are short peptide bacteriocins that inhibit microorganism growth.
More recently, peptide molecules from this class that can inhibit bacterial quorum sens-
ing have also gained attention with a potential focus being on their application in AD
treatment [12,92].

Short peptide bacteriocins (SPBs) are ribosomally synthesized peptide antimicrobials with a
molecular weight of less than 5 kDa, which possess a narrow but potent spectrum of antibacterial
activity, with little to no known bacterial resistances. They are capable of inhibiting bacterial
growth through different mechanisms, such as interfering with cell wall biosynthesis, membrane
disruption or inhibiting protein synthesis in the 50s ribosomal subunit [93]. Traditionally the
antimicrobial activity of SPBs is targeted towards closely related bacteria and, thus, a directed
response, where one microorganism is inhibited and another is not, can be achieved. One
example of this is Subtilosin A, an SPB produced by Bacillus subtilis, which is capable of
exerting strong inhibitory activity against Streptococcus pyogenes at a very low concentration
(1.25 µg/mL), but against Streptococcus gordonii had an MIC value of 83.25 µg/mL [94]. This
discrepancy may be key to targeted activity against skin pathogens in the skin microbiome and
S. aureus, in particular. Examples of this potential can already be found in the literature. One
is the NAI003 peptide, which has already passed phase 1 clinical trials and showed selective
activity against Cutibacterium acnes (C. acnes) and not against commensal skin microorganisms.
Curiously, the same C. acnes is responsible for the production of the SPB cutimycin, a peptide
which is capable of inhibiting Staphylococcus species growth. Another is the SPB Lactocillin, a
peptide isolated from the vaginal commensal microorganism Lactobacillus johnsonii PF01, which
has showed the capacity to inhibit pathogens from colonizing the skin [95,96]. One example,
which clearly illustrates the curious nature of AMPs produced by skin microorganisms, is the
targeted activity of various staphylococci species against S. aureus, as Staphylococcus epidermidis
produces epidermin or the hominicin produced by Staphylococcus hominis, with both AMPs
being extremely effective against S. aureus [12,96–98].

The other already touched field of application is quorum sensing inhibition, or, more
particularly, targeting the quenching of S. aureus quorum sensing signal molecules. Quorum
sensing is, by definition, a cell-density-dependent phenomenon that enables bacterial cell-
to-cell communication through extracellular chemical signals, which are identified by cell
receptors, leading to the activation of genes for the production of certain metabolites within
a cellular community and, thus, regulating their growth and behaviour [99]. In the case
of S. aureus and AD the capacity of SPBs to inhibit this quorum sensing mechanism may
be of particular importance, as the agr quorum sensing system of S. aureus as the activator
of the kinase receptor AgrC initiates a cascade that leads to the transcription of several
virulence factors associated with AD pathogenesis [100]. This has been demonstrated in
the work of William and his co-workers who isolated and identified an SPB from S. hominis
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which was capable of inhibiting S. aureus quorum sensing and limited S. aureus-mediated
epidermal proteolysis and inflammatory response [37]. Another example is the work of
Brown et al. [101] where it was demonstrated that an SPB obtained from Staphylococcus
simulans was capable of reducing MRSA-related dermonecrotic and epicutaneous skin
lesions in mouse models.

A further example of bacterial AMPs’ possible application in AD treatment was
described by Van Hemert et al. [102] who showed that AMPs produced by Lactobacillus
plantarum were capable of modulating cytokine production in PBMCs, with an increase in
the production of the anti-inflammatory cytokines IL-10 and IL-12 by over 10-fold.

3.3. Animal-Sourced AMPs

One example of animal-sourced AMPs with AD application is the 12-amino-acid-
long peptide Omiganan, which is derived from indolicidin, an AMP obtained from the
cytoplasmatic granules of bovine neutrophils, which has been used as a local treatment for
AD due to its antimicrobial and antibiofilm capacity against skin bacteria and fungi [59,103].
The results obtained from clinical trials with this peptide showed that this peptide had an
effective in vivo antibacterial effect in patients with mild to moderate AD, and that, with
treatment, their microbiome shifted from lesional to non-lesional, with a decrease in the
presence of staphylococci and an increase in bacterial diversity [104].

Another example of an animal-based AMP can be found in the work of Fei et al. [105]
which showed that the AMP Brevinin-1E-OG9c-De-NH2, derived from the frog AMP
brevinine, had triple potential as a potential AD agent, as it had strong in vitro and ex vivo
antimicrobial activity against S. aureus, was capable of inhibiting S. aureus biofilm formation,
and attenuated the inflammatory response in keratinocytes induced by lipoteichoic acid
and lipopolysaccharide.

4. AMPs in Clinical Trials

As with all pharmaceutical-related applications, clinical trials are the last and crucial
step that a formulation must pass to be European Medicines Agency (EMA) or Food and
Drug Agency (FDA) approved for human application [106]. The purpose of these trials
is twofold—first, to validate in vivo the biological activity verified in vitro; second, to
establish a safety profile of the formulated peptides so correct dosages and side-effects can
be correctly ascertained [107].

As can be seen in Table 4, there are numerous examples of AMPs under consideration
with a vast array of applications being considered, with their status ranging from phase I
to III. The success rate of these trials and the posterior application of AMPs as therapeutic
agents is variable as, while there are currently several AMPs approved for clinical use,
such as ghrelin, nisin, gramicidin or daptomycin, there are others, such as CZEN-002 or
NVB-302, which have been discontinued as they failed in their clinical trials [106–109]. The
causes for these failures are usually unknown and unexpected as all AMPs are validated by
various in vitro, in silico and in vivo models before reaching this stage [108]. One example
of such failures is the Friulimicin AMP, which was terminated due to unfavorable kinetics
in healthy volunteers and another is the Murepavadin AMP as, in a stage III trial of patients
with nosocomial pneumonia, it caused higher than expected kidney injuries [108].

Of the examples presented in Table 4, it is interesting to see that only Omiganan targets
AD-related factors directly. In fact, a cursory analysis of the table shows that most AMPs
target bacterial growth, a clear reflection of their namesake, and which has directed research
efforts over the past years. When one considers this, the scope for AD-related applications
grows immensely as various AMPs in clinical trials target AD-critical aspects, such as
bacterial skin infection and, more particularly, Staphylococcal growth.
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Table 4. Examples of AMPs which underwent and are undergoing clinical trials.

AMP Name Clinical Trial ID Phase Target Reference

AP-214 NCT00903604 II a Post-surgical organ failure [110]
C16G2 NCT03004365 II c Streptococcus mutans [111]

CZEN-002 NCT03145220 II a Antifungal [112]

Daptomycin

NCT01922011;
NCT00093067;
NCT01104662;
NCT02972983

III/IV c Skin infection/bacteremia [113]

Delmitide (RDP58) ISRCTN84220089 II c Inflammatory bowel disease [114]

DPK-060 NCT01447017;
NCT01522391 II c

Acute external otitis, topical
treatment of microbial

infections
[91]

EA-230 NCT03145220 II d Sepsis/renal failure [112]
Friulimicin NCT00492271 I a MRSA/pneumonia [115]

Ghrelin NCT00763477 II c Chronic respiratory infection [116,117]
Gramicidin NCT00534391 III d Infected wounds and ulcers [118]
GSK1322322 NCT01209078 II c Bacterial skin infection [119]

hLF1-11 NCT00430469 I/II a Bacterial/fungal infections [120,121]

Iseganan (IB-367) NCT00118781;
NCT00022373 III a Pneumonia/oral mucositis [122]

LFF571 NCT01232595 II c C. difficile [123]
LL-37 EUCTR2012-002100-41 II a Leg ulcers [124]

LTX-109 NCT01803035;
NCT01158235 I/II c MRSA/impetigo, antiviral [125]

Mel4 ACTRN1261500072556 II/III c Contact lenses antimicrobial [126]

Melittin NCT02364349,
NCT01526031 I/II c Inflammation [127]

Murepavadin EUCTR2017-003933-27-
EE II b P. aeruginosa, K. pneumoniae [128]

Nal-P-113 ChiCTR-OIC-16010250 III c Periodontal disease [129]
Neuprex® NCT00462904 III a Pediatric meningococcemia [107]

Nisin NCT02928042;
NCT02467972 n.a. c Gram-positive bacteria [130]

Novexatin (NP213) NCT02933879 II a Fungal nail infection [131]
NVB-302 ISRCTN40071144 I a C. difficile [107]

Omiganan NCT00231153;
NCT02456480 II/III c Antisepsis/catheter, Atopic

dermatitis [104]

OP-145 ISRCTN84220089 I/II c Chronic middle ear infection [132]
PAC113 NCT00659971 II c Oral candidiasis [133,134]
P60.4Ac ISRCTN12149720 II c Chronic ear infections [135]

Pexiganan (MSI-78)

NCT00563394;
NCT00563433;
NCT01590758;
NCT01594762

III a Diabetic foot ulcers [136]

PMX-30063 NCT01211470;
NCT02052388 II c Acute bacterial skin infection [137]

Polymyxin B NCT00490477;
NCT00534391 III d Gram-negative bacteria [138]

Polymyxin E (Colistin) NCT01292031;
NCT02573064 III c A. baumannii/pneumonia [139]

PXL01 NCT01022242 II/III c Postsurgical adhesions [140,141]
SGX942(Dusquetide) NCT03237325 III c Oral mucositis [142,143]
Surotomycin (CB-315) NCT01597505 III a C. difficile [144]
XF-73(Exeporfinium

chloride) NCT03915470 II c Staphylococcal infection [145]

a—Discontinued; b—Ongoing; c—Completed; d—Unknown; n.a.—not applicable.
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5. Limitations to AMPs Usage

When considering the application of AMPs in AD treatment, there are clear limitations
that have been previously identified, such as their rapid degradation and their low stability
in vivo [86], but there are also other factors that must be considered.

One of the major limitations associated with AMP applications is that, despite their
generally positive safety profile, these peptides are highly capable of interacting with
eukaryotic cell membranes. These interactions may lead to the disassembling of the
membranes and consequent cytotoxicity. When this happens in erythrocytes, hemolysis
occurs [146].

When one considers the application of AMPs as antimicrobial agents for the targeted
control of S. aureus, two limitations have been identified: first, not all patients have S. aureus
imbalance/colonization in their microbiota, and, second, imbalance in the direction of other
staphylococci, such as S. epidermidis, has been shown to be as deleterious towards AD pa-
tients as these microorganisms produce proteases that damage the host [147]. Furthermore,
most microorganisms are capable of developing defense mechanisms against AMPs, thus
creating two additional limitations to AMP usage: the development of bacterial resistance
to the compounds and variable efficacy of the AMPs [107].

For human-derived AMPs, various limitations may hamper their future applica-
tions, but the main one is that they have to be produced using biotechnology-based re-
sources that can be scalable to industrial settings. This by itself is a major hurdle due
to the associated high costs. In fact, Koo and Seo [107] stated that AMP production cost
varies between USD 50 and 400 per gram of peptide, a value vastly superior to the USD
0.80 per gram reported for the production of the aminoglycoside antibiotic [108]. As for the
current biological alternatives, such as mAbs, it is not possible to perform a like-for-like
comparison as there is no information regarding their cost per gram. However, as Eichen-
field et al. [148] showed, current mAbs treatments in the U.S. have an average annual cost
of USD 36.505 and may reach values as high as USD 150.000 [149]. Considering these
values, it is possible that future AMP-based solutions may offer competitive pricing against
current biological treatments. To do so, the cost limitation of AMPs must be overcome.
To that end, alternatives based in biotechnology-based approaches, such as solid-phase
peptide synthesis or fermentation systems, in conjunction with the application of machine
learning to speed along the translation of the information from a laboratory to an industrial
setting, are being applied [150,151]. However, the drawback of these methods is the lack of
standardized approaches that leads to a lack of reliable procedures to produce AMPs in the
high yields required to make them economically feasible [152].

In addition to all the previously identified limitations, the last major hurdle which
AMPs have to overcome to be applied is a regulatory one. In fact, of the over 3324 AMPs
found and studied, many are not suitable for pharmacological application in their natural
state and very few are EMA- and FDA-approved for AD-related applications as most
AMPs lack fundamental information, such as pharmacokinetic information and significant
information regarding their potential secondary effects [63,153].

6. Conclusions

When one looks into AMPs and their role in AD, it is only natural that they have risen
as natural alternatives to the traditional and sometimes ineffective treatment of AD. They
are already present in the system and their imbalance is part of the pathology, so, in a
logical step, their replenishment should help fight AD and help re-establish homeostasis
in the skin of AD patients. While this concept by itself has merit, as shown by the clinical
assays that showed that these peptides have a real capacity to influence the outcome of AD
patients, there are clear real-world limitations to their full-scale application at this time.
Of the existing limitations, the major one is a source problem as, while human-derived
AMPs are the clear-cut first choice, there are problems associated with their synthesis,
production upscaling and associated cost. When considering alternative secondary sources,
such as animal or bacterial sources, there are clear limitations associated with their costs
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and production, but there are differences between these sources. For animal-based AMPs,
there are secondary or deleterious interactions that must be accounted for due to their
non-human nature, a limitation that is not normally present for bacterial AMPs.

Last, but not least, there are the various limitations associated with AMP usage already
which can be circumvented and bypassed, either through chemical modification of the
application of delivery vehicles for the AMPs or through compiling extensive safety and
activity dossiers to garner EMA and FDA approval.

So, in conclusion, while AMPs have already shown themselves to be natural and viable
alternatives to conventional AD treatment regimens, and pharmacological solutions are
already being explored and validated, there is still a way to go to enable AMPs to become
cost-effective mainstream solutions for AD treatment.
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