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Abstract: The diagnosis of ewes’ pregnancy status at an early stage is an efficient way to enhance
the reproductive output of sheep and allow producers to optimize production and management.
The techniques of proteomics and metabolomics have been widely used to detect regulatory factors
in various physiological processes of animals. The aim of this study is to explore the differential
metabolites and proteins in the serum of pregnant and non-pregnant ewes by proteomics and
metabolomics. The serum of ewes at 21, 28 and 33 days after artificial insemination (AI) were
collected. The pregnancy stratus of the ewes was finally determined through ultrasound examination
and then the ewes were grouped as Pregnant (n = 21) or N on-pregnant (n = 9). First, the serum
samples from pregnant or non-pregnant ewes at 21 days after AI were selected for metabolomic
analysis. It was found that the level of nine metabolites were upregulated and 20 metabolites were
downregulated in the pregnant animals (p < 0.05). None of these differential metabolomes are
suitable as markers of pregnancy due to their small foldchange. Next, the proteomes of serum from
pregnant or non-pregnant ewes were evaluated. At 21 days after AI, the presence of 321 proteins
were detected, and we found that the level of three proteins were upregulated and 11 proteins were
downregulated in the serum of pregnant ewes (p < 0.05). The levels of serum amyloid A (SAA),
afamin (AFM), serpin family A member 6 (SERPINA6) and immunoglobulin-like domain-containing
protein between pregnant and non-pregnant ewes at 21-, 28- and 33-days post-AI were also analyzed
via enzyme-linked immunosorbent assay (ELISA). The levels of SAA and AFM were significantly
higher in pregnant ewes than in non-pregnant ewes, and could be used as markers for early pregnancy
detection. Overall, our results show that SAA and AFM are potential biomarkers to determine the
early pregnancy status of ewes.

Keywords: ewes; proteomics; metabolomics; pregnancy markers; serum amyloid A; afamin

1. Introduction

Accurate and timely pregnancy diagnosis has a significant economic impact on sheep
farming. Early pregnancy diagnosis is crucial to determine the pregnancy status of ewes,
and can be used to evaluate the conception rate, the efficacy of artificial insemination (AI)
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and the presence of possible diseases. Ewes identified as non-pregnant can be rebred or in-
seminated, thereby shortening the lambing interval and providing an economic advantage
to the producer. Furthermore, reproductive health is sensitive to toxic exposure, specifically
to endocrine disruptor pollutants, and have long-term adverse effects.

At present, transabdominal ultrasonography is one of the most common early preg-
nancy detection methods. When applied to determine the pregnancy status of ewes on
day 21, the sensitivity was reported to be as low as 44.4%, and its sensitivity reaches 100%
only on day 35 of gestation and afterward [1]. Other available methods such as visual early
pregnancy examination, transrectal ultrasonography, near-infrared spectroscopy, hormonal
assays or radiography are also not ideal [2,3]. The pregnancy-specific protein B (PSPB) has
been identified, and its protein size was determined to be between 47 and 53 kDa [4]. In
addition, bovine pregnancy-associated glycoprotein (bPAG) from bovine fetal cotyledon
has been purified to homogeneity by HPLC [5]. PAG is synthesized by mononuclear and
binuclear cells of the trophectoderm of ruminants. A portion of PAG can be released into the
maternal blood circulation and detected by PAG antibodies [6]. The concentration of PAG in
cows increased after pregnancy, and there was a significant difference in PAG concentration
between pregnant and non-pregnant cows on day 22 following insemination [7]. Test kits
have been developed based on PAG and successfully used in the cattle industry. The molec-
ular structure of bovine and sheep PAG are relatively similar. Although PAG-based early
pregnancy determination methods for sheep have been tested [8–10], these test kits have
not been widely used in sheep farms due to high costs or limited efficiency to identify early
pregnancy status. Furthermore, the reproductive health of females is sensitive to nutrition,
infectious diseases, toxic exposure—specifically to endocrine disruptor pollutants—and
have long-term adverse effects [11]. An advanced early pregnancy diagnosis method would
help famers to distinguish the ewes with subfertility. There is clearly a need to identify new
biomarkers for early pregnancy detection in sheep.

Proteomic and metabolomic analyses are powerful tools to identify the dynamic
proteins and endogenous metabolites in body fluids, which could provide a deeper under-
standing of the biological system at the molecular level [12–14]. Proteins and metabolites
play a crucial role in regulating the molecular pathways associated with reproductive activ-
ities [15]. Proteomics and metabolomics are emerging high-throughput approaches which
have enabled researchers to identify hundreds and thousands of molecular using a very low
quantity of samples from males and females suffering from infertility [16,17]. Proteomic
analysis was used to reveal potential early pregnancy or litter size-related biomarkers
in pigs, goats, cattle and jennies [18–24]. More importantly, these techniques allowed
researchers to explore the molecules involved in the medical conditions of pregnant fe-
males suffering from ectopic pregnancy, hypertension disorder or diabetes mellitus [25–31].
Research using metabolomics was also conducted to find biomarkers in serum to foretell
litter size in sheep during 7 to 70 days of gestation, or metabolites such as FSH, P4, AMH
and amino acids to predict the number of ovulated oocytes following ovarian super stimu-
lation [32–34]. Thus, the latest approaches empowered us to identify potential biomarkers
in the very early pregnancy stages of ewes.

Early and accurate pregnancy examination to shorten the lambing interval of ewes
and improve the reproductive efficiency is of great economic significance for farmers.
Therefore, we designed experiments to detect early pregnancy markers in ewes using the
latest proteomic and metabolomic analyses. Serum samples from pregnant (21, 28 and
33 days post-artificial insemination) and non-pregnant ewes were collected and evaluated.
We found that the levels of 29 metabolites and 14 proteins were significantly different
between the experimental groups at 21 days post-AI. In addition, the levels of four proteins
were examined via ELISA, and it was found that serum amyloid A (SAA) and afamin
(AFM) levels were significantly elevated in pregnant compared to non-pregnant ewes on
21, 28 and 33 days post-AI. Our current study provides evidence that SAA and AFM could
serve as a marker to advance the detection time and determine early pregnancy in ewes.
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2. Results
2.1. Serum Collection and Pregnancy Diagnosis

At 21-, 28- and 33-days post-AI, blood samples of 30 ewes were collected and the sera
were isolated for future examination. At 33 days post-AI, all 30 ewes were examined using a
real-time B-mode ultrasound scanner. As presented in Figure 1A–D, 21 ewes were pregnant
and nine ewes were not pregnant. The serum samples were identified as belonging either
to the pregnant or non-pregnant group based on the ultrasound results and then were used
for proteomic and metabolomic analyses.
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Figure 1. Representative images of the ultrasound examination: (A,B) ultrasound images of a
pregnant ewe on day 33 post-AI; (C,D) ultrasound images of a non-pregnant ewe on day 33 post-AI.

2.2. Metabolomic Analysis of Serum

To evaluate the metabolomic changes in the sera of ewes on day 21 post-AI, six
serum samples from pregnant (P) and non-pregnant (N) ewes, respectively, were exam-
ined using Liquid Chromatography Mass Spectrometry (LC-MS). The LC/MS raw data
were processed using the Progenesis QI (Waters Corporation, Milford, CT, USA) software
(version 2.2). The sample information, metabolite name and mass spectral response inten-
sity were then exported and the metabolites were identified according to databases like
HMDB (http://www.hmdb.ca/), accessed on 19 September 2022. There were 1355 shared
metabolites in the sera of pregnant and non-pregnant ewes (Table S1). For the positive ion,
803 metabolites were identified, and 772 of them were found in library and 446 metabolites
in KEGG. Meanwhile, for negative ion, 549 metabolites were identified, 528 of which were
found in library and 302 in KEGG. The correlation of the samples was then analyzed
according to PLS-DA (Partial Least Squares Discriminant Analysis) using R Packages
(Version 1.6.2). As presented in Figure 2A, the PLS-DA score chart showed that the degree
of separation between groups P and N is significant. There were 11 unique metabolites in
the pregnant group and 19 unique metabolites in the non-pregnant group (Figure 2B,C).

http://www.hmdb.ca/
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Figure 2. Analysis of the metabolites detected in the serum samples. (A) PLS-DA analysis score
chart; (B,C) Venn diagrams for sample comparison. (D) Classification of metabolites based on KEGG
Compounds analyses. (E) Classification of pathways based on KEGG. (F) Pie chart of compounds
classification based on the HMDB database.

All the metabolites were checked with the KEGG and HMDB databases. As presented
in Figure 2D, the most abundant compounds are phospholipids and lipids according to
KEGG Compound Classification. Meanwhile, the lipid and amino acid metabolism also
ranked among the top pathways based on KEGG Pathway analyses (Figure 2E). Similarly,
when the names of the metabolites were checked in the HMDB database (Figure 2F),
492 compounds were identified as lipids and lipid-like molecules, which are compounds of
the most abundance.

2.3. Differential Metabolites Detected between Pregnant and Non-Pregnant Ewes

The differential metabolites found between pregnant and non-pregnant ewes were
further analyzed. As shown in Figure 3A, the levels of 20 metabolites in the sera of pregnant
ewes were elevated and nine metabolites were reduced compared to that of non-pregnant
ewes (listed in Table 1). The differential metabolites were then clustered according to
biochemical pathways through metabolic enrichment and pathway analysis based on the
KEGG database (Figure 3B,C). It was found that amino acid metabolism is ranked among
the top pathways.

The expression profile of the 29 differential metabolites were then used to calcu-
late variable importance in projection (VIP). As presented in Figure 3D, we found that
indolophenanthridine,2-mercaptobenzothiazole and N-4acetylcytidine were the top three
metabolites. Together with three additional ones, the level of six metabolites listed as
their VIP values are presented in Figure 3E–J. It can be seen that the serum metabolism
of sheep at different pregnancy statuses involves amino acid as well as lipid metabolism.
Also, the fold changes of all differential metabolites are large enough for visual diagnosis
kit development.
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Figure 3. Analysis of the differential metabolites between pregnant and non-pregnant ewes on
21 days post-AI. (A) Volcano plot for differential metabolites. The red dots represent the upregu-
lated metabolites and the blue dots represent the downregulated metabolites. (B) KEGG classification
of the 29 differential metabolites. (C) KEGG pathway enrichment analyses of the 29 differential metabo-
lites. (D) Expression profile of the 29 differential metabolites and their VIP values. (E–J) The differential
metabolites ranked as the top 6 based on their VIP values. Statistical significance at p < 0.05 is marked
as *, at p < 0.01 is marked as **, and at p < 0.005 is marked as ***.

2.4. Proteomic Analysis of Serum

The proteins in the sera from three pregnant (P) and three non-pregnant (N) ewes
21 days post-AI were examined using data-independent acquisition (DIA) proteomics.
Total protein annotation was then performed according to the uniport database and the
functional information of proteins was comprehensively obtained. There were 321 proteins
with functional annotation (Table S2) and two unique proteins were detected in the serum of
pregnant or non-pregnant ewes respectively (Figure 4A). Then, the KEGG pathway analysis
was performed, which revealed that these proteins were enriched in 21 KEGG signaling
pathways (Figure 4B). The subcellular localization of the proteins was also determined and
147 extracellular proteins and 84 cytoplasmic proteins were found (Figure 4C).
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Table 1. Differential metabolites between pregnant and non-pregnant ewes on day 21 post-AI.

Metabolite Regulate p-Value FC (P/N)

Tiglic acid up 0.008503 1.0083
4-Acetamido-2-aminobutanoic acid up 0.0003752 1.0192

(3R,4R)-3-Amino-1-hydroxy-4-methylpyrrolidin-2-one up 0.03014 1.0213
Glycylglycylglycine up 0.02539 1.0668
N4-Acetylcytidine up 0.02476 1.0778

3,4-Dimethyl-5-pentyl-2-furanpropanoic acid up 0.04541 1.0456
DL-2-Aminooctanoic acid up 0.01569 1.0753

Capsidiol up 0.01163 1.0407
Polidocanol down 0.02161 0.9714

4,5-Dihydrovomifoliol up 0.04924 1.0791
PC(18:4(6Z,9Z,12Z,15Z)/20:2(11Z,14Z)) up 0.01659 1.01

1-Octen-3-yl glucoside down 0.01561 0.9823
Indolophenanthridine down 0.04359 0.8634

D-Cathine up 0.006031 1.0305
Imexon up 0.03142 1.0665

2-Propylglutaric acid up 0.01513 1.015
1-Oleoylglycerophosphoserine down 0.01433 0.9535

Thromboxane down 0.01514 0.9073
(2R,3S)-2-Octyl-3-pentyloxane down 0.0355 0.9217

PE-NMe(22:2(13Z,16Z)/16:1(9Z)) up 0.03717 1.0413
Dodecyl hydrogen sulfate down 0.04624 0.9879

PS(15:0/24:1(15Z)) up 0.01613 1.0313
(+)-gamma-Hydroxy-L-homoarginine up 0.0239 1.0124

2-Mercaptobenzothiazole up 0.04465 1.1744
Ecgonine up 0.03409 1.1418

MJDBISSN00000004 up 0.04705 1.0085
Cyclopentenyl cytosine up 0.02362 1.0617

3-Methyl-2-oxovaleric acid down 0.03653 0.9819
D-Galactose down 0.02608 0.9901
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Figure 4. Proteomic analysis of sera from ewes. (A) Venn diagrams for the comparison of samples
(P represents the pregnant ewes and N represents the non-pregnant ewes). (B) Total protein function
annotation based on KEGG pathway enrichment analysis. (C) Subcellular localization analysis of
the proteins. (D) Volcano plot of proteins detected in ewes. The red dots represent the upregulated
proteins and the blue dots represent the downregulated proteins. (E) Heatmap of all the 14 differential
proteins between the two groups. (F) KEGG pathway enrichment analysis for all the 14 differential
proteins between the two groups.

The differences in the level of proteins in the sera of pregnant and non-pregnant
ewes were also analyzed. As shown in Figure 4D, three proteins were upregulated and
11 proteins were downregulated in the sera from pregnant ewes compared to those from the
non-pregnant ones. The detailed information of the 14 differential proteins can be seen in
Figure 4E and Table 2. As shown in Figure 4F, the results of the KEGG pathway enrichment
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analysis identified an increase in the activity of the signaling pathways related to maternal
pregnancy, embryo implantation and embryonic development. Among the 14 differential
proteins, the levels of serum amyloid A protein (SAA), afamin (AFM), serpin family A
member 6 (SERPINA6), Ig-like domain-containing protein (ILDP), albumin, beta-A globin
chain β, SMB domain-containing protein and vitronectin are presented in Figure 5A–H.

Table 2. Differential proteins between pregnant and non-pregnant ewes on day 21 post-AI.

Accession
Number Description Relative

Abundance (P)
Relative

Abundance (N) FC (P/N) p-Value
(P/N)

A0A835ZZL2 SERPIN domain-containing protein 2825.4179 3124.8457 0.9042 0.04336
A0A452ELD4 SMB domain-containing protein 679.4033 2186.5892 0.3107 0.01607
A0A452DX18 Complement C3 864.3877 1408.2509 0.6138 0.03305

Q1KYZ7 Beta-A globin chain β 404.1686 1532.0683 0.2638 0.04558
W5Q9D5 Vitronectin 79.6122 377.7781 0.2107 0.03671

A0A6P3YFZ8 Uncharacterized protein 132.6988 176.5994 0.7514 0.004184
W5NYF4 Peptidoglycan recognition protein 2 56.3539 89.8142 0.6274 0.01077

A0A452FXE6 Insulin-like growth factor-binding
protein 3 51.4896 66.5762 0.7734 0.01531

A0A452F0G8 Leukotriene A (4) hydrolase 9.4593 16.1675 0.5851 0.04163
A0A452FW61 Ig-like domain-containing protein 0 239.5522 1.00 × 10−5 0

W5PXI3 Afamin 0 69.3152 1.00 × 10−5 0
W5PWE9 Albumin 19,073.4655 12,902.1035 1.478 0.03812

A0A835ZMI7 Serum amyloid A protein 614.5201 0 424.2 0
A0A8C2R1B8 Serpin family A member 66 5.3973 0 424.2 0
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on 21 days post-AI. (A) Serpin family A member 6 (SERPINA6). (B) Serum amyloid A protein (SAA).
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marked as *.

2.5. Six Levels of Serum Proteins in Pregnant and Non-Pregnant Ewes at Different Stages of
Pregnancy as Determined using ELISA

To confirm the changes of proteins detected by proteomics, the levels of SAA, AFM,
SPERIN6 and ILDP in serum samples from pregnant and non-pregnant ewes at 21-, 28-
and 33-days post-AI were examined via an ELISA kit. The serum SAA in the pregnant
ewes was significantly higher than that of the non-pregnant ewes at 21d (3.37 ± 0.22 vs.
2.70 ± 0.16 ng/mL), 28d (2.63 ± 0.43 vs. 1.99 ± 0.27 ng/mL) and 33d (3.55 ± 0.34 vs.
1.96 ± 0.22 ng/mL) post-AI (Figure 6A,B). Similarly, the serum AFM in the pregnant
ewes was significantly higher than that in the non-pregnant ewes at 21d (91.73 ± 4.91 vs.
79.72 ± 3.50), 28d (75.93 ± 5.09 vs. 66.22 ± 4.68) and 33d (94.26 ± 4.57 vs. 65.86 ± 3.61)
post-AI (Figure 6A, B). The levels of SPERIN6 in the sera of pregnant ewes were signif-
icantly lower than that of non-pregnant ewes, only at 33 days post-AI. There was no
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difference in the serum ILDP levels between pregnant and non-pregnant ewes. Combined
with the pathways enriched by the above differential proteins, SAA and AFM can be used
as markers for the early pregnancy diagnosis of ewes.
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3. Discussion

This study aimed to identify biomarkers for the early pregnancy diagnosis of sheep.
The analysis of pregnancy-associated molecules has been the subject of many studies; using
different species as the identification of such proteins offers advantages that include not
only early pregnancy diagnosis, but also the prediction of litter size and the determination
of the presence of reproductive diseases. Accurate and timely pregnancy diagnosis has a
significant economic impact on sheep farming. In this set of experiments, the sera of ewes
at 21-, 28- and 33-days post-AI were collected. The pregnancy status of ewes was confirmed
via ultrasound 33 days post-AI. The serum samples from pregnant and non-pregnant
ewes on 21 days post-AI were then used for metabolomic and proteomic examination. We
identified 29 metabolites and 14 proteins differentially expressed between the two groups.
However, none of the metabolites were suitable as markers for pregnancy due to the limited
fold changes and no further investigation was conducted on these molecules. Among the
14 differentially expressed proteins, four proteins, including SAA, AFM, SPERIN6 and
ILDP, were selected for ELISA detection. The results showed that the levels of two proteins
(SAA and AFM) in the sera were significantly different between pregnant and non-pregnant
ewes at 21, 28 and 33 days of gestation; we propose that these proteins can be used as
protein markers to detect early pregnancy in ewes.

Knowing whether or not an ewe is pregnant soon after mating or artificial insemina-
tion is critical for sheep reproductive management. Numerous clinical and immunologic
methods have been developed for sheep pregnancy diagnosis. Previously, methods based
on ELISA had been used to assay hormonal, early pregnancy factor (EPF) and pregnancy-
associated antigens in order to detect the early pregnancy of ewes [35–38]. However, the
pregnancy diagnosis of ewes in practice still depends primarily on the identification of
animals that do not return to estrus or the use of B-mode ultrasonography; these methods
provide a pregnancy status from 35 days of pregnancy onwards. To shorten the interval
between two successive inseminations and minimize the economic losses due to non-
pregnant animals, new methods like the visual ELISA-PAG test, originally developed for
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cattle, have been tested on sheep; these tests proved highly accurate and efficient [8,35,36].
However, these immunological methods have not been widely used on sheep farms due to
their high costs and complicated operation processes. Hence, new biomarkers and easy
examination procedures for early pregnancy diagnosis are urgently required in the sheep
industry. In this set of experiments, high-throughput metabolomic and proteomic meth-
ods were applied to detected unique molecules in the sera of pregnant and non-pregnant
ewes. Metabolomics and proteomics are sensitive enough to detect thousands of biological
molecules in one sample at the same time; they can be used to screen the relevant markers
to detect early pregnancy. With this approach, we identified a total of 321 serum proteins in
the two groups, among which 14 proteins were significantly different between pregnant
and non-pregnant ewes. Four proteins showing obvious fold changes (SAA, AFM, ILDP
and SPERIN6) were further analyzed via an ELISA kit. It was demonstrated that the level of
SAA and AFM in the sera of pregnant ewes were significantly elevated since day 21 post-AI.

During early pregnancy, the female animal needs to adjust its endocrine system,
immune system, metabolites and hormones to allow for the fetus to establish a connection
with the maternal body [39]. The expression of many proteins’ changes in the female
during the early stages of pregnancy. In our experiments, SAA and AFM proved to
be suitable indicators of early pregnancy. When the body is injured and inflammation
occurs, the SAA level increases and regulates the adhesion, migration, proliferation and
aggregation of cells [40]. Interestingly, others found that elevated SAA levels may be related
to abnormalities in the decidualization process, which may lead to maternal infertility or
spontaneous abortion [41]. Therefore, further functional experiments are required to
elucidate the role of SAA in the early pregnancy of ewes. The other protein, afamin (AFM),
is a glycoprotein with vitamin E-binding properties and a putative function in fertility [42].
In previous clinical studies, afamin levels increased in the maternal serum during pregnancy
and was proposed to be a potential predictor of preeclampsia [43,44]. Others also conducted
a large number of studies on the relationship between serum AFM levels and inflammatory
bowel diseases, tumor diseases, coronary heart disease and ovarian cancer [45,46]. AFM is
a functional protein in humans, but its functions in ewes is still unclear.

In the current research, serpin family A member 6 (SERPINA6) was identified as
another protein present at elevated concentrations in the sera of pregnant ewes. Currently,
investigations regarding SERPINA6 focus on its function as a steroid-binding protein in the
blood of mammals, reptiles, amphibians and birds [47,48]. In humans, the levels of cortisol
in the plasma is associated with cardio-metabolic, inflammatory and neuro-cognitive
traits or even diseases. It has been reported that a genetic variant of the SERPINA6 gene
(rs7161521) is associated with diurnal and stress-induced hypothalamic–pituitary–adrenal
(HPA) axis activity in children [48]. Meanwhile, other studies have found that a SERPINA6
gene variant encodes corticosteroid-binding globulin (CBG), a protein with corticosteroid-
binding properties in blood [49,50]. However, the role of SERPINA6 in animals during
pregnancy has not been studied. Thus, more research is needed to elucidate whether
SERPINA6 is involved in the regulation of the pregnancy of ewes or its presence in serum
is simply due to stress. Meanwhile, the level of an Ig-like domain-containing protein
(accession number: A0A452FW61) was significantly reduced in pregnant ewes; the exact
identity of this protein could not be determined due to technical limitations.

Taken together, the SAA and AFM proteins are differentially expressed between
pregnant and non-pregnant ewes and can be used as biomarkers for early pregnancy
detection in the sheep.

4. Materials and Methods
4.1. Animals and Experimental Design

The experiment was conducted using adult female Hu sheep (Ovis aries) at the
experimental facilities of the Inner Mongolia Golden Grassland Ecological Technology
Group Co., Ltd., Bayannur, China (latitude 40◦13′ N, longitude 105◦12′ E) in July 2022. All
experimental protocols concerning the handling of animals were performed in accordance



Int. J. Mol. Sci. 2023, 24, 14054 10 of 15

with the requirements of the Institutional Animal Care and Use Committee at the China
Agricultural University.

4.2. Collection of Blood Samples from Ewes

Blood was collected from ewes at 21-, 28- and 33-days post-AI. After all the blood
samples were placed in a coagulation-promoting tube for 2 h, they were centrifuged at
4000 rpm/s for 10 min. After centrifugation, the supernatant was collected and stored at a
−80 ◦C freezer for later use.

4.3. Serum Metabolomic Analysis
4.3.1. Serum Samples Selection and Quality Control

The sera with uniform color from 6 pregnant sheep (P1, P2, P3, P4, P5 and P6) and
6 non-pregnant sheep (N1, N2, N3, N4, N5 and N6) on 21 days post-AI were selected for
metabolome analysis. A pooled quality control (QC) sample was prepared by mixing equal
volumes of all samples. The QC samples were disposed and tested in the same manner
as the analytic samples to represent the whole sample set, which was used to monitor the
stability of the analysis.

4.3.2. LC-MS/MS Analysis of the Serum Samples

The metabolomics analysis of the ewes’ serum samples was performed as described
previously [51,52]. Briefly, 100 µL serum sample was added to a 1.5 mL centrifuge tube with
400 µL solution (acetonitrile/methanol = 1:1(v:v)) containing 0.02 mg/mL internal standard
(L-2-chlorophenylalanine) to extract metabolites. The samples were mixed by vortexing
for 30 s and then low-temperature sonicated for 30 min (5 ◦C, 40 KHz). The samples were
placed at −20 ◦C for 30 min to precipitate the proteins. The samples were then centrifuged
for 15 min (4 ◦C, 13,000× g). The supernatant was removed and dried under nitrogen
and then re-solubilized with 100 µL solution and extracted via ultrasonication for 5 min
(5 ◦C, 40 KHz), followed by centrifugation at 13,000× g and 4 ◦C for 10 min. The supernatant
was transferred to sample vials for LC-MS/MS analysis. The LC-MS/MS analysis of the
samples was conducted on a SCIEX UPLC-Triple TOF 5600 system equipped with an
ACQUITY HSS T3 column (Waters, Milford, MA, USA) at Majorbio Bio-Pharm Technology
Co., Ltd. (Shanghai, China). Data acquisition was performed with the Data Dependent
Acquisition (DDA) mode.

4.3.3. Data Preprocessing and Annotation

The raw data of LC/MS were preprocessed using Progenesis QI (Waters Corporation,
Milford, CT, USA) software (version 2.2), and a three-dimensional data matrix in CSV
format was exported. Internal standard peaks, as well as any known false positive peaks
were removed from the data matrix and peak-pooled. At the same time, the metabolites
were searched and identified based on database HMDB (http://www.hmdb.ca/), Metlin
(https://metlin.scripps.edu/) and Majorbio database, accessed on 19 September 2022.
In order to reduce the errors caused by sample preparation and instrument instability,
variables with relative standard deviation (RSD) > 30% of QC samples were removed, and
normalized as log10 logarithmization to obtain the data matrix for subsequent analysis.

4.3.4. Differential Metabolites Analysis

The variance analysis on the matrix file were performed after data preprocessing.
The R package (Version 1.6.2) performed orthogonal least partial squares discriminant
analysis (OPLS-DA), and Student’s t-test and fold difference analysis were performed. The
variable importance in projection (VIP) was obtained via the OPLS-DA model and the
p-value was determined using the Student’s t test; the metabolites with VIP > 1, p < 0.05
were regarded as significantly different metabolites. All the metabolites were screened
and differential metabolites among two groups were summarized and mapped into their
biochemical pathways through metabolic enrichment and pathway analysis based on

http://www.hmdb.ca/
https://metlin.scripps.edu/
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database search (KEGG, http://www.genome.jp/kegg/), accessed on 1 October 2022.
The data were analyzed through the free online platform of Majorbio Cloud platform
(cloud.majorbio.com), accessed on 1 October 2022.

4.4. Serum Proteomic Analysis
4.4.1. Serum Samples Selection and Quality Control

The serum samples from 3 pregnant and 3 non-pregnant ewes at 21 days post-AI
were selected. The serum proteins were extracted in fresh lysis buffer and 0.5% sodium
deoxycholate with 1 × phosphatase inhibitor cocktail (PhosSTOP, Sigma-Aldrich, St. Louis,
MO, USA). The protein concentration was measured via the BCA assay (Thermo Fisher
Scientific, Waltham, MA, USA) and confirmed using Coomassie-stained short SDS gel as
previously described [53,54]. Protein quantification was performed according to the kit
protocol. After protein quantification, SDS-PAGE electrophoresis was performed.

4.4.2. Proteolytic Hydrolysis and Peptide Quantification

The protein samples were taken and added with lysate, and then triethylammonium
bicarbonate buffer (TEAB) was added at a final concentration of 100 mM. The iodoac-
etamide at a final concentration of 40 mM was added and reacted at room temperature for
40 min. Precooled acetone (acetone/sample v:v = 6:1) was added to each tube and kept
at −20 ◦C for 4 h. The samples were then centrifuged at 10,000× g for 20 min and the
pellets were collected. After trypsin digestion, peptide from the samples was drained via
rotation vacuum concentration (Christ RVC 2-25, Christ, Erfurt, Germany). The peptide
was extracted and re-dissolved with 0.1% trifluoroacetic acid (TFA). The supernatant was
desalted with Sep-Pak C18 filter cartridge (Waters, Milford, MA, USA) and dried. Peptide
quantification was performed according to the peptide quantification kit (Thermo Fisher
Scientific, Waltham, MA, USA).

4.4.3. DIA Mass Detection of a Single Sample

Based on peptide quantification results, the peptide samples were redissolved in
spectrometry loading buffer (2% ACN with 0.1% formic acid), including appropriate iRT
peptide, which was used to calibrate retention time, and were analyzed using an EASY-
nLC system (Thermo Fisher Scientific, Waltham, MA, USA) with a timsTOF Pro2 mass
spectrometer (Bruker, Bremen, Germany) at Majorbio Bio-Pharm Technology Co., Ltd.
(Shanghai, China). Then, the data-independent acquisition (DIA) data were acquired using
a timsTOF Pro2 mass spectrometer operated in DIA-PASEF mode. MS data were collected
over an m/z range of 400 to 1200 and an ion mobility range of 0.57 to 1.47 Vs·cm−2. Both
accumulation time and ramp time were set to 100 ms. During MS/MS data collection, each
cycle contained one MS and ten PASEF MS/MS scans. Exclusion was active after 0.4 min.
A total of 64 DIA-PASEF windows were used (25 Th isolation windows).

4.4.4. Protein Identification

Spectronaut software (Version 14) was used to analyze the DIA-PASEF raw data based
on the spectra library generated by DDA-PASEF data. Retention times were corrected
by iRT and 6 peptides per protein and 3 ions per peptide were selected for quantitative
analysis. The parameters are as following: Protein FDR≤ 0.01, Peptide FDR≤ 0.01, Peptide
Confidence≥ 99%, XIC width≤ 75 ppm. The shared and modified peptides were excluded,
and the peak areas were calculated and summed to generate the quantitative results.

4.4.5. Statistical and Bioinformatics Analysis

The similarity and difference of proteins between different serum samples were com-
pared via sample correlation and principal component analysis using R Packages software
(Version 1.6.2) on Majorbio Cloud platform (https://cloud.majorbio.com), accessed on
1 October 2022. p-values were corrected for multiple testing using the Student’s t-test. The
proteins with a p-value < 0.05 and |log2FoldChange| > 1 was considered as significantly

http://www.genome.jp/kegg/
cloud.majorbio.com
https://cloud.majorbio.com
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differentially expressed proteins. GO enrichment and KEGG pathway enrichment analyses
of these predicted target genes were performed using R Packages.

The differentially expressed proteins (DEPs) were identified as thresholds of fold
change (>1.2 or <0.83) and p-value < 0.05. Functional annotation of all identified proteins
was performed using GO (http://geneontology.org/) and KEGG pathway (http://www.
genome.jp/kegg/), accessed on 1 October 2022. DEPs were further used for GO and
KEGG enrichment analyses. Protein–protein interaction analysis was performed using
the String v11.5.

4.5. Evaluation of Protein Levels in Sera of Ewes at Different Time Points

Blood samples of ewes at 21-, 28- and 33-days post-AI were collected and the serum
from each sample was selected for analysis. The levels of SAA, AFM, SPERIN6 and ILDP
in the samples were detected via ELISA kits purchased from Beijing Beijianxinchuangyuan
Biotechnology Co., Ltd., Beijing, China. The analyses were performed according to the
manufacture’s protocol. Briefly, 10 µL of the serum samples and 40 µL of diluent were
added to the wells, and then the HRP-conjugate reagent was added to each well and
incubated for 60 min at 37 ◦C. After that, 400 µL wash solution filled each well and this was
repeated 5 times. Then, each well was filled with 50 µL chromogen solution A and 50 µL
solution B, which were mixed gently and incubated for 15 min at 37 ◦C. Finally, 50 µL stop
solution was added to each well. The Optical Density (O.D.) value of each sample was
detected at 450 nm using a microtiter plate reader and the data were calculated based on
the standard curve using the O.D. value for each well.

4.6. Statistical Analyses

The statistical analyses for proteomic and metabolomic analyses are described in each
section. The levels of differentially expressed metabolites and proteins were evaluated
using one-way ANOVA. Statistical significance at p < 0.05 is marked as * and at p < 0.01 is
marked as **.

5. Conclusions

Early pregnancy diagnosis allows for optimizing the production and timely man-
agement of decisions, offering a greater reproductive output in sheep farming. In this
manuscript, the researchers proposed to determine the unique molecules in the sera of
pregnant ewes at 21 days post-AI. Altogether, 29 differentially expressed metabolites and
14 differentially expressed proteins were detected in the sera of pregnant ewes, compared
with non-pregnant ones. The levels of four differentially expressed proteins were re-
examined via ELISA, and it was found that the levels of SAA and AFM were significantly
increased in the sera of ewes at day 21, day 28 and day 33 of gestation. Therefore, SAA
and AFM can be used as markers of early pregnancy in ewes. Finally, precisely unraveling
proteomic and metabolomic biomarkers and hallmarks related to the establishment of
early pregnancy might be helpful for recognizing and improving the efficiency of post-
implantation interplay between in utero-endometrial and placental anatomo-histological
compartments and fetuses, following surgical or transvaginal/transcervical procedures
used for the transfer of ex vivo-produced ovine and other mammalian embryos propagated
by a variety of modern assisted reproductive technologies, such as somatic cell nuclear
transfer and in vitro fertilization.
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