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Abstract: The structures of histone complexes are master keys to epigenetics. Linear histone peptide
tails often bind to shallow pockets of reader proteins via weak interactions, rendering their structure
determination challenging. In the present study, a new protocol, PepGrow, is introduced. PepGrow
uses docked histone fragments as seeds and grows the full peptide tails in the reader-binding pocket,
producing atomic-resolution structures of histone–reader complexes. PepGrow is able to handle the
flexibility of histone peptides, and it is demonstrated to be more efficient than linking pre-docked
peptide fragments. The new protocol combines the advantages of popular program packages and
allows fast generation of solution structures. AutoDock, a force-field-based program, is used to supply
the docked peptide fragments used as structural seeds, and the building algorithm of Modeller is
adopted and tested as a peptide growing engine. The performance of PepGrow is compared to ten
other docking methods, and it is concluded that in situ growing of a ligand from a seed is a viable
strategy for the production of complex structures of histone peptides at atomic resolution.

Keywords: docking; histone; peptide; ligand; fragment; growing

1. Introduction

Histones have a diverse interaction profile [1] and play a key role in epigenetic reg-
ulation via interactions with the DNA in the chromatin [2,3], as well as various protein
partners [4,5]. Readers are important proteins that distinguish between the combina-
torial numbers of post-translationally modified histone molecules commonly called as
the “histone code” [6]. The atomic-resolution structures of histone–reader complexes
are key to understanding the “histone code” and designing new drugs that affect epige-
netic regulation [6–8]. The present study is focused on consisting of histone H3 peptides
and their reader proteins, which play an important role in the pathophysiology of var-
ious autoimmune diseases, intellectual disabilities, cancer development, such as breast
cancer, colorectal carcinoma and hematopoietic cancers, autoimmune polyendocrinopathy–
candidiasis–ectodermal dystrophy, meiotic defects in spermatocytes, breast, prostate and
colorectal cancers, and leukemia (Table S1 [9–18]). These pathophysiological involve-
ments render histone reader proteins such as bromodomains [19] and the eleven–nineteen
leukemia protein (ENL [20]) attractive targets for drug design purposes.

While knowledge of the structures of histone H3–reader complexes is necessary for
understanding the pathomechanism of epigenetic diseases and designing new drugs to
act against them, the determination of their atomic-resolution structures can be rather
challenging [21]. Experimental difficulties are presented by the creation of well-diffracting
and stable crystals in X-ray crystallography [22], the computational processing of noisy
images in cryo-electron microscopy [23], and the isotopic labeling of proteins in NMR [24].
Histones are particularly problematic ligands for structural determination, as they have a
linear N-terminal tail with a high degree of conformational flexibility [25–27] that sticks
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out of the nucleosome structure (Figure 1). The protruding N-terminal tails of histones
may interact with histone readers (like the proteins in Table S1) or with DNA [28]. Thus,
the binding of the N-terminal tail of histone H3 with DNA may compete with the binding
of histone N-terminal tails to histone reader proteins [29], which is further supported
by the increased accessibility of histone H3 during nucleosome disassembly during tran-
scription [30]. Like all peptides, histones are also extensively hydrated, which further
complicates the determination of their interactions [5,31]. Moreover, there are shallow
binding pockets on the reader side that result in the histone–reader complexes possessing
moderate stability [32,33], with micromolar binding constants (see Kd values in Table S1 for
examples). Long peptides such as histone tails are well-known problematic cases for fast
computational docking [31,34], due to the inappropriateness of the scoring schemes [35–37]
of their binding modes (position, orientation, and conformation) and the lack of explicit
water models [38]. The complexes presented in Table S1 are good representatives for
investigations of the above structural challenges.
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the development of numerous fast docking methods for peptide ligands. At least three 
branches can be distinguished among the different methods: physico-chemical ap-
proaches, knowledge-based approaches, and their hybrid [41]. Physico-chemical ap-
proaches [42–44] calculate energy (scoring) values directly from the atomic positions of 
the molecules, without conducting further training or experiments. Knowledge-based 
methods [34,41] are relatively fast and are often restricted by their training set of known 
structures. Their scores are often based on similarities to the training set [45] and lack 

Figure 1. The terminal tails of histone proteins (teal and grey) stick out of the nucleosome core unit
and have a flexible structure. The DNA backbone is colored in orange, base pairs are shown as dark
blue sticks. A histone H3 protein is highlighted in teal. Every 10th amino acid of the histone H3 (teal)
is marked. The figure was prepared from the PDB structure [39] 1kx5 using PyMol v2.0 [40].

The recognition of the above structural and methodological challenges accelerated
the development of numerous fast docking methods for peptide ligands. At least three
branches can be distinguished among the different methods: physico-chemical
approaches, knowledge-based approaches, and their hybrid [41]. Physico-chemical
approaches [42–44] calculate energy (scoring) values directly from the atomic positions
of the molecules, without conducting further training or experiments. Knowledge-based
methods [34,41] are relatively fast and are often restricted by their training set of known
structures. Their scores are often based on similarities to the training set [45] and lack
physical meaning, which hampers the interpretation of the results (validity problems).
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Comprehensive reviews [31,34] and tests [46,47] have shown that the available approaches
still have serious limitations with respect to the docking of peptide ligands.

Fragment-based docking is a popular and widely used approach in drug
design [48–52], and is based on the linking of docked fragments into the whole bound
ligand structure. The number of fragment-based docking methods applied for peptide
ligands is still limited. The covalent linking of fragments [48,53] is a critical step in fragment
docking, and its success largely depends on the actual steric situation, including the shape-
wise matching and the gap between the two docked fragments. Thus, the available methods
have multiple limitations, including the lack of full automation, and their dependency
on the diversity and selection of linkers and anchoring fragments [54–61]. Inappropriate
steric situations of the fragments often necessitate time-consuming follow-up efforts [62] to
achieve a new and appropriate covalent bond between two fragments. Further details of
the limitations of covalent linking approaches are summarized in Table S2.

In the present study, a new protocol, PepGrow, is introduced and tested for the docking
of histone H3 peptide tails to their target reader proteins. PepGrow aims to overcome
the limitations of fragment-based docking techniques described above by replacing the
fragment linking steps with a growing procedure. Thus, the new protocol is based on
the in situ growing of a fragment seed of the peptide ligand in the binding pocket of the
reader protein. In drug design, growing steps have been applied for the attachment of
small functional groups to ligands [63,64], so as to increase the strength of target–ligand
interactions [52]. On the other hand, the growing of a full peptide ligand structure from
a small fragment seed is a more difficult task than that handled in the present study. We
report the answers to the above challenges, and present a description and validation of
PepGrow, comparing its performing with that of of ten other docking methods.

2. Results and Discussion
2.1. Histone Systems and Benchmark Methods

Ten complexes of histone H3 peptides and reader proteins (Table S1) of physiological
importance, a complete N-terminal end, and available apo forms of the reader proteins
were collected from the Protein Data Bank (PDB [65]) as test systems for the development
and evaluation of PepGrow. Due to problems regarding their structural determination
(see Section 1), there are relatively few complexes in the PDB with histone ligands of
a complete N-terminal end, that is, starting with the first amino acid. Notably, the use
of apo target structures allowed a truly unbiased test, excluding any help of the ligand-
bound conformation of the pre-formed target-binding sites that may be present in the
holo structures.

Histone H3 peptides contain up to ca. 50 rotatable bonds (Table S1), that is a challenge
of computational docking.. The challenges are further increased by the unique binding
pattern of histones. Reader proteins often have a shallow binding surface, as in the case
of the UHRF1 PHD finger (System 3sou, Figure 2A) [66–68]. A considerable part of the
linear [69,70] N-terminal region of histone H3 is not able to find anchor points on this
shallow target, tending rather to remain unbound in the bulk (Figure 2A). Quantitative
analyses of the per-residue interaction energy (Einter; see Section 3) distribution of the
experimental holo structures in Table S1 show (Figure 2B) that mostly the first five amino
acids of the N-terminal of histone H3 are involved in the interaction with the target, while
the C-terminal end is exposed to the bulk, and often has a high degree of conformational
freedom, which is also reflected by the large atomic B-factors (red in Figure 2A). This finding
also emphasizes that only complexes with a full histone tail (i.e., a complete N-terminal
end) are useful as test systems.
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all complexes except for System 2fuu, for which Fragment 4 (KQ) was used. The selection 
of Fragments 1 (AR) and 4 (KQ) as seeds is also reflected by the per-residue Einter plot 
(Figure 2b), where R2 and K4 have the largest Einter contribution among the residues of 
histone H3. (Thus, the fast, per-residue Einter scoring (Figure 2b) plot of a single strong 
complex is also applicable for seed selection in PepGrow). 

Figure 2. Per-residue energetic and structural analysis of histone H3 peptide ligands bound to their
reader proteins. (A) The experimental structure of reader UHRF1 PHD finger (grey surface, PDB ID
3sou) in complex with a histone H3 peptide (sticks, colored by Cα B-factors). (B) The mean (columns)
and standard deviations (error bars) of Einter values for the respective residues calculated for the
energy-minimized experimental histone complexes presented in Table S1. The numbers on top of
the error bars show the number of systems used for calculation of the averages. The numbers are
smaller than the maximum of 10 if histone peptides shorter than 15 amino acids in length were
measured experimentally.

Besides the PepGrow protocol, a benchmark set of ten available docking methods
(Table S3 [41–45,71–77]) was assembled for the present study. Physico-chemical and hybrid
(i.e., incorporating knowledge-based elements into their algorithms; see Section 1) methods
were included in the benchmark. The same target and ligand structures were used as inputs
for the PepGrow and the benchmark methods.

2.2. The PepGrow Protocol

The PepGrow protocol builds the structures of target–peptide complexes at atomic
resolutions (Figure 3) without prior knowledge of the binding site residues of the target.
PepGrow starts with the selection of a seed molecule that is a fragment of the ligand
peptide. As the ligand used in our cases is the same histone H3 tail (Table S1), the selection
of an appropriate seed needs to be carried out only once. For the seed selection procedure,
the use of only one holo complex structure (2ke1) proved to be sufficient to pick the best
dipeptide fragment from among all of the possible dipeptides (Figure 4A) derived from
the H3 peptide (Table S4). In the case of histone H3, Fragment 1 (AR) produced the best
results (Figure 4B), and therefore, it was selected as the seed for H3 peptide docking for
all complexes except for System 2fuu, for which Fragment 4 (KQ) was used. The selection
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of Fragments 1 (AR) and 4 (KQ) as seeds is also reflected by the per-residue Einter plot
(Figure 2B), where R2 and K4 have the largest Einter contribution among the residues of
histone H3. (Thus, the fast, per-residue Einter scoring (Figure 2B) plot of a single strong
complex is also applicable for seed selection in PepGrow).

In the next step, the seed was docked on the target protein using a fast method
utilizing AutoDock 4.2.6, focusing on the peptide binding area [78], which resulted in
several binding modes (where the binding mode refers to the position, orientation, and
conformation of a ligand). The binding modes were ranked according to the calculated free
energy of their binding and their structural similarity. The representative binding modes
were produced for all ranks (see Tables S5 and S6 for a list of the rank counts of all systems).
All representative binding modes then proceeded to the fragment growing step, which was
accomplished using the builder routine of the homology modeling program Modeller [79].
The experimental target structure with the docked peptide fragment (seed) served as a
starting template for growing fragments in the binding pocket. In this way, all docking
ranks were used to generate thousands of target–peptide complex models in a matter of
minutes, resulting in a large enough pool of peptide binding modes (see Tables S5 and S6
for a list of the binding mode counts of all systems). The complex models of the pool were
scored and ranked based on the target–ligand intermolecular interaction energy (Einter,
Section 3) values calculated for the full peptide and for the five N-terminal amino acid
residues, respectively. The representative peptide structure with coordinates closest to the
average coordinates calculated for the peptide structures ranked in the top 1% (Rank 1)
according to Einter was selected as the solution. It was observed that in many cases, the top
1% of solution structures contained the best one, but not necessarily the best Einter of all of
the structures. Thus, it was reasonable to consider a structure that was representative of
the top 1%, rather than a single top structure. Technical details of the PepGrow protocol are
provided in the Section 3. Example in- and output files and computational details of the
PepGrow protocol are available in the Public Repository files Protocol.pdf and Protocol.tgz
(see Data Availability Statement).

2.3. Performance

The structural accuracies of PepGrow and 10 other docking methods are expressed
as the root mean square deviation (RMSD; see Section 3) measured between the docked
and the experimental (reference) ligand-binding modes. As the experimental complexes
mostly show stable (reference) conformations at the first five amino acids of histone H3
(Figure 2), RMSD values were calculated for the full ligand and for the first five amino acids
of the N-terminal, respectively. The lowest RMSD of all docked binding modes is referred
to as RMSDbest. The statistics (mean and standard deviation) for the RMSDbest values of
docking results to the apo targets for all systems in Table S1 are presented in Figure 5. Due
to the high mobility (and structural uncertainty) of peptide ligands outside the binding
interface, it is common to use only the interfacial (strongly bound core) amino acids [75]
for RMSD calculation. In the case of the histone H3 ligand, this core region corresponds to
(see Section 2.1) the first five amino acids (full bars in Figure 5). For comparison, the RMSD
values measured for all amino acids (empty bars in Figure 5) of the docked histone H3
ligands are also shown. In general, the RMSDbest values calculated for the first five amino
acids of H3 reflect a much better performance for all methods than the RMSDbest values
calculated for the full ligand (Figure 5A), due to the natural flexibility of the extended
C-terminal region described above (Figure 2).
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Figure 3. The flow chart of the PepGrow protocol. The different fragment colors correspond to
different fragment seed ranks acquired during the fast-docking and seed ranking steps. A close-up of
the growth of Rank 1 fragments (purple) only during the growth step is shown for clarity.
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Figure 4. Seed selection. (A) All possible (nine) dipeptide fragments were produced from the histone
H3 peptide N terminal sequence. Note that Fragment 1 (AR) was capped with an N-methyl group
(-NHMe) at the R residue, and Fragment 7 (AR) was capped with an additional acetyl group at the A
residue. The capping of the other fragments (2–9) was performed on both ends. (B) The PepGrow
results for each fragment for System 2ke1. The fragment with the lowest RMSDtop is marked with a
green frame. See Table S4 for details.

The statistics regarding the apo targets show that PepGrow outperformed all of the
other fast docking approaches (Figure 5A), with an RMSDbest of 5.36 (±1.47) Å being calcu-
lated for all of the amino acids of the docked histone H3 peptide fragments. Furthermore,
PepGrow achieved an excellent RMSDbest of 4.09 (±1.18) Å, when calculated for the first
five amino acids, as well. The per-system analysis of the PepGrow results (Figure 5B)
indicates that the best performance was obtained in the case of the target human BAZ2A
PHD zinc finger (System 4qf2). Here, the AR-NHMe dipeptide seed was accurately docked
(Figure 6), providing a good starting point for ligand growing. The docking of such dipep-
tides can be accomplished precisely [80] using fast docking techniques. Thus, they provide
a good starting point for growing peptide ligands, which is a better alternative than the
problematic linking of several, often inadequately docked large-peptide fragments. The
accurately docked dipeptide seeds also have the best Einter values (Figure 2), determining
the success of PepGrow.

Target flexibility poses a great challenge for docking methods [81]. To check the
sensitivity of the investigated docking methods to target conformation, all docking calcula-
tions were repeated for the holo structures of the target molecules. As the holo structures
have a pre-formed conformation that is ideal for binding to a certain ligand, large differ-
ences between the results when docking to the apo and when docking to the holo forms
may indicate a high (unwanted) sensitivity to target conformation and moderate robust-
ness of the method. In the case of PepGrow, no significant differences could be detected
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(Figure 5 vs. Figure S1) between the results on the apo and holo targets, indicating the
robustness of the method.
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Figure 5. The statistics of docking results obtained for all test systems of Table S1 using all apo target
structures. (A) Columns represent the mean RMSDbest values (of all test systems) calculated for
ligand-binding modes supplied by PepGrow and the 10 benchmark methods. Error bars represent
standard deviations (see also Table S7a). (B) Structural performance of PepGrow on the individual
test systems (see also Table S5). (C) Columns represent the mean RMSDtop values (of all test systems)
calculated for ligand-binding modes supplied by PepGrow and the 10 benchmark methods. Error
bars represent standard deviations (Table S7a).
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Figure 6. Fragment growing of the fast-docked seed for the complex of the human BAZ2A PHD
zinc finger reader (grey surface)–histone H3 peptide (sticks, System 4qf2). The fast-docked seed
AR-NHMe of an RMSD of 3.79 Å is shown as red sticks (left), representing a good basis of peptide
growing. The ligand structure corresponding to an RMSDbest of 2.67 Å is shown as red sticks (right),
representing the results of the growing. The crystallographic ligand-binding mode is shown as teal
sticks for comparison.

The acceptable level of RMSDbest was concluded to be 4.0 ± 3.0 Å on the basis of
data (Table S8) collected from publications related to the benchmark methods (Table S3), in
which RMSD was calculated only for the peptide backbone. Notably, side-chain atoms were
also included in the RMSD calculations in the present study. Thus, the above performance
of PepGrow can be considered to be as good as or above average when compared to the
RMSD values produced by the benchmark methods (Figure 5).

Besides the structural accuracy of the methods, their ranking performance was also
measured on the basis of their respective RMSD values. The docked-ligand-binding
modes were ranked by the default scoring functions of the respective methods (Table S3,
Supplementary Materials). The RMSD value of the ligand with the best score (representative
of the first rank) is referred to as RMSDtop. In the case of a method with perfect scoring
and ranking, RMSDtop is equal to RMSDbest per definitionem. Unfortunately, such an
ideal situation was not observed with the methods investigated, as RMSDtop considerably
exceeded RMSDbest in all dockings to the apo targets (Figure 5C), and the same trend was
observed in the cases of holo forms (Figure S1). A comparison of the ranking performance
of all of the methods (Figure 5C) shows that PepGrow achieved the best results when
compared to the benchmark methods. Thus, the Einter-based representative selection
method of PepGrow is a viable ranking alternative. Notably, the separate components of
Einter (Lennard-Jones and Coulomb terms, respectively) showed a drop in performance
(Table S9), and therefore, Einter including both terms (see Section 3) was used in the ranking
throughout the present study.

The above results indicate that the structural (Figure 5A) and ranking (Figure 5C)
performances of PepGrow are better than/comparable to those of the 10 benchmark meth-
ods presented in Table S3. PepGrow can also be considered a physico-chemical method,
with energy-based scoring and ranking of the ligand-binding mode (Section 2). In theory,
physico-chemical methods are generally applicable for any ligand type with appropriate
molecular mechanics parametrization. The efficient sampling of the conformational space
of flexible peptide ligands [82] like histone H3 tails is a common problem for all fast docking
methods. Knowledge-based and hybrid methods (Table S3) attempt to solve this problem
using a training set of experimentally determined structures as templates for achieving
the correct bound ligand conformation. However, their performance is limited by the
availability and reliability of templates for use in training.
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In addition to the above sampling problem, the scoring functions of fast docking
methods (Table S3) tend to maximize the interactions of the entire ligand with the target,
and therefore cannot handle non-interacting parts (see Section 1). Fragment docking
methods may provide a solution for this scoring problem by docking only short fragments
instead of the entire ligand. This may be a divide-and-conquer strategy for addressing
the limitation of linking fragments (see Section 1). For example, PIPER-FlexPepDock is
a fragment-based, hybrid approach in which an ensemble of short peptide fragments is
collected from experimentally determined structures with a high degree of sequence and
(predicted) secondary structure similarity to the actual ligand. However, such methods are
also limited by the lack of structures of peptide fragments of large size and/or unusual
conformations. Similar to PIPER-FlexPepDock, PepGrow utilizes the potential of physico-
chemical methods to accurately dock small peptide fragments, but instead of all possible
fragments in the peptide, it focuses on the anchoring fragment of a good Einter (see Section 2,
Figure 2) and grows the remaining part of the peptide in situ in the binding pocket. Thus,
PepGrow addresses both the sampling and scoring (ranking) problems via its fragment
docking strategy and the focused growing of a ligand from the docked seed the strongest
interaction with the target.

Data files of the performance tests of PepGrow and the benchmark methods are avail-
able in the Public Repository files PepGrow.tgz and Benchmark.tgz (see Data
Availability Statement).

3. Materials and Methods
3.1. Selection of Test Systems and Benchmark Methods

All atomic coordinates of the targets were acquired from the PDB. Apart from their
physiological relevance, histone-target systems were preferentially selected that exhibited
high resolution (<4 Å) and the availability of a non-covalently bound histone H3 N-terminal
peptide tail, starting from the first amino acid (A). The availability of both complexed
(holo) and apo forms was a selection criterion, as well. For the benchmark methods, fast
docking engines were selected that were designed to model interactions in protein–peptide
or macromolecular complexes (except AutoDock) and had previously been evaluated
on protein–peptide complexes. A further selection criterion was their free availability
for academic purposes via web servers or as standalone programs. The investigated
docking engines can be roughly sorted into knowledge-based, physico-chemical, and
hybrid categories (Table S3).

3.2. Performance Metrics

Both structural and ranking performance are expressed in terms of root mean square
deviation (RMSD), a commonly used measure for the comparison of the conformational
match of two molecules. In the present study, the bound conformation of a peptide ligand
produced by PepGrow (P) was compared to the bound conformation of the same ligand in
the experimental complex (E) structure used as a reference (Equation (1)).

RMSD =

√
1
N ∑N

n=1|Pn − En|2 (1)

N is the number of ligand heavy atoms, E is the space vector of the nth heavy atom of
the experimental reference ligand molecule, and P is the space vector of the nth heavy atom
of the PepGrow-calculated ligand conformation. Crystallographic structures were mostly
used as references (Table S1). In 3 cases, NMR structures were also employed, where the
first model was selected as a reference. RMSD values were calculated after superimposition
of the target parts (Table S10).

3.3. Application of Benchmark Methods

The general and specific settings, and the preparation of targets and ligands are
detailed for all benchmark methods in the Supplementary Materials Methods [83–89].
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3.4. PepGrow

Target preparation. The atomic coordinate structure files for the selected target protein
(Table S1) were downloaded from the PDB. All non-protein parts (ligands, waters, etc.)
were removed from all selected target structures prior to docking. If the structure was
a homo-oligomer, then only one selected chain was used (the first protein chain in the
PDB file). The rest of the target molecule was equipped with polar hydrogen atoms and
Gasteiger–Marsilli [90] partial charges in AutoDock Tools [44].

Ligand preparation. An initial fragmenting step was used to create dipeptide-sized
fragments of the original histone H3 peptide. The fragments were built using the Tinker
program package [91] with the protein, newton and xyzpdb commands. The cut was made
between the carbon and nitrogen atoms of the amide bond, acetyl (Ac-) and N-methyl
(-NHMe) groups were used to block the N- and C-terminal cut ends (the 1:AR fragment
was not capped at the N-terminal end, but the 7:AR fragment was capped at both ends).
These blocking groups were added in Tinker [91]. The acquired ligand structures were
then energy minimized using Open Babel [92] with the Amber99 force field [93] using
the steepest descent optimization with 104 steps; the convergence threshold was set to
103 kJ mol−1 nm−1. The next step was conjugate gradient minimization; a maximum of
104 steps was used, and the convergence threshold was set to 10 kJ mol−1 nm−1. Gasteiger–
Marsili charges [90] were added to the fragments with AutoDock Tools [44]

Fragment docking. The fragment docking was performed using AutoDock 4.2.6 [44].
The previously prepared target was handled as a rigid body. All active torsions were
allowed on the prepared ligand fragments. All ligand structures were docked to the
interacting site defined by the experimental structure, where the docking box was set
to a size that would fit the whole peptide inside. The number of grid points was set to
60 × 60 × 60, with a grid spacing of 0.375 Å; the middle of the box was set to the center of
the respective experimental full ligand conformation in a manner similar to the procedure
used for the benchmark methods. The Lamarckian genetic algorithm was used to perform a
global search. Ten docking runs were performed, and the resulting fragment conformations
were ranked [94], and representatives of each rank were used in Step 4.

Fragment growing with a homology modelling tool. All docked fragment copies
were processed using Modeller 9.22 [79], a homology modeling program. The template
structure was the experimental structure of the target protein with the docked (previous
step) fragment seed of the ligand peptide. The query sequence was the respective sequence
of each system and the histone H3 peptide tail matching the sequence length seen in
the corresponding experimental structures (Table S1). The target and ligand sequences
were taken from the UniProt database. The alignment between the template structure and
the query sequence was manually optimized if necessary to obtain identical regions that
correctly matched each other. This was necessary when fitting the sequence of the docked
dipeptide seed to the sequence of the whole ligand. The Modeller 9.22 software package
was applied to generate 100 models per step, following the final PepGrow protocol. Explicit
manual restraints were not added to access additional energy calculation features. During
the method development phase of the present work, restraints, energy calculating features,
and seed number variation steps were evaluated thoroughly (Table S11). When the rapid
generation of 100 models with default building settings was compared with the generation
of fewer models (20) with slower refinement, the results were similar, so the faster method
(with 100 models) was selected as the main PepGrow protocol step. The robustness of the
building procedure was further challenged by changing the random seed number, which
did not affect the results (Table S11). For System 2fuu, fragment 4:KQ was selected, due
to the special interaction of the trimethylated K4 with the target. In addition, fragment
4:KQ had the second-best performance (after 1:AR) when compared with the other seeds
(Figure 4).

Scoring. To extend the use of the method to apo structures with previously unknown N-
terminal histone tail ligand positions, it is important to apply a scoring function that is able
to select the bound ligand conformation closest to the real structure. The discrete optimized
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protein energy (DOPE [79,95]), the Modeller probability density function (molpdf [79,95]),
and the Lennard-Jones, Coulomb and Einter interaction energy scores (Equation (2)) of
each model were calculated. The Einter interaction energy score calculated for the first
five amino acids was the basis of the representative model selection (Tables S7a,b and
S12). Table S13 details the scoring functions of the benchmark methods; the differences
between the physico-chemical, knowledge-based and hybrid methods were determined
based on these scoring functions. Notably, the DOPE and molpdf scores were developed on
a benchmark set containing only single-chain proteins, according to the User’s Manual of
Modeller 9.22 [79]; there is no guarantee of their applicability to multi-chain structures. The
calculated DOPE and molpdf scores were therefore only used to test the effect of changing
the random seed number for model generation during the initial steps of testing Modeller,
as these two scores are the default scoring functions of the software (Table S11).

3.5. Calculation of Einter and Energy Analyses

Experimental, Modeller-built, and energy-minimized experimental structures were
subjected to per-residue interaction energy scoring. The missing atoms of all crystallo-
graphic targets were modeled using SWISS-Model [96]; for a detailed list of the missing
atoms and residues, please see the respective pdb structure files. However, these missing
atoms did not affect the binding site. The experimental structures were equipped with polar
hydrogen atoms and Gasteiger–Marsilli partial charges [90] using Open Babel 2.4.0 [92],
and were converted from pdb files to mol2 files. The mol2 files were then subjected to
per-residue interaction energy calculation using Equation (2), implemented in an energy
calculator program, which is available as a binary version, downloadable as PepGrow.tgz
(see Data Availability Statement). Lennard-Jones and Coulomb energies were calculated
and summarized to obtain the total Einter for each residue, and the whole ligand according
to Equation (2). The Coulomb term was calculated with a distance-dependent dielec-
tric function of Mehler and Solmajer [97] (Equation (3)), and Amber 2012 van der Waals
parameters and atom types were used [98].

Einter = ELJ + ECoulomb = ∑NT NL
i,j

(
Aij

r12
ij
− Bij

r6
ij
+

qiqj
4πε0εrrij

)
Aij = εijR12

ij

Bij = 2εijR6
ij

Rij = Ri + Rj

εij =
√

εiε j

(2)

where εij is the potential well depth at equilibrium between the ith (ligand) and jth (target)
atoms; ε0 is the permittivity of vacuum; εr is the distance-dependent relative permittivity
(Equation (3)); Rij is the inter-nuclear distance at equilibrium between the ith (ligand) and
jth (target) atoms; q is the partial charge of an atom; rij is the actual distance between the
ith (ligand) and jth (target) atoms; NT is the number of target atoms; NL is the number of
ligand atoms.

εr = A +
B

1 + ke−λBr (3)

where B = ε0 − A, ε0 is the dielectric constant of water at 25 ◦C, and A, λ and k are
constants [97].

4. Conclusions

Although fast docking methods have proven successful in the design of small-molecule
ligands [99,100], they face persistent challenges [99–102]. While long peptides are often used
as templates for the development of new drugs [103–105], they are especially challenging
ligands due to their high degree of flexibility and hydration, which cannot properly be
handled by fast docking methods. In the present study, a popular fast docking method,
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AutoDock 4.2.6, and the fast model building function of the widely used program Modeller
were combined into a new protocol PepGrow.

A comparison of the results with those obtained using ten other benchmark methods
showed that PepGrow offers a real alternative for the construction of histone complexes.
The relatively good performance of PepGrow is based on at least two key components
of the algorithm. Firstly, the docking of very short and strongly interacting (di)peptide
seeds can be reliably achieved [80] using currently available fast docking methods like
AutoDock 4.2.6 (unlike large peptide ligands, where fast docking presents problems [31]).
Secondly, instead of the problematic linking step of all fragments of the ligand, a robust
ligand growing step is implemented.

PepGrow constructs the complex structures of histone H3 peptides of various lengths
with various targets. While the number of such complexes is expected to be very high
(histone code), only a small number of structures have been determined. Thus, PepGrow
can help to accelerate the structural exploration of the histone code, as well as the prediction
of the outcome of the reader–DNA binding competition mentioned in the Introduction.
The disordered nature of histone peptides presented a real challenge for all eleven methods
compared. The structural performance of PepGrow was better than that of the other
methods, the ranking of such large ligands still remains [34,37] a challenging task for all
methods. Our results also indicate that physico-chemical scores like Einter are a necessary
component of the ranking and selection of representative structures. The histone complexes
selected for the present work can be recommended as a particularly challenging test set for
future method development studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms241813831/s1.
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