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Abstract: Inflammation is a crucial pathological feature in cancers and kidney diseases, playing
a significant role in disease progression. Cyclin-dependent kinases CDK4 and CDK6 not only
contribute to cell cycle progression but also participate in cell metabolism, immunogenicity and
anti-tumor immune responses. Recently, CDK4/6 inhibitors have gained approval for investigational
treatment of breast cancer and various other tumors. Kidney diseases and cancers commonly exhibit
characteristic pathological features, such as the involvement of inflammatory cells and persistent
chronic inflammation. Remarkably, CDK4/6 inhibitors have demonstrated impressive efficacy in
treating non-cancerous conditions, including certain kidney diseases. Current studies have identified
the renoprotective effect of CDK4/6 inhibitors, presenting a novel idea and potential direction for
treating kidney diseases in the future. In this review, we briefly reviewed the cell cycle in mammals
and the role of CDK4/6 in regulating it. We then provided an introduction to CDK4/6 inhibitors and
their use in cancer treatment. Additionally, we emphasized the importance of these inhibitors in the
treatment of kidney diseases. Collectively, growing evidence demonstrates that targeting CDK4 and
CDK6 through CDK4/6 inhibitors might have therapeutic benefits in various cancers and kidney
diseases and should be further explored in the future.

Keywords: cell cycle; CDK4/6 inhibitors; cancer; kidney diseases; acute kidney injury; chronic
kidney disease

1. Introduction

The dysregulation of the cell cycle is closely associated with the development of
various diseases, particularly cancer, where abnormal cell cycle activation is a hallmark
of carcinogenesis. Moreover, dysregulated cell proliferation is also implicated in the
pathogenesis of renal diseases, cardiovascular diseases and nervous system disorders.
Consequently, there has been a considerable focus on targeting pathways that regulate the
cell cycle across different disease disciplines for several years.

CDK4/6 inhibitors are a novel class of therapy that selectively targets the CDK4/6-
cyclin D complex to regulate the cell cycle. In recent years, the FDA has approved several
CDK4/6 inhibitors, such as palbociclib, ribociclib and abemaciclib, for the treatment of
HR-positive breast cancer patients. These inhibitors have shown remarkable results and
have significantly improved the options for breast cancer treatment [1–4]. The efficacy of
CDK4/6 inhibitors is now being explored in other diseases, as it has been discovered that
CDK4/6 may play a role in pathological conditions beyond cancer. Preliminary studies
have already demonstrated a potential renal protective effect of CDK4/6 inhibitors. As
research progresses, it is hoped that CDK4/6 inhibitors can be extended to treat a broader
range of diseases, providing new therapeutic options for patients.

This review provides an overview of the cell cycle in eukaryotes and emphasizes the
essential role of CDK4/6 in regulating this process. The application of CDK4/6 inhibitors
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in cancer treatment is discussed, with a particular focus on their potential in treating
kidney diseases. Additionally, the review explores the various therapeutic strategies and
challenges associated with using CDK4/6 inhibitors for treating kidney diseases. A deeper
understanding of the mechanism and role of CDK4/6 inhibitors in kidney disease will aid
in the development of more effective drugs for the treatment of these conditions.

2. Cell Cycle and Its Regulation

Cell division is a crucial process in biology that is tightly regulated by conserved
signaling pathways, ensuring the accurate replication of DNA. In mammals, the cell cycle
consists of four phases: G1, S, G2 and M, with an additional phase called G0, where
cells exit the cycle and enter a quiescent state [5,6]. In the kidney, most cells are arrested
in the G0 phase, but certain highly specialized cells, like neurons and cardiomyocytes,
permanently withdraw from the cell cycle. The progression of the cell cycle is controlled by
key components such as cyclins, cyclin-dependent kinases (CDKs) and cyclin-dependent
kinase inhibitors (CKIs), which interact to form a precise regulatory network [7].

The discovery of CDK, a key regulator of cell cycle progression, dates back to the
1980s when it was first identified in sea urchin eggs [8]. The CDK family comprises ser-
ine/threonine kinases and can be categorized into subfamilies based on their evolutionary
relationships [9,10]. Some CDKs, such as CDKs 1–6, 11 and 14–18, play a crucial role in
regulating cell cycles, while others, including CDKs 7–13, 19 and 20, participate in tran-
scription processes. Despite their structural similarities, each CDK has a specific function
that is regulated by context-specific cyclins. The activation of CDKs is essential for the
proper functioning of cell cycle proteins, and reciprocally, their interaction with these
proteins significantly affects CDK activity. In addition to CDK-cyclins complexes, cell
cycle protein-dependent protein kinase inhibitors (CKI) also contribute to the regulation of
cell cycle progression. The CDK inhibitors consist of two main families: the INK4 family,
which includes p16INK4a (Cdkn2a), p15INK4b (Cdkn2b), p18INK4c (Cdkn2c) and p19INK4d

(Cdkn2d), specifically targeting CDK4/6-cyclin D complexes; and the Cip/Kip family
members, including p21Cip1 (Cdkn1a), p27Kip1 (Cdkn1b) and p57Kip2 (Cdkn1c), which
broadly inhibit CDK-cyclins complexes. These inhibitors play a crucial role in regulating
cell cycle progression by disrupting the activity of CDKs and their associated cyclins.

2.1. Classical Regulation of G1/S Phase Transition

According to the classical regulatory pathway of cellular G1 to S phase transition,
D-type cyclins are the regulators of CDK4/6, and their expression is increased in the early
G1 phase in response to various mitotic stimuli [11]. The regulation of CDK4/6 activity
is crucial for the inactivation of the retinoblastoma protein (Rb). When CDK4/6 forms
a heterodimer with cyclin D, CDK4 and CDK6 are activated. Subsequently, the dimeric
complex phosphorylates Rb1 and other Rb1-like “pocket” proteins, namely P130 and P107,
which are respectively referred to as retinoblastoma-like proteins 1 and 2, at multiple
sites [12–14]. In its hypophosphorylated state, Rb1 binds to the trans-activation domain of
the E2F transcription factor family of proteins, thereby inhibiting the transcription of genes
necessary for cell cycle progression [15,16].

Upon activation, CDK4/6 can phosphorylate Rb1, thereby relieving the repression of
RB1 by E2F transcription factors and facilitating the dissociation of E2F from Rb1 [17,18].
The expression of genes essential for the transition to the S phase relies on E2F, which
promotes DNA synthesis by activating various genes and facilitating the transcription of
E-type proteins. Moreover, cyclin E plays a crucial role in the late G1 phase by activating
CDK2 to form the CDK2-cyclin E complex. This complex then phosphorylates Rb1, thus re-
leasing the inhibition of E2F and promoting cellular entry into the S phase [19–23] (Figure 1).
Conversely, during the S-phase, CDK2 forms a complex with cell cycle protein A, while
Rb1 undergoes transitional phosphorylation, thereby mediating the transcriptional control
of DNA synthesis. Additionally, the CDK1-cyclin B complex regulates the progression
through the M phase.
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Figure 1. Model diagram of CDK4/6 and G1/S phase transition. Quiescent cells in the G0 or early G1 
phase exhibit hypophosphorylated retinoblastoma protein (RB1), which inhibits the transcriptional 
activity of the E2F. The INK4 protein p16 acts as a suppressor of CDK4/6 activation. The mitogenic 
and estrogen receptor signaling upregulates the transcription of cyclin D. The cyclin D forms a com-
plex with CDK4/6 to phosphorylate RB, partially activating the E2F-family proteins and leading to 
the transcription of cyclin A and cyclin E, as well as CDK2. RB phosphorylation also induces chro-
matin remodeling that promotes transcription. CDK4/6–cyclin D complexes sequester CIP/KIP pro-
teins, diminishing their inhibitory effect on CDK2 and lowering the threshold for CDK2 activation 
by cyclin E. With increasing cyclin E levels, cyclin E binds with CDK2 to hyperphosphorylate RB, 
establishing a positive feedback loop through E2F. This loop releases and fully activates E2F, driving 
the cell from G1 to S phase. 

2.2. Non-Classical Regulation of G1/S Phase Transition 
The classical understanding of G1/S transition is widely accepted, but the exact role 

of certain CDKs in this process may be more complex. Experiments using knockout mouse 
models for CDK4 and CDK6 challenge the traditional view of G1/S transition, which sug-
gests a reliance on human cellular CDKs. Interestingly, certain cell types can enter the S 
phase without the presence of CDK 4 and CDK 6. For instance, mice can survive with a 
deficiency in either CDK4 or CDK6 alone. CDK4 deficiency typically leads to stunted 
growth and compromised reproductive and endocrine function [24–26], while CDK6 de-
ficiency primarily affects the hematopoietic system, resulting in the reduced thymus and 
spleen cell function and a decreased number of peripheral blood erythrocytes [27]. Simul-
taneous knockout of CDK4 and CDK6, although causing embryonic mouse death, is con-
sidered to be a result of erythrocyte defects caused by CDK6 deficiency, leading to severe 
anemia [27]. 

However, in vitro experiments have shown that mouse embryonic fibroblasts (MEFs) 
with mutations in both CDK4 and CDK6 can still undergo cell cycle progression from G1 
to S phase when stimulated by serum. This suggests that CDK4/6 is not necessarily re-
quired for the stimulation of cell proliferation in quiescent cells. Instead, it is believed that 

Figure 1. Model diagram of CDK4/6 and G1/S phase transition. Quiescent cells in the G0 or early G1
phase exhibit hypophosphorylated retinoblastoma protein (RB1), which inhibits the transcriptional
activity of the E2F. The INK4 protein p16 acts as a suppressor of CDK4/6 activation. The mitogenic
and estrogen receptor signaling upregulates the transcription of cyclin D. The cyclin D forms a
complex with CDK4/6 to phosphorylate RB, partially activating the E2F-family proteins and leading
to the transcription of cyclin A and cyclin E, as well as CDK2. RB phosphorylation also induces
chromatin remodeling that promotes transcription. CDK4/6–cyclin D complexes sequester CIP/KIP
proteins, diminishing their inhibitory effect on CDK2 and lowering the threshold for CDK2 activation
by cyclin E. With increasing cyclin E levels, cyclin E binds with CDK2 to hyperphosphorylate RB,
establishing a positive feedback loop through E2F. This loop releases and fully activates E2F, driving
the cell from G1 to S phase.

2.2. Non-Classical Regulation of G1/S Phase Transition

The classical understanding of G1/S transition is widely accepted, but the exact role
of certain CDKs in this process may be more complex. Experiments using knockout mouse
models for CDK4 and CDK6 challenge the traditional view of G1/S transition, which
suggests a reliance on human cellular CDKs. Interestingly, certain cell types can enter the S
phase without the presence of CDK 4 and CDK 6. For instance, mice can survive with a de-
ficiency in either CDK4 or CDK6 alone. CDK4 deficiency typically leads to stunted growth
and compromised reproductive and endocrine function [24–26], while CDK6 deficiency
primarily affects the hematopoietic system, resulting in the reduced thymus and spleen
cell function and a decreased number of peripheral blood erythrocytes [27]. Simultaneous
knockout of CDK4 and CDK6, although causing embryonic mouse death, is considered to
be a result of erythrocyte defects caused by CDK6 deficiency, leading to severe anemia [27].

However, in vitro experiments have shown that mouse embryonic fibroblasts (MEFs)
with mutations in both CDK4 and CDK6 can still undergo cell cycle progression from
G1 to S phase when stimulated by serum. This suggests that CDK4/6 is not necessarily
required for the stimulation of cell proliferation in quiescent cells. Instead, it is believed that
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the phosphorylation of RB by an atypical CDK2-cyclin D complex may play a role in this
process [27,28]. The discovery of these non-classical pathways challenges the traditional
understanding of the G1 to S phase transition in the cell cycle, which has mainly focused
on CDK4/6. Non-classical models propose that CDK2 can directly interact with cyclin E
and cyclin D, forming a complex without requiring CDK4/6 activation. This complex then
facilitates the cell cycle transition from the G1 to S phase [28–30] (Figure 2). However, the
exact mechanisms underlying this process are still not fully understood.
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Figure 2. Model diagram of non-classical CDK4/6 and G1/S transition. CDK2 is active during early
G1 through direct formation of complexes with cyclins E and potentially cyclin D. Both CDK4/6 and
CDK2 phosphorylate RB and drive the G1-S phase transition.

In order to maintain the accuracy of DNA replication, mammals have developed
a sophisticated quality control system comprising four distinct cell cycle checkpoints.
These checkpoints play a vital role in ensuring the smooth progress of the cell cycle and
regulating it with precision in eukaryotic cells. The transition from the G1 phase to the S
phase is carefully controlled by the G1/S checkpoint. This initial checkpoint is responsible
for detecting any DNA damage, halting the cell cycle for necessary DNA repair, and
safeguarding the integrity of the genome [31]. The G1 phase represents a critical period
during which cellular DNA begins replication after passing through the G1/S checkpoint
and entering the S phase.

In addition, the S checkpoint follows, which is triggered by either DNA that has
escaped the previous checkpoint or damaged DNA, effectively halting the progression
of the cell cycle into the S phase [31]. The third checkpoint, referred to as the G2/M
checkpoint, ensures the successful completion of mitosis [31]. The fourth checkpoint,
known as the intermediate or spindle checkpoint, plays a crucial role in monitoring the cell
cycle progression [31]. These checkpoints work together to establish a highly intricate and
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interconnected network, serving as a rigorous quality control mechanism that continuously
scrutinizes and regulates the entire advancement of the cell cycle.

3. CDK Inhibitors Have Emerged as Key Players in the Field of Cancer Therapeutics

CDK inhibitors are pharmacological agents that specifically target abnormal CDK
activity in malignant cells. However, the first generation of clinically developed inhibitors
faced limitations due to the need for selectivity, as CDKs have structural similarities [32,33].
An example of such an inhibitor is Flavopiridol, which targets multiple CDKs, including
CDK1, CDK2, CDK7 and CDK9, along with CDK4/6. Unfortunately, clinical trials with
Flavopiridol have shown disappointing results in patients with hematologic malignan-
cies and solid tumors. Furthermore, studies on mouse embryos have indicated that the
absence of CDK1 can impair development, suggesting that non-specific CDK inhibitors
can have toxic effects on cellular growth and development [34]. CDK7, another target of
these inhibitors, is also involved in cell cycle transition, but its exact function is not fully
understood. Therefore, broad-spectrum CDK inhibitors with low selectivity often have
toxic side effects, making it challenging to find safe and specific inhibitors.

Similarly, the highly sought-after drug roscovitine has proven ineffective in tests
involving patients with triple-negative breast cancer, non-small cell lung cancer and other
advanced solid tumors due to its limited effectiveness and toxicity [9]. Second-generation
pan-CDK inhibitors, such as dinaciclib and SNS-032, have improved selectivity towards a
lesser number of CDKs and decreased toxicity profiles. However, they still exhibit lower
levels of inhibitory activity against CDK4/6 [33]. Given the underwhelming success of
these first- and second-generation inhibitors, it is crucial to discover inhibitors that provide
greater selectivity in targeting specific CDKs. Some progress has been made in targeting
non-cell cycle CDKs, including CDK9 and CDK12 [35,36]. Nevertheless, the inhibitors
that have made the most advancements and are currently in clinical use primarily focus
on CDK4/6.

These inhibitors have predominantly been primarily developed through chemical
screening and optimization, involving the incorporation of pyrido[2,3-d] pyrimidin-7-one
compounds with a 2-amino pyridine side chain at the C2 position [37]. Consequently,
CDK4/6 inhibitors such as palbociclib, ribociclib and abemaciclib, with potent efficacy and
reduced toxicity, have quickly transitioned from research laboratories to clinical trials. In
fact, all three of these drugs have gained FDA approval for the treatment of metastatic
breast cancer. Compared to previous CDK inhibitors, these compounds exhibit high
selectivity in inhibiting CDK4/6. They have more than a 100-fold affinity for CDK4 and
CDK6 relative to other CDKs [38]. All three CDK4/6 inhibitors are administered orally,
with palbociclib being the first to demonstrate clinical efficacy and extensively investigated
in breast cancer treatment. Ribociclib bears a close structural resemblance to palbociclib,
whereas abemaciclib deviates significantly in structure from the first two. Additionally,
abemaciclib exhibits lower selectivity compared to palbociclib and ribociclib. However, it
offers potential applications in central nervous system disorders such as brain cancer and
secondary brain metastases due to its enhanced ability to crosse the blood–brain barrier
more effectively [39].

4. CKD4/6 Inhibitors in the Treatment of ER-Positive Breast Cancer

ER-positive luminal breast cancer serves as the ideal model for investigating the
effectiveness of CDK4/6 inhibitors. These inhibitors target the reliance of these cancer
types on cyclin D1 for the initiation of the G1-to-S-phase transition. Previous clinical
trials have established that endocrine anti-estrogen therapy is the cornerstone of systemic
treatment for ER-positive breast cancer. However, resistance to endocrine therapy often
arises when it fails to adequately control tumor progression. Various mechanisms have
been proposed as contributors to endocrine resistance, including loss or mutations of the ER,
alterations in ER pathways, dysregulation of cell cycle signaling molecules and activation
of escape pathways [40,41]. The addition of CDK4/6 inhibitors to anti-estrogen therapy
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has been shown to improve progression-free survival (PFS), underscoring their potential as
targeted and effective treatments for ER-positive breast cancer [42–45].

Currently, the FDA has approved the inhibition of CDK4/6 as a novel therapeutic
approach for HR-positive breast cancer. Three CDK4/6 inhibitors, when used in combina-
tion with endocrine therapies, have shown significant efficacy and have partially overcome
the limitations posed by endocrine resistance. Studies suggest that Palbociclib, a CDK4/6
inhibitor, can induce growth arrest in breast cancer cells that have developed acquired
resistance to endocrine therapy [46]. The selection of the appropriate patient population
for CDK4/6 inhibition in cancer therapy depends on the presence of functional Rb within
the CDK4/6 axis. In most cases, tumors that retain functional Rb proteins, which are the
primary targets of CDK4/6 inhibitors, during the development of endocrine resistance are
suitable for CDK4/6 inhibition [47]. Understanding the exact pharmacological mechanism
of action of CDK4/6 inhibitors is crucial to further research in this field.

When considering the differences in Rb-pathway behavior between ER-positive and
ER-negative diseases, it is important to note that in ER-positive breast cancer, various
factors contribute to the synergistic effect observed. Evidence suggests that ER-positive
breast cancers typically maintain an Rb expression signature, which may play a role in
this synergy [48]. Furthermore, activation of upstream signaling pathways such as RAS,
mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR),
and nuclear receptors (such as estrogen receptor (ER) in the mammary epithelium, regulates
the cell cycle progression by promoting the formation of the CDK4/6-cyclin D complex.
This, in turn, leads to uncontrolled cell proliferation [49–54]. CDK4/6 serves as a critical
regulator of the cell cycle by forming a complex with cyclin D. This complex directly
phosphorylates the RB, leading to the release of the transcription factor E2F and facilitating
the transcription of genes involved in cell cycle progression [55]. Consequently, this
process allows the cell cycle to advance from the G1 phase to the S phase, enabling DNA
replication [56]. Furthermore, the precise pharmacological mechanisms of action of CDK4/6
inhibitors have been extensively investigated. Multiple explanations have been proposed
regarding how these inhibitors function. The traditional model suggests that CDK4/6
inhibitors primarily block the activity of these kinases, particularly in ER-positive breast
cancer (Figure 3a). Additionally, it has been postulated that CDK4/6 inhibitors indirectly
inhibit the activity of CDK2, thereby impeding the progression from G1 to S phase [30,57,58]
(Figure 3b,c). These findings emphasize the crucial role of CDK4/6 inhibitors in inhibiting
the progression of ER-positive breast cancer.

However, despite the benefits of CDK4/6 inhibitors in controlling HR-positive breast
cancer, not all patients experience a positive response to these drugs. This is because
CDK4/6 inhibitors typically work downstream of endocrine therapy, and resistance can
develop to both forms of treatment. This resistance may be caused by various factors, such
as mutation or deletion of Rb [28,29]; overexpression of p16 in the presence of functional
Rb [59]; amplification of CDK4, CDK6 [60–62], or CDK2 in the CDK2-cyclin E axis [28,63];
overexpression of E2F; and other dysregulations in the cell cycle and bypass mechanisms.
Consequently, many patients who initially respond to CDK4/6 inhibitors eventually de-
velop acquired drug resistance [64]. However, there is potential for improving treatment
outcomes by combining CDK4/6 inhibitors with mTOR and other kinase and checkpoint
inhibitors [65–71]. Hence, investigating and exploring the optimal combination regimen of
CDK4/6 inhibitors with other endocrine therapies is crucial for enhancing drug sensitivity.
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Figure 3. Model diagram of G1/S cyclin-dependent kinase inhibition by CDK4/6 inhibitors.
a. CDK4/6 inhibitors inhibit active CDK4/6-cyclin D-p21/p27 allosteric enzymes and block RB
phosphorylation of CDK4/6; b. CDK4/6 inhibitors bind to monomeric CDK4/6 and prevent the for-
mation of CDK4/6-cyclin D-p21/p27 trimer. Free p21 then binds to and inhibits the cyclin E/CDK2,
preventing phosphorylation of RB; c. CDK4/6 inhibitors directly inhibit the catalytic activity of
CDK4/6, which then displaces p21, freeing it to inhibit cyclin E/CDK2 further.

5. CDK 4/6 Inhibitors in the Treatment of Renal Diseases

In addition to their role in cancer treatment, CDK4/6 inhibitors have demonstrated
beneficial effects in non-cancerous diseases as well. The use of CDK inhibitors in treating
kidney disease was first reported in 1997, where the inhibition of the cell cycle showed
improvement in embolic proliferative glomerulonephritis [72]. Subsequently, the applica-
tion of CDK inhibitors expanded to other renal diseases, highlighting the antiproliferative
effects on podocytes in crescentic glomerulonephritis. However, most of the research in
this area has focused on CDK2 inhibitors [73]. As investigations progressed, it became
evident that CDK4/6 inhibitors also exhibit promising efficacy in the treatment of renal
disease. This review aims to delve into the mechanisms underlying the therapeutic effects
of CDK4/6 inhibitors in various renal diseases.

5.1. CDK4/6 Inhibitors and Acute Kidney Injury

Acute kidney injury (AKI) is a clinical condition characterized by a rapid decline in
renal function, usually caused by acute ischemia, infection, or drug toxicity-induced death
of renal tubular cells [74–79]. Under normal physiological conditions, renal tubular epithe-
lial cells (RTECs) remain mostly quiescent. However, they possess a robust regenerative
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capacity, and their self-proliferation plays a crucial role in kidney injury repair, which
involves the cell cycle [22]. Among the RTECs, the proximal S3 segment is particularly
vulnerable to injury following acute ischemic or toxic damage. Previous studies have
established the significant contribution of these cells in the development of kidney injury
diseases [80–86]. This proliferative response is believed to play a critical role in kidney
repair and regeneration [86,87]. Moreover, studies have demonstrated a protective effect
of blocking or delaying cell cycle entry during AKI [88]. In fact, AKI often induces DNA
damage, which activates ataxia telangiectasia mutated (ATM) or ataxia telangiectasia and
Rad3-related (ATR) proteins. These proteins phosphorylate downstream targets, including
p53 and checkpoint kinase 2 (CHK2), which belong to the phosphatidylinositol 3-kinase
family. Consequently, p21, a CIP/KIP family cell cycle inhibitor, is generated, causing
tubular epithelial cells to arrest in the G1 or G2/M phase [89–91]. p21 has been observed to
be rapidly induced in proximal tubular cells in various experimental models of AKI, and
its involvement in the assembly of the CDK4-cyclin D complex and its cytostatic effects
have been identified [92–94]. Therefore, it is speculated that the involvement of p21/p27 in
G1/S transitions serves as an adaptive mechanism. Moreover, it has been demonstrated
that the depletion of p21 exacerbates cisplatin-induced acute kidney injury [94]. Several
studies have indicated that enhancing p21 expression and reducing CDK2 levels may
induce G1 arrest, thereby alleviating AKI by preventing apoptosis in proximal tubular
cells [85,88,95–97]. However, the clinical utilization of CDK2 inhibitors is limited due to
their toxic side effects, which can also impede other CDKs involved in DNA transcription
and metabolic processes, resulting in G2/M arrest and S phase arrest, respectively. This
can promote apoptosis and fibrosis [83,85,88,98]. The introduction of CDK4/6 inhibitors
has shown promising renal protective effects with fewer adverse effects and improved
inhibition of G1/S transition [33,99,100]. The presence of functional Rb1 in RTECs is
believed to be associated with the ability of hypophosphorylated Rb to block cell cycle
progression from G1 to S phase [99,101]. A mouse study investigated the impact of riboci-
clib on cisplatin-induced nephrotoxicity and suggested that it potentially mitigates renal
damage at the early stages through an Rb1-dependent mechanism [99]. Administration of
ribociclib resulted in reduced expression of phosphorylated Rb and displayed a protective
effect against cisplatin-induced AKI, leading to improved renal function, decreased tubular
injury and reduced levels of active/cleaved cysteines [99]. In vivo and in vitro experiments
utilizing CDK4/6 inhibitors temporarily halted the traversal of the S phase, with cells re-
entering the cell cycle after treatment. These inhibitors have demonstrated beneficial effects,
including a reduction in the expression of inflammatory markers such as TNF and MCP-27,
a significant decrease in macrophage infiltration, and a reduction in serum creatinine and
urea nitrogen levels [102]. Additionally, another study provides strong evidence supporting
the inhibition of CDK4/6 in preventing cell-cycle progression. Palbociclib and ribociclib
have shown unique and potentially advantageous inhibitory activity on organic cation
transporter-2 (OCT-2), in addition to their targeted inhibition of CDK4/6 activity [103]
(Figure 4). Furthermore, an animal experiment confirmed that pretreatment with ribociclib
in septic mice alleviated sepsis-induced AKI. The study also suggested the involvement
of the mTOR/AKT pathway in the renal protective effect of ribociclib [104]. However,
a study that examined the clinical features and histopathology associated with CDK4/6
inhibitors reported adverse events in patients with biopsy-confirmed AKI [105]. Clinical
trials investigating CDK4/6 inhibitors have also reported elevated serum creatinine levels
in some patients, though it remains difficult to determine whether the drug is the actual
cause [105,106]. Elevated serum creatinine levels are believed to be the result of reversible
inhibition of renal efflux transport proteins rather than acute kidney injury [106].

Further evidence supports the notion that reversible increases in serum creatinine, ob-
served after treatment with abemaciclib, may be attributed to inhibition of renal transporters
such as organic cation transporter-2 (OCT-2), multidrug, toxin extrusion-1 (MATE-1) and
MATE2-K. Importantly, these increases do not affect the glomerular filtration rate [103,107]
(Figure 4). The exact mechanism by which CDK4/6 inhibitors exert their renal protective
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effects remains unknown. Despite the potential for reversible creatinine elevation, the favor-
able pharmacological characteristics observed in numerous trials make CDK4/6 inhibitors
promising candidates for AKI prevention.
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inhibitors may delay G1 entry to the S phase through different pathways by inhibiting CDK4/6
activity and other substrates, such as OCT-2 and MATE.

5.2. CDK4/6 Inhibitors and Chronic Kidney Disease

Chronic kidney disease (CKD) is a long-term condition that occurs when there is a
structural or functional abnormality in the kidneys lasting for more than three months. It
has a detrimental impact on overall health, affecting multiple organ systems, especially the
cardiovascular system and mineral–bone metabolism. This leads to various complications
that are associated with increased morbidity and mortality, placing a significant socioeco-
nomic burden on society [108,109]. Numerous epidemiological studies have demonstrated
a close link between AKI and CKD. Those who survive AKI often go on to develop CKD,
indicating a bidirectional relationship between these two conditions [110–113].

CKD is characterized by the presence of tubulointerstitial fibrosis (TIF), tubular at-
rophy, and the accumulation of extracellular matrix proteins. While increased cell cycle
processes play a role in promoting repair after acute injury, dysregulation of renal tubular
epithelial cells during this process can contribute to fibrosis [114–116]. Proximal tubular
cells (PTCs) are the predominant cell type in the kidney and are crucial sites of injury.
Therefore, much research has focused on understanding the transition from AKI to CKD,
with particular emphasis on PTCs and resident fibroblasts, which are responsible for pro-
ducing extracellular matrix proteins [91,114,117,118]. However, the exact mechanistic role
of the cell cycle in CKD is still being investigated. Various studies have aimed to unravel
the process of maladaptive repair that ultimately leads to the development of progressive
fibrotic nephropathy [119,120].

The results of the two-week intervention with palbociclib in the UniNx/AngII and
adenosine nephropathy CKD models suggest that palbociclib can effectively delay the
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progression of CKD. This is achieved by reducing proximal tubular cell death and inhibit-
ing cell cycle progression in the G1/S phase. As a result, renal function is improved, and
tubular injury and fibrosis are reduced. These beneficial effects may be mediated through
the STAT3/IL-1β pathway, as illustrated in Figure 5 [121] (Figure 5). Previous studies
have provided some evidence indicating that CDK4/6 might induce STAT3 activation
through mechanisms involving the methyltransferase EZH3 or direct binding to the STAT2
promoter [122,123]. Additionally, it has been demonstrated that STAT3 plays a significant
role in renal tubular interstitial fibrosis and becomes activated in response to injured renal
tubules [124,125]. However, the exact mechanism by which CDK4/6 triggers STAT3 activa-
tion remains unclear. Additionally, further experiments have indicated that the deletion of
the cyclin D1 actually worsens chronic kidney injury. This suggests that strategies aimed at
preventing chronic kidney disease should prioritize the inhibition of CDK4/6 rather than
cyclin D1 [121]. The observation that decreased expression of the CDK4/6 inhibitor p15 is
closely associated with reduced eGFR suggests a causal relationship [121]. However, more
information regarding the involvement of cell cycle processes in the G1/S transition of
chronically injured tubules still needs to be provided.
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CDK4/6 may induce STAT3 activation either through the methyltransferase EZH3 or by directly
binding to the STAT2 and possibly block cell cycle progression in G1/S phase through a pathway
involving STAT3/IL-1β. But, the precise mechanism by which CDK4/6 initiates STAT3 activation
remains unclear.

According to the classical pathway, CDK4/6 binds to the cyclin D1 and phosphorylates
Rb, leading to the release of E2F and promoting G1/S progression. It has been observed
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that palbociclib, a CDK4/6 inhibitor, cannot provide protection against the survival of
proximal renal tubules in the absence of Rb. Retarding G1/S cell cycle progression has
been shown to have a protective effect. Inhibition of CDK4/6 reduces the number of
cells progressing to the S phase, which in turn decreases the population that undergoes
G2/M arrest. This shift is associated with a more pro-fibrotic phenotype characterized by
increased expression of TGF-β and CTGF [126,127]. In vitro studies have demonstrated
that high concentrations (10 µmol/L) of palbociclib significantly impede the proliferative
activity of human renal tubular epithelial cells (HK-2 cells). This inhibition is accompanied
by an increase in the proportion of cells in the G0/G1 phase and upregulation of p16, p21
and p53 protein levels [127]. Senescent cells can secrete a variety of bioactive molecules
known as senescence-associated secretory phenotypes (SASP), which can trigger chronic
inflammatory responses and fibrosis. This process is believed to be a key mechanism
behind aging-related organ fibrosis [128–130]. Mechanistic studies have shown that the
increased severity of AKI in mice lacking the Smad7 gene is associated with heightened
activation of TGF β/Smad3-p21 signaling [131]. This activation leads to sustained G1
cell cycle arrest and subsequent development of fibrosis. Contrary to previous findings
suggesting that CDK4/6 inhibitors protect renal function, palbociclib may actually promote
renal fibrosis by inducing cellular senescence in renal cells. While cell cycle arrest can be
beneficial for repairing DNA damage or preventing abnormal cell divisions, prolonged
arrest can contribute to the acquisition of a pro-fibrotic phenotype if PTCs are unable
to re-enter the cell cycle [126]. Contrary to previous findings suggesting that CDK4/6
inhibitors protect renal function, palbociclib may actually promote renal fibrosis by in-
ducing cellular senescence in renal cells. Therefore, the duration of CDK4/6 inhibition is
crucial, as transient exposure to cell cycle inhibitors may have a protective effect. However,
prolonged exposure could potentially lead to AKI or contribute to the progression of AKI to
CKD [105]. Consequently, when using palbociclib in cancer patients with concomitant CKD,
careful consideration should be given to the risk of progressive renal fibrosis and declining
renal function.

5.3. CDK4/6 Inhibitors and Polycystic Kidney Disease

Dysregulation of CDK4 and CDK6 is highly prevalent in various human diseases,
especially cancer. Inhibitors that target these kinases are currently being used to control the
growth of tumors [100]. Previous studies have primarily focused on the Rb protein family,
including Rb, P107 and P130, as the main targets of CDK4/6 [132]. However, in the case of
polycystic kidney disease (PKD), researchers are exploring different substrates that could
serve as new targets for CDK4/6 inhibitors. PKD is a common genetic disorder caused by
mutations in the PKD1 and PKD2 genes, which encode polycystin-1 (PC-1) and polycystin-2
(PC-2). Autosomal dominant polycystic kidney disease (ADPKD) is the most common
form of PKD [133–135]. Cysts form due to the excessive proliferation of the epithelial
lining in the collecting ducts or renal tubules, which is a distinct pathological feature
of ADPKD [134,136]. While the expansion rate of cysts in ADPKD is generally slower
compared to tumor proliferation, the signaling and process alterations observed in ADPKD
share similarities with those seen in cancer, such as dysregulation of the cell cycle [137].
SMYD2, a novel substrate of CDK4/6, is found to be overexpressed in renal tissues and cell
lines derived from mice with ADPK [138]. Both CDK4/6 and SMYD2 dysregulation have
also been reported in breast cancer [139]. Previous research suggests that the interaction
between CDK4/6 and Rb occurs through phosphorylation, whereas SMYD2 interacts with
Rb and methylates it. Moreover, it has been proposed that the binding of SMYD2 to CDK4/6
necessitates the presence of the (S)ET structural domain [140]. These findings hint at an
inherent association between CDK4/6 and SMYD2, either directly or indirectly through Rb.
The interaction between CDK4/6 and SMYD2 leads to the subsequent phosphorylation and
activation of SMYD2, resulting in SMYD2-mediated modifications of histones, including
methylation of histone H3 lysine 4 (H3K4) and histone H3 lysine 36 (H3K36), which in turn
influences gene transcription [140] (Figure 6). However, there is limited research on the
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application of CDK4/6 inhibitors for the treatment of PKD. Targeting the overexpression of
CDK4/6 and SMYD2 with inhibitors has shown promising results in partially restoring
primary cilia in both tumor and cystic cells [140]. These findings further support the
therapeutic potential of CDK4/6 inhibitors, either alone or in combination with other
inhibitors, for the treatment of PKD.
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Figure 6. Model diagram of the effect of CDK4/6 inhibitors on PDK. SMYD2 is the new substrate
of CDK4/6, which exhibits overexpression in renal tissues and cell lines derived from mice with
autosomal dominant PKD. The interaction between SMYD2 and CDK4/6 may be dependent on the
presence of the (S)ET structural domain. CDK4/6 interacts with SMYD2, resulting in the phosphory-
lation and activation of SMYD2. This activation leads to SMYD2-mediated methylation of histones,
including histone H3 lysine 4 (H3K4) and histone H3 lysine 36 (H3K36), thereby influencing S gene
transcription. However, much research is still needed to investigate and confirm the mechanism of
action of CDK4/6 inhibitors in the treatment of PDK.

5.4. CDK4/6 Inhibitors and Nephritis

Since CDK2-cyclin E is known to play a crucial role in the cell cycle progression from
the G1 to S phase, most previous studies investigating cell cycle inhibition in nephritis have
focused on CDK2 inhibitors [141]. Tethered cell proliferation in Thy1 glomerulonephritis
has been found to be associated with increased expression and activity of the CDK2-cyclin
A complex [142]. The initiation of mesangial cell proliferation is linked to reduced levels
of p27Kip1 during the peak of mesangial cell proliferation [142]. In a study conducted on
rats with Thy1 glomerulonephritis, treatment with roscovitine showed beneficial effects
on renal function, including increased creatinine clearance, elevated urinary excretion,
decreased proteinuria and reduced hematuria [143].
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In mice with systemic lupus erythematosus (SLE), the combination of seliciclib and
low-dose methylprednisolone, administered after the onset of the disease, has shown
increased efficacy in prolonging lifespan and reducing proteinuria and renal damage
compared to treatment with either agent alone [144]. As a result, CDK2 inhibitors may hold
promise as a practical therapeutic approach for treating diseases characterized by excessive
cell proliferation in experimental glomerulonephritis [72]. However, their clinical use has
been limited due to toxicity, lack of clinical activity and pharmacokinetic issues. CDK2
inhibitors have not been utilized in clinical studies. Consequently, there is growing interest
in the development of inhibitors that target CDK4/6 with fewer side effects.

Treatment with the CDK4/6 inhibitor palbociclib has shown promise in reducing
inflammation in the facial skin and lymph nodes of lupus-susceptible MRL-LPR female
mice, leading to a decrease in inflammation [145]. However, a study examining the effects
of palbociclib on bleomycin-induced pulmonary fibrosis found elevated levels of inflam-
matory cells in mice after treatment with the inhibitor [146]. Moreover, there have been
reports of adverse reactions to palbociclib treatment, such as a patient with a history of pso-
riatic arthritis developing Stevens–Johnson syndrome-like skin lesions [147]. Additionally,
progressive clinical case reports have indicated an association between the use of CDK4/6
inhibitors and Subacute Cutaneous Lupus Erythematosus (SCLE) [148–150]. Thus, while
CDK4/6 inhibitors show potential for treating lupus and other conditions, their use may
be accompanied by certain risks and side effects.

The notable characteristic of these skin lesions is the increased inflammation observed
following palbociclib treatment, which contradicts previous findings. Initially, it was
hypothesized that CDK4/6 inhibitors, like Palbociclib, would inhibit neutrophil activa-
tion [151]. However, the impact of palbociclib on the activation of various inflammatory
cell types remains uncertain, and there is limited information regarding the role of CDK4/6
inhibitors in the development of nephritis, with the underlying mechanisms still unclear.
Therefore, a more thorough examination is needed to carefully evaluate the benefits and
drawbacks of CDK4/6 inhibitors for the treatment of nephritis.

6. Conclusions

CDK4/6 inhibitors have emerged as a promising class of cell cycle-regulating drugs
that have demonstrated significant efficacy in the treatment of breast cancer and are cur-
rently undergoing preclinical and clinical trials. The therapeutic benefits of CDK4/6
inhibitors extend beyond their use in cancer treatment. In this article, we provide a com-
prehensive overview of the pivotal role of CDK4/6 in cell cycle processes, review the
therapeutic potential of CDK4/6 inhibitors in cancer management, and explore the poten-
tial application and the possible side effects of these inhibitors in the treatment of kidney
diseases. However, the utilization of CDK4/6 inhibitors for the treatment of renal diseases
is currently underexplored, with existing research primarily limited to animal or in vitro
cellular models. This highlights the necessity for additional clinical studies to further inves-
tigate their potential in this area. The precise mechanisms and specific roles of CDK4/6
inhibitors in treating various renal diseases, including AKI, CKD, PKD and other related
nephritis, are still largely unknown. Future research should prioritize investigating the
role and mechanism of CDK4/6 inhibitors in treating kidney diseases by utilizing animal
models and conducting in vitro cell experiments. Furthermore, additional clinical studies
are necessary to validate their effectiveness in various kidney diseases and assess any
potential side effects. Combining CDK4/6 inhibitors with other endocrine therapies has
demonstrated improved drug sensitivity and enhanced therapeutic outcomes. Therefore,
further exploration is needed to identify optimal combination regimens. CDK4/6 inhibitors
are anticipated to have broad applications in the treatment of not only various cancers
but also kidney diseases. Therefore, further exploration is needed to identify optimal
combination regimens. CDK4/6 inhibitors are anticipated to have broad applications in
the treatment of not only various cancers but also kidney diseases.
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STAT2 Signal transducer and activator of transcription 2
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