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Abstract: The precise molecular mechanisms responsible for resistance to cisplatin-based chemother-
apy in patients with bladder cancer remain elusive, while we have indicated that androgen receptor
(AR) activity in urothelial cancer is associated with its sensitivity. Our DNA microarray analysis
in control vs. AR-knockdown bladder cancer sublines suggested that the expression of a GABA
B receptor GABBR2 and AR was correlated. The present study aimed to determine the functional
role of GABBR2 in modulating cisplatin sensitivity in bladder cancer. AR knockdown and dihy-
drotestosterone treatment considerably reduced and induced, respectively, GABBR2 expression, and
the effect of dihydrotestosterone was at least partially restored by an antiandrogen hydroxyflutamide.
A chromatin immunoprecipitation assay further revealed the binding of AR to the promoter region
of GABBR2 in bladder cancer cells. Meanwhile, GABBR2 expression was significantly elevated in
a cisplatin-resistant bladder cancer subline, compared with control cells. In AR-positive bladder
cancer cells, knockdown of GABBR2 or treatment with a selective GABA B receptor antagonist,
CGP46381, considerably enhanced the cytotoxic activity of cisplatin. However, no additional ef-
fect of CGP46381 on cisplatin-induced growth suppression was seen in GABBR2-knockdown cells.
Moreover, in the absence of cisplatin, CGP46381 treatment and GABBR2 knockdown showed no
significant changes in cell proliferation or migration. These findings suggest that GABBR2 represents
a key downstream effector of AR signaling in inducing resistance to cisplatin treatment. Accordingly,
inhibition of GABBR2 has the potential of being a means of chemosensitization, especially in patients
with AR/GABBR2-positive bladder cancer.
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1. Introduction

Urothelial carcinoma in the urinary bladder has represented a commonly diagnosed
malignancy, especially in men, and the global number of bladder cancer-related deaths has
indeed increased from 165,100 in 2012 [1] to 212,536 in 2020 [2]. Particularly, muscle-invasive
bladder cancer is often associated with metastatic disease and poor patient outcome (e.g.,
the overall 5-year survival rate of 8.3% [3]). Moreover, urothelial carcinoma also arises
in the upper urinary tract but is much more often (e.g., 60% [4]) invasive at the initial
diagnosis.

Despite the availability of novel therapeutic options, such as immunotherapy with
checkpoint inhibitors, cisplatin (CDDP)-based chemotherapeutic regimens remain the first-
line systemic treatment for locally advanced or metastatic urothelial carcinoma [5–8]. In
addition, a meta-analysis involving 13,391 patients showed a significant overall survival
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benefit of neoadjuvant chemotherapy with CDDP-containing regimens prior to radical
cystectomy [9]. Nonetheless, the response rate to CDDP therapy is not necessarily high (e.g.,
up to 60% [10–12]) in patients with bladder cancer. Accordingly, the development of not
only novel anti-cancer agents but also strategies for chemosensitization of existing drugs
should provide considerable improvement in oncologic outcomes of urothelial cancer.

The molecular mechanisms underlying CDDP resistance are still far from being fully
understood [13–18]. Meanwhile, androgen-mediated androgen receptor (AR) signaling
has been implicated in the promotion of urothelial tumorigenesis, which may be a reason
for a substantially higher risk of bladder cancer development in men than in women, as
well as urothelial tumor progression [19]. More fascinatingly, AR activity has also been
associated with sensitivity to conventional nonsurgical treatments for bladder cancer [20],
including CDDP-based chemotherapy [21–23]. Specifically, AR activation in bladder cancer
cells has been shown to result in the induction of CDDP resistance, and AR knockdown or
antiandrogen treatment thus enhances its sensitivity. Importantly, it remains to be further
elucidated how the AR pathway modulates chemosensitivity in urothelial cancer. The
present study aimed to explore whether gamma-aminobutyric acid (GABA) B receptor 2
(GABBR2), which belongs to the G protein-coupled receptor superfamily, functions as a
downstream effector of AR and induces resistance to CDDP therapy in bladder cancer.

2. Results
2.1. AR Activity and GABBR2 Expression

We had recently employed DNA microarray analysis in control AR-positive bladder
cancer UMUC3 cells versus a subline of UMUC3 stably expressing AR-shRNA [24]. We
then investigated whether the expression of 25 candidate genes was correlated with that
of AR. We eventually selected one of the candidates, GABBR2, and confirmed that its
protein expression was indeed downregulated in AR-knockdown cells, compared with
control cells (Figure 1A). A quantitative PCR in UMUC3 cells further showed that androgen
(i.e., dihydrotestosterone (DHT)) treatment induced GABBR2 expression, which was at
least partially blocked by antiandrogen (i.e., hydroxyflutamide (HF)) treatment (Figure 1B).
Thus, GABBR2 expression was correlated with the expression and activity of AR in bladder
cancer cells. Meanwhile, the level of GABBR2 expression in a CDDP-resistant subline was
significantly higher than that in control cells (Figure 1C).
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Figure 1. Associations between AR signaling and GABBR2 expression in bladder cancer cells. (A) 
Western blotting of AR and GABBR2 in UMUC3-AR-shRNA vs. UMUC3-control-shRNA. Real-time 
PCR of GABBR2 in UMUC3 cultured for 24 h with ethanol (mock), 10 nM DHT, and/or 5 µM HF (B) 
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Figure 1. Associations between AR signaling and GABBR2 expression in bladder cancer cells.
(A) Western blotting of AR and GABBR2 in UMUC3-AR-shRNA vs. UMUC3-control-shRNA. Real-
time PCR of GABBR2 in UMUC3 cultured for 24 h with ethanol (mock), 10 nM DHT, and/or 5 µM HF
(B) or control UMUC3 vs. CDDP-resistant (CR) UMUC3 (C). The expression of GABBR2 normalized
to that of GAPDH and representing the mean (+SD) of at least three determinants is presented relative
to that of mock treatment (B) or control subline (C). * p < 0.05 (vs. mock or control).
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We next examined if AR could regulate the expression of GABBR2, using a chromatin
immunoprecipitation (ChIP) assay (Figure 2). A bioinformatics-driven search detected a
potential binding site of AR in the promoter region of the GABBR2 gene. DNA fragments
derived from UMUC3 cells immunoprecipitated with an anti-AR antibody were amplified
by PCR with a set of GABBR2 promoter-specific primers. The PCR product was visualized
from those precipitated by the AR antibody, but not control precipitations, indicating that
AR could interact with the GABBR2 promoter.
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Figure 2. AR binding to the GABBR2 promoter in bladder cancer cells. The ChIP assay, using
UMUC3 cell lysates immunoprecipitated with an anti-AR antibody (or IgG as a negative control).
The DNA fragments were PCR amplified with a set of GABBR2 promoter-specific primers, and the
PCR products were electrophoresed on 1% agarose gel. A fraction of the mixture of protein-DNA
complex (i.e., 1% of total cross-linked, reserved chromatin prior to immunoprecipitation) was used as
“input” DNA.

2.2. Role of GABBR2 in Cell Growth

Using its inhibitor and knockdown, we assessed the impact of GABBR2 on the growth
of bladder cancer cells. Western blot showed that a selective GABA B receptor antagonist,
CGP46381 (50% inhibitory concentration (IC50): 4.9 µM [25]), inhibited GABBR2 expression
in UMUC3 cells (Figure 3A). Additionally, as expected, the level of GABBR2 expression in a
UMUC3 subline stably expressing GABBR2-shRNA was substantially reduced, compared
with control-shRNA-expressing cells (Figure 3B). Nonetheless, CGP46381 treatment in
three AR-positive bladder cancer cell lines, as well as GABBR2 knockdown in UMUC3 cells,
did not significantly change their proliferation (via MTT assay (Figure 4)) or migration (via
wound-healing assay (Figure 5)).
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Figure 4. Effects of GABBR2 inhibitor or knockdown on the viability of bladder cancer cells. The MTT
assay in UMUC3 (A), 5637-AR (B), or 647V-AR (C) cultured in the absence or presence of various
doses of CGP46381 or UMUC3-control-shRNA vs. UMUC3-GABBR2-shRNA (D) for 48 h. Cell
viability representing the mean (+SD) from a total of six determinants is presented relative to that of
mock treatment or control subline.
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Figure 5. Effects of GABBR2 inhibitor or knockdown on the migration of bladder cancer cells. The
wound-healing assay in UMUC3 (A), 5637-AR (B), or 647V-AR (C) without or with CGP46381 (5 µM)
or UMUC3-control-shRNA vs. UMUC3-GABBR2-shRNA (D) cultured for 24 h after scratching. Cell
migration determined by the rate of cells filling the wound area is presented relative to that of mock
treatment or control subline. Each value represents the mean (+SD) from a total of six determinants.

2.3. Role of GABBR2 in CDDP Sensitivity

We then determined if GABBR2 could modulate sensitivity to CDDP treatment in
bladder cancer cells. The MTT assay was first performed in UMUC3-control-shRNA
and UMUC3-GABBR2-shRNA sublines treated with various doses of CDDP covering its
pharmacological concentrations (i.e., 1.3–8.4 µM [26]). GABBR2-knockdown cells were
significantly more sensitive to CDDP at 2–7.5 µM, and the IC50s were 4.8 µM in UMUC3-
control-shRNA vs. 2.7 µM in UMUC3-GABBR2-shRNA (Figure 6).
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We further assessed the effects of CGP46381 on CDDP cytotoxicity. In UMUC3
(Figure 7A), 5637-AR (Figure 7B), and 647V-AR (Figure 7C) cells, CGP46381 treatment en-
hanced the cytotoxic effects of CDDP over mock treatment. However, no significant effects
of CGP46381 on CDDP suppression were seen in GABBR2-knockdown cells (Figure 7D).
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2.4. Prognostic Value of GABBR2 in Bladder Cancer Patients

A publicly available database was searched for analyzing the prognostic significance
of GABBR2 expression in bladder cancer. Data obtained from GSE32894 [27] showed that
the rate of overall survival was significantly lower in the entire cohort of patients with high
GABBR2 tumor (Figure 8A). When excluding those with noninvasive tumor who had been
much less likely to die of bladder cancer, high GABBR2 expression was still associated with
a significantly higher mortality rate (Figure 8B).
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3. Discussion

The efficacy of CDDP-based combined systemic chemotherapy in patients with urothe-
lial cancer is often limited due to the initial failure or the acquisition of drug resistance
during treatment, for which underlying molecular mechanisms remain not fully under-
stood. Meanwhile, AR activation in bladder cancer cells has been associated with induction
of resistance to CDDP [21–23,28–30] as well as other chemotherapeutic agents [31,32]. In the
present study, we further investigated the functional role of GABBR2 in CDDP resistance
in bladder cancer in relation to AR signaling.

GABA B receptors, including GABBR1 and GABBR2, are G protein-coupled receptor
subunits. As GABA represents the main neurotransmitter in the brain, GABBR1 and/or
GABBR2 have been implicated in the pathogenesis of various neurological or psychiatric
disorders such as epilepsy, Huntington’s disease, Alzheimer’s disease, autism, and depres-
sion [33]. By contrast, little is known about the role of GABBR2 in neoplastic conditions.
Limited and somehow conflicting data have demonstrated that GABA B receptor agonists
either promote (e.g., breast [34], kidney [35], and prostate [36] cancers) or inhibit (e.g.,
lung cancer [37], cholangiocarcinoma [38,39]) the cell growth of nonurothelial malignan-
cies. Particularly, in the prostate cancer study [36], an AR-negative cell line was tested,
although the role of AR signaling in its progression and treatment has been extremely well
established. In other studies, however, GABA B receptor agonists have been shown to
have no significant effects on the cell proliferation and/or migration/invasion of colon [40]
and liver [41] cancer lines as well as both AR-positive and AR-negative prostate cancer
lines [42]. In a more recent study, a microRNA miR-31-3p was shown to suppress the
growth of prostate cancer cells via directly downregulating GABBR2 expression similarly
in AR-positive and AR-negative lines [43]. Thus, the involvement of GABBR2 in urothelial
cancer progression or chemoresistance, as well as that in AR signaling, remains largely
unknown.
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As aforementioned, it remains unanswered how AR signaling modulates chemosen-
sitivity. Based on the findings in DNA microarray analysis in control AR-positive vs.
AR-knockdown bladder cancer sublines we had previously performed [24], we anticipated
that GABBR2 functioned as a downstream target of AR. Herein, we demonstrated that
AR expression or activity was positively correlated with GABBR2 expression. Specifically,
androgen treatment and AR knockdown/antiandrogen treatment induced and reduced,
respectively, the levels of GABBR2 expression in bladder cancer cells. Notably, a ChIP assay
revealed an interaction of AR with GABBR2 at its promoter region, indicating the direct
regulation of GABBR2 expression by AR. We then found that knockdown of GABBR2 via
its shRNA or its inactivation via a GABA B receptor antagonist enhanced the cytotoxic
effects of CDDP in AR-positive bladder cancer cells. Because the inhibitor failed to induce
CDDP sensitivity in GABBR2-knockdown cells, its effect on CDDP cytotoxicity was likely
mediated through GABBR2. However, GABBR2 did not appear to affect bladder cancer cell
proliferation and migration in the absence of CDDP. These observations suggest that activa-
tion of AR induces CDDP resistance via directly upregulating the expression of GABBR2
in bladder cancer cells. Interestingly, in several nonurothelial cancer cells, cooperation of
GABBR2 with EGFR-ERK1/2 signaling has been documented [35–38,44], while the ERK1/2
pathway has been linked to CDDP resistance [29,45]. Meanwhile, we have separately
demonstrated that androgens activate the EGFR-ERK1/2 pathway in AR-positive bladder
cancer cells [46].

GABBR2 expression has not been extensively studied in clinical samples. Nonetheless,
the elevated expression of GABBR2 has been reported in several types of neoplasm such as
thyroid adenoma and carcinoma [47] and non-small cell lung cancer [37]. In cholangiocar-
cinoma specimens, high GABBR2 expression was strongly associated with more aggressive
nonpapillary histology yet small tumor size [39]. By analyzing a public database (i.e., The
Cancer Genome Atlas (TCGA)), GABBR2 overexpression was linked to lower T and N
staging categories and better prognosis in patients with breast cancer [48]. Similarly, using
a publicly available database [27], we here found that those with invasive bladder cancer
showing high GABBR2 expression had a significantly higher risk of overall mortality. This
observation indeed supports our in vitro data indicating that GABBR2 could induce CDDP
resistance in bladder cancer, although only a portion of patients in the database cohort may
have undergone CDDP-based chemotherapy.

Again, in the present study, we have assessed if GABBR2 functions as a downstream
effector of AR and, thereby, contributes to modulating sensitivity to CDDP. We first demon-
strated that AR directly regulated the expression of GABBR2 via binding to its promoter
in bladder cancer cells. AR inactivation, particularly via antiandrogen treatment, thus
resulted in downregulation of GABBR2 expression. We then found that GABBR2 was
involved in promoting CDDP resistance in bladder cancer cells. An antagonist for GABBR2
at the dose of IC50 thus significantly increased sensitivity to CDDP therapy. These find-
ings suggest that the concurrent treatment with not only an antiandrogen, which has
been widely used in patients with, for example, prostate cancer, but also a GABBR2 in-
hibitor, may considerably enhance the efficacy of CDDP-based chemotherapy, particularly
in patients with AR-positive/GABBR2-positive bladder cancer. However, because an avail-
able inhibitor, CGP46381, is not entirely specific for GABBR2, the involvement of another
GABA B receptor, GABBR1, in modulating CDDP sensitivity may need to be determined.
Meanwhile, molecular subtypes of bladder cancer have been well established (e.g., TCGA
cohort study [49]) and certain subtypes of muscle-invasive bladder cancer have been asso-
ciated with chemoresistance [50]. It might, therefore, be of importance to determine which
molecular subgroup of patients could generally benefit from such combination therapy.
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4. Materials and Methods
4.1. Antibodies and Chemicals

We obtained anti-AR (441), anti-GABBR2 (H-10), and anti-GAPDH (6c5) antibodies
from Santa Cruz Biotechnology (Dallas, TX, USA). DHT and HF, CGP46381, and CDDP
were obtained from Sigma-Aldrich (St. Louis, MO, USA), Thermo Fisher (Waltham, MA,
USA), and Santa Cruz Biotechnology (Dallas, TX, USA), respectively.

4.2. Cell Lines

A human urothelial carcinoma cell line, UMUC3, was originally obtained from the
American Type Culture Collection and recently authenticated by the institutional core
facility. Human urothelial cancer sublines stably expressing AR-shRNA (e.g., UMUC3-
AR-shRNA) or control-shRNA (e.g., UMUC3-control-shRNA) [47], as well as human wild-
type AR (e.g., 5637-AR [47], 647V-AR [51]), were established in our previous studies.
Similarly, GABBR2-shRNA (sc-42463-V; Santa Cruz Biotechnology), a pool of concentrated,
transduction-ready lentiviral particles containing three target-specific constructs encoding
19–25 nt shRNA, was stably expressed in UMUC3 cells. In addition, a CDDP-resistant
subline (i.e., UMUC3-CR) and its control were previously established by long-term (i.e.,
>12 weeks), continuous, stepwise (i.e., 0.2–2.0 µM) treatment of CDDP [21]. These parental
line and sublines were maintained in DMEM (Thermo Fisher) supplemented with 10%
fetal bovine serum (FBS), penicillin (50 U/mL), and streptomycin (50 µg/mL) at 37 ◦C
in a humidified atmosphere of 5% CO2. The cells were then cultured in phenol red-free
medium supplemented with 5% FBS (or 5% charcoal-stripped FBS for DHT/HF treatment)
at least 24 h before actual assays.

4.3. Real-Time PCR

Total RNA isolated from cultured cells by TRIzol (Invitrogen, Waltham, MA, USA) was
reverse transcribed using oligo (dT) primers and Omniscript reverse transcriptase (Qiagen,
Germantown, MD, USA). Real-time PCR was then performed using iQ™ SYBR® Green
Supermix (Bio-Rad, Hercules, CA, USA), as we described previously [21,24]. The following
primer pairs were used: GABBR2 (forward, 5′-TGGAGGCGTCTGTCCATCCGT-3′; reverse,
5′-GTCTTGCGTCAGCGTGCCCA-3′); and GAPDH (forward, 5′-AAGGTGAAGGTCGG
AGTCAAC-3′; reverse, 5′-GGGGTCATTGATGGCAACAATA-3′).

4.4. Western Blot

Equal amounts of proteins (30 µg) extracted from cell extracts were subjected to elec-
trophoresis with 10% sodium dodecyl sulfate-polyacrylamide gel, which was transferred
to polyvinylidene difluoride membrane electronically. After blocking with 5% nonfat dry
milk, the membrane was incubated with a primary antibody at 4 ◦C overnight, followed by
1 h incubation with an HRP-conjugated secondary antibody (Cell Signaling Technology,
Danvers, MA, USA) at room temperature. Chemiluminescent signals were then generated
by Clarity Western ECL Substrate and detected by ChemiDOC™ MP (Bio-Rad).

4.5. ChIP

We first performed a bioinformatic search for potential AR binding sites in the GABBR2
promoter (https://biogrid-lasagna.engr.uconn.edu/lasagna_search/ [52], accessed on 2
March 2022) (see Figure 2). ChIP assay was then performed, using a Magna ChIP kit (Sigma-
Aldrich), according to the manufacturer’s recommended protocol with minor modifications,
as we described previously [30]. Briefly, cells were cross-linked with 1% formaldehyde,
and the lysates were sonicated in nuclear buffer. Soluble chromatin was immunoprecipi-
tated with an anti-AR antibody or normal mouse immunoglobulin G (IgG) (Santa Cruz
Biochemistry) directly conjugated with magnetic protein A beads. Immunoprecipitated
DNA was eluted and reverse cross-linked. DNA was then extracted and purified, us-
ing a spin filter column, and amplified by PCR, using the primers as follows: forward,
5′-ACGCCTTCGTGGAACATT-3′; reverse, 5′-ACAGCGATCTGGGAACC-3′. The PCR

https://biogrid-lasagna.engr.uconn.edu/lasagna_search/
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products electrophoresed on 1% agarose gel and stained with ethidium bromide were
visualized, using Gel Doc XR + (Bio-Rad).

4.6. Cell Proliferation

The MTT assay was used to assess the cell viability. Cells (5 × 103/well) seeded in
96-well tissue culture plates were cultured for 48 h and then incubated with 0.5 mg/mL of
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide; Sigma-Aldrich) for 3 h
at 37 ◦C. MTT was dissolved by dimethyl sulfoxide, and the absorbance was measured at a
wavelength of 570 nm with background subtraction at 630 nm. IC50 was calculated using
the web-based tool (https://www.aatbio.com/tools/ic50-calculator, accessed on 7 August
2023).

4.7. Cell Migration

Scratch wound healing assay was adapted to evaluate the ability of cell migration.
Cells at a density of ≥90% confluence in 6-well tissue culture plates were scratched manu-
ally with a sterile 200 µL plastic pipette tip. The wounded monolayers of the cells were
allowed to heal in serum-free medium for 24 h, and the width of the wound area was
monitored with an inverted microscope. The normalized cell-free area in photographed
pictures (24 h/0 h) was quantitated using ImageJ software (National Institutes of Health,
Bethesda, MD, USA).

4.8. Public Database Analysis

The R2 Genomics Analysis and Visualization Platform (https://hgserver1.amc.nl/
cgi-bin/r2/main.cgi, accessed on 7 August 2023) was used to assess the prognostic role of
GABBR2 expression in patients with bladder cancer. Data were obtained from the Gene
Expression Omnibus repository (GSE32894; https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE32894 [27], accessed on 7 August 2023).

4.9. Statistical Analysis

Student’s t-test was used to compare numerical data. p values less than 0.05 were
considered to be statistically significant.

5. Conclusions

We identified GABBR2 as a key downstream effector of AR in modulating CDDP sen-
sitivity in bladder cancer. Our data suggest that not only concurrent antiandrogen therapy
but also GABBR2 inhibitor treatment has the potential of being a means of chemosensitiza-
tion, especially in patients with AR/GABBR2-positive bladder tumor. Nonetheless, further
studies are warranted for elucidating molecular mechanisms responsible for AR/GABBR2-
mediated chemoresistance.
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