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Abstract: Lung cancer (LC) is the leading cause of cancer deaths, and chronic obstructive pulmonary
disease (COPD) can increase LC risk. Metallomics may provide insights into both of these tobacco-
related diseases and their shared etiology. We conducted an observational study of 191 human serum
samples, including those of healthy controls, LC patients, COPD patients, and patients with both
COPD and LC. We found 18 elements (V, Al, As, Mn, Co, Cu, Zn, Cd, Se, W, Mo, Sb, Pb, Tl, Cr, Mg, Ni,
and U) in these samples. In addition, we evaluated the elemental profiles of COPD cases of varying
severity. The ratios and associations between the elements were also studied as possible signatures
of the diseases. COPD severity and LC have a significant impact on the elemental composition of
human serum. The severity of COPD was found to reduce the serum concentrations of As, Cd, and
Tl and increased the serum concentrations of Mn and Sb compared with healthy control samples,
while LC was found to increase Al, As, Mn, and Pb concentrations. This study provides new insights
into the effects of LC and COPD on the human serum elemental profile that will pave the way for
the potential use of elements as biomarkers for diagnosis and prognosis. It also sheds light on the
potential link between the two diseases, i.e., the evolution of COPD to LC.

Keywords: lung cancer; chronic obstructive pulmonary disease; metals; inductively coupled plasma;
metallomics; mass spectrometry

1. Introduction

Lung cancer (LC) is the most common cause of cancer deaths and has led to more than
1.8 million deaths and 2.1 million new cases in 2020 [1]. Chronic obstructive pulmonary
disease (COPD) is the third leading cause of death worldwide [2], and it is known to
increase the risk of LC. COPD is therefore the foremost public health problem today, and
this problem is expected to worsen in the near future. Elements are essential because
about one third of human proteins need them in order to develop and perform their
functions [3], and it has been suggested that their impairment is both a cause (due to
the exposure to high levels) and an effect of LC onset and progression, which can lead
to unbalanced levels. Metal ions can play important roles as “matchmakers” for more
than 50% of known proteins [4], and it has been reported that the activity of antioxidant
enzymes is linked to the concentration of elements [5]. In fact, it has been shown that 47% of
structurally determined proteins require the presence of metals, which make up 41% of their
catalytic centers. Moreover, the concentrations of particular elements in biofluids should
not be investigated in isolation, since numerous synergistic and antagonistic interactions
among different elements have been described [6]. Thus, elements may be altered during
cancer progression [7–9] and metastasis [10,11], and elemental dyshomeostasis has been
reported in LC human biofluids [12–16]. Some authors have investigated the elemental
concentrations in serum samples from LC [15,17–19] or COPD [20–22] patients, but no
previous study has considered samples from patients with COPD who have developed LC
during follow-up. In addition, most published articles have focused on the relationship
between metal exposure and these diseases instead of the potential associations between
unbalanced levels and both LC and COPD.

The aim of this work was to assess the effects of metals on both LC and COPD
independently, as well as to evaluate the serum elemental profiles of COPD patients who
developed LC during follow-up (COPD-LC), to establish whether there is an association
between the two diseases. For this reason, we analyzed the human serum elemental profiles
of LC, COPD, and COPD-LC patients via inductively coupled plasma mass spectrometry
(ICP-MS). The elemental profiles of a group of healthy control (HC) patients were also
determined in order to compare them with those of the other groups. In addition, we
evaluated differences in the elemental compositions of COPD patients whose disease
severity varied from mild to very severe. This study delves into the impact LC and COPD
on the human serum elemental profile.
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2. Results
2.1. The Human Serum Elemental Profile Is Influenced by LC and COPD

The average serum elemental concentrations (Supplementary Table S1), fold changes,
p-values, and AUC values from ROC curves (Supplementary Table S2) of the studied
groups are collected in the Supplementary Material. Compared with those of the HCs
(Figure 1A, Supplementary Table S2), the human serum metallomic profiles of the LC
patients showed significantly increased concentrations of Al (2.35-fold, p = 0.00), As
(1.35-fold, p = 0.00), Mn (1.26-fold, p = 0.00), and Pb (1.87-fold, p = 0.00), while the
COPD patients had increased levels of Mg (1.38-fold, p = 0.00) and Sb (1.33-fold, p = 0.01)
and reduced levels of As (0.68-fold, p = 0.00), Cd (0.59-fold, p = 0.02), and Tl (0.67-fold,
p = 0.04). Interestingly, the COPD-LC group presented the most significantly altered
metallomic profiles when compared with the HC group, with increased levels of Mg
(1.60-fold, p = 0.00), Ni (1.37-fold, p = 0.00), and Se (1.33-fold, p = 0.00) and reduced
concentrations of Al (0.02-fold, p = 0.00), As (0.23-fold, p = 0.00), Cd (0.08-fold, p = 0.01),
Mn (0.41-fold, p = 0.00), and Pb (0.04-fold, p = 0.00). The metallomic profiles were also
different when comparing HC, LC, and COPD-LC patients against COPD patients with
varying disease severity (from mild to very severe symptoms). However, a comparison
among the COPD patients with different disease severities revealed that the metallomic
profiles differed only between COPD-vs vs. COPD-mo and COPD-vs vs. COPD-se. Thus,
no significant differences were observed between COPD-mo vs. COPD-mi, COPD-se
vs. COPD-mi, COPD-vs vs. COPD-mi, or COPD-s vs. COPD-mo. A principal compo-
nent analysis (PCA) based on the metallomic profiles enabled us to cluster the serum
samples of the HC, LC, COPD, and COPD-LC patients (Figure 1B). A PLS-DA plot also
confirmed the clear separation between the groups (Figure 1C). Moreover, a PLS-DA
plot which includes the COPD patients with varying disease severity (Figure 1D) is
shown in Figure 1. Other PLS-DA plots which include two or three groups are shown
in Supplementary Figure S1 and enable a better visualization. Variable importance in
projection (VIP) is a parameter that indicates the most affected variables in the PLS-DA
model. VIPs higher than 1 suggest significant differences between groups in the mul-
tivariate analysis. The PLS-DA showed VIPs higher than 1 for Al, As, Pb, and Zn in
several comparisons, indicating that these are the most affected elements with respect
to the rest of the metals. The most affected elements in the different PLS-DAs were
as follows: Al (VIP = 2.06) and Pb (VIP = 2.06) in the comparison between LC and
HC; Al (VIP = 1.89) and As (VIP = 1.60) in the comparison between COPD and LC; Ni
(VIP = 2.64) in the comparison between COPD and COPD-LC; and Cd (VIP = 2.04), Mn
(VIP = 1.68), Al (VIP = 1.48), and Sb (VIP = 1.53) in the comparisons between COPD-mi,
COPD-mo, COPD-s, and COPD-vs. Supplementary Table S3 shows the VIP values for
the other metal group comparisons. The different concentrations of the most altered
elements in the serum samples of the studied groups are also shown in the box plots
(Figure 1E). Figure 2 shows the ROC curves that correspond to the elements whose
concentrations differed significantly between the LC (Figure 2A), COPD-mo (Figure 2B),
COPD-s (Figure 2C), and COPD-LC (Figure 2D) groups and the HC group. Elements
with AUC values higher than 0.75 could have clinical utility as possible biomarkers [23].
AUC values are reported in Supplementary Table S2. Since As, Al, Mn, Pb, Mg, and
Cr presented AUC values > 0.75 (Supplementary Figure S2), these could function as
possible biomarkers for LC vs. COPD-LC (Supplementary Figure S2A). As could func-
tion as possible biomarker for LC vs. COPD-mi (Supplementary Figure S2B), As, Cr,
and Sb could function as possible biomarkers for LC vs. COPD-vs (Supplementary
Figure S2C), and Ni and Pb could function as possible biomarkers for COPD-LC vs.
COPD-mi (Supplementary Figure S2D).
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Figure 1. Impact of LC and COPD on the human serum metallomic profile. (A) Heatmap showing the
serum elemental profiles of the different groups under study (p < 0.05) (adjusted by FDR correction).
(B) Principal component analysis (PCA). (C) Scatter plot of partial least squares-discriminant analysis
(PLS−DA). Classification of HC, LC, COPD and COPD-LC groups based on their elemental profile of
human serum. (D) Scatter plot of partial least squares-discriminant analysis (PLS-DA). Classifications
of HC, LC, COPD of varying severity (COPD−mi, COPD−mo, COPD−s, and COPD−vs), and
COPD−LC groups based on their serum elemental profiles. (E) Box plots of levels determined for the
most significantly altered elements in the serum samples of the groups under study.
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Figure 2. ROC curves showing significant differences between elements in the (A) LC, (B) COPD-mo,
(C) COPD-s, and (D) COPD-LC groups compared with those in the HC group (AUC values higher
than 0.75).
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2.2. Altered Elemental Ratios Influenced by LC and COPD

As was previously mentioned, the elemental dyshomeostasis has been reported to be
related to lung cancer. Moreover, synergistic and antagonistic interactions between elements
have been extensively described. For this reason, the ratios between the concentrations of
elements in the serum samples were also evaluated as possible signatures of LC, COPD,
and the other subgroups under study (Supplementary Tables S4–S7). In general, the
pairwise comparisons among the studied groups presented many elemental ratios that
were significantly different, and which had significant FC values.

We mainly found significantly increased ratios of Al to the oligoelements Co, Cu,
Fe, Mn, Mo, Se, and Zn in the LC group compared with the HC and COPD groups
(Supplementary Tables S4 and S5), as well significantly increased ratios of Mg to Mn and
Zn in the COPD group compared with the HC group (Supplementary Table S5). More-
over, significant ratios of Mn to Se and Zn were observed in the comparison between
the COPD-LC and COPD groups (Supplementary Table S6). Only a few significantly
different ratios were found when comparing the groups with COPD of varying sever-
ity (COPD-mi, COPD-mo, and COPD-s) (Supplementary Table S7). The specificity
and sensitivity of the metal ratios were also evaluated by analyzing the ROC curves.
Supplementary Table S8 shows the ratios which had AUC values higher than 0.75 in the
different groups following comparisons with the controls. The ratios between Al and
the majority of the analyzed elements presented higher and better AUC values in the
comparison between the LC and HC groups. In addition, the AUC values of some of the
ratios of Mg, Mn, and Ni to the rest of the elements in the COPD-LC group were found
to be higher than those of the control group (Supplementary Table S8). In contrast, no
good AUC values were observed in the COPD group.

2.3. Associations between Metals in COPD (of Varying Severity) and LC

A Spearman correlation analysis was applied to the dataset to determine possible
associations between metals in the different studied groups. Significant (p < 0.05) and
strong (rho > 0.5) (Supplementary Table S9) correlations were calculated and are pre-
sented in the Supplementary Material. After pairwise compassions between the levels of
all the elements in the serum samples, some of them were found to be negatively (rho < 0)
or positively (rho > 0) associated; thus, as the concentration of one element increased,
the concentration of the other decreased just as much, or vice versa. In addition, in some
cases, the significant associations were lineal (rho ≈ ±1). We found a higher number of
metal–metal associations in the HC (Figure 3a) and LC groups (Figure 3b). In the control
group, Zn were positively correlated with several oligoelements, such as Se (rho = 0.69,
p < 0.05), Cu (rho = 0.66, p < 0.05), Fe (rho = 0.65, p < 0.05), Co (rho = 0.60, p < 0.05),
and Mg (rho = 0.56, p < 0.05). These correlations were not significant in the LC and
COPD-LC groups. In contrast, Zn was positively correlated with Se (rho = 0.73, p < 0.05),
Mg (rho = 0.65, p < 0.05), and Cu (rho = 0.54, p < 0.05) in the COPD group (Figure 3c).
The levels of Cu and Ni were correlated with those of several metals in the LC patients.
Cu was positively correlated with Mg (rho = 0.65, p < 0.05), Sb (rho = 0.57, p < 0.05), Zn
(rho = 0.53, p < 0.05), and Co (rho = 0.52, p < 0.05). Ni was positively associated with
Cr (rho = 0.64, p < 0.05) and W (rho = 0.53, p < 0.05), and it was negatively associated
with Mn (rho = −0.55, p < 0.05), Zn (rho = 0.64, p < 0.05), and Co (rho = −0.73, p < 0.05).
Moreover, we found positive associations between V and Cu (rho = 0.68, p < 0.05), W
(rho = 0.67, p < 0.05), Zn (rho = 0.66, p < 0.05), and Mn (rho = 0.63, p < 0.05) in the
COPD-LC group (Figure 3d).
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Figure 3. Spearman correlation heatmap showing correlations between metals in the (a) HC, (b) LC,
(c) COPD, and (d) COPD-LC groups. * significant (p < 0.05) and strong (rho > 0.5) correlations.

3. Discussion

Our study suggests that LC, COPD, COPD-LC, and COPD of varying severity have a
strong impact on the metallomic profile of human serum. In general, we can distinguish
two groups of elements, namely toxic (As, Cd, Sb, Pb, Tl, Cr, Ni, and U) and bioelements (V,
Al, Mn, Co, Cu, Zn, Se, Mo, and Mg) [24]. No specific health effects have been associated
with exposure to W in humans, but it is not a bioelement [25].

The metallomic profiles of the serum samples indicated significantly higher levels of
several carcinogenic elements, such as As and Ni, in the LC group compared with the HC,
COPD, and COPD-LC groups. Exposure to these elements is known to be hazardous [26]
because they can activate oncogenic signaling pathways [27,28] and induce oxidative
stress [26,29,30]. Ni is a pulmonary carcinogen that induces oxidative DNA damage [31],
while As and Pb exposure is associated with decreased lung function [21]. Furthermore, Cd,
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which is abundant in cigarette smoke, can destroy lung tissue, leading to chronic bronchitis
and emphysema [32]. Interestingly, we found lower levels of Cd and As in the COPD
patients than in the HC patients, although the levels were significantly higher in patients
with very severe COPD than in those with milder forms of the disease. It is well known
that tobacco smoke, in which heavy metals are present, is significantly associated with
an increased incidence of smoking-related COPD, and that it can accelerate physiological
processes, leading to oxidative stress, damage, and inflammation [33]. However, some
authors have concluded that smoking cessation treatment slows the decline in respiratory
function and leads to clinical–functional improvements [34,35].

A redox imbalance is critical to lung carcinogenesis and has been associated with
alterations in the serum concentrations of Zn, Mn, and Cu. These metals play a key role
in antioxidant activity (mainly enzymatic processes) as cofactors or ions which stabilize
the molecular structure of superoxide dismutase (SOD), an endogenous antioxidant [36].
Mn-SOD, which is of key importance in the lungs’ antioxidant defense [37], is the only
superoxide radical scavenger in mitochondria and therefore precludes antioxidant and
tumor-suppressor cell function [38]. Cu is an essential trace element, but it also contributes
to the generation of free radicals [13], while Zn is a constituent of over 300 enzymes that
play key roles in gene expression [39].

The mechanisms by which specific metallomic profiles are linked to disease states
are unclear as imbalances in the latter can lead to complex interactions through com-
petitive, antagonistic, or synergistic mechanisms [6]. For this reason, we analyzed
not only metallomic profiles, but also the specific ratios between elements, thereby
identifying significant differences among the studied groups. Most of these elements
were also altered in our previous study, which was carried out on different biofluids
of LC patients (though with a smaller cohort) [15]. On the other hand, the significant
alterations in the levels of Al in the LC patients and the COPD patients with LC might
be due to imbalances in energy metabolism since citrates have been identified as one
of the main molecules which interact with this metal [40], and as playing a central role
in cancer cell metabolism and regulation [41]. On the other hand, Al is considered a
potential endocrine disruptor, and human exposure has been associated with increased
lung cancer risk [42].

The increased levels of Mg in the COPD patients compared with the HC could be
associated with possible alterations in protein synthesis and bone metabolism [20]. Some
authors have suggested that Mg works as a bronchodilator by inhibiting calcium influx
into the smooth muscles of the bronchioles [43]. However, Mg’s role in obstructive lung
diseases is unclear [44].

Se is one of the most studied elements in the metallomic profiling of LC due to its
antioxidant properties, and because it is a cofactor of selenoproteins, which are essential
antioxidants [45]. However, we found no significant differences in the total concentrations
of Se, with the exception of the COPD patients with LC; this warrants further study as
Se concentration may be a biomarker of the two tobacco-related diseases and could help
explain whether COPD is an independent risk factor for LC.

It is generally accepted that AUC values above 0.75 indicate useful biomarkers with
potential clinical applications by ensuring a reasonable combination of sensitivity and
specificity [23]. In this sense, our study could be viewed as a first step in the identification
of metal concentrations or metal ratios that may work as potential biomarkers of LC and
COPD, or as harbingers of LC in susceptible COPD patients. Both Al and Mn, which had
AUC values close to 1, appear to be of special interest in our study.

Finally, differences in the associations between metals in the LC, COPD, and COPD-LC
patients compared with the HC patients could indicate dysregulation in metal homeostasis.
It is well known that there are many types of biological processes that are modulated by
the availability of metals, and that these can also contribute to the pathogenesis of many
different types of cancer-preventing or -accelerating neoplastic cell transformations, and to
the modulating of the inflammatory and pro-tumorigenic response in immune cells [46].
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4. Study Limitations

The number of serum samples from the COPD-LC patients (n = 16) was small
compared with those from the HC (n = 56), COPD (n = 74), and LC (n = 47) patients.
A larger population of COPD-LC patients would be necessary to validate the results.
Similarly, the number of serum samples from the COPD subgroups COPD-mo (n = 10)
and COPD-s (n = 10) were smaller than those of the other groups, COPD-mi (n = 33) and
COPD-vs (n = 21).

5. Materials and Methods
5.1. Study Participants and Study Design

We determined the concentrations of 18 elements in 191 serum samples from 47 LC
and 90 COPD patients that were compared with samples from 54 healthy controls (HCs).
The COPD group was also divided in several subgroups according to disease severity,
based on pulmonary function testing [47], as follows: very severe COPD (COPD-vs,
n = 21), severe COPD (COPD-s, n = 10), moderate COPD (COPD-mo, n = 10), mild
COPD (COPD-mi, n = 33), and COPD patients who developed LC during follow-up
(COPD-LC, n = 16).

COPD History Assessment in SpaiN (CHAIN) is a multicenter, observational study
of prospective cohorts which is being carried out at 36 Spanish hospitals. The recruit-
ment period began on 15 January 2010 and is ongoing (clinicaltrials.gov identifier:
NCT01122758). All participants have signed informed consent forms which have been
approved by the ethics committees of the participating centers (Hospital Universitario la
Candelaria, Tenerife, Spain; IRB No. 258/2009). The cohort is active and has a follow-up
period of more than 10 years, with complete office visits every 12 months and telephone
interviews every 6 months, in order to evaluate exacerbations and monitor the vital
state of each subject. The data analyzed in this study were collected from the date of
recruitment until May 2015. The data were anonymized with hierarchical access control
to ensure data security. At each annual visit, the following information was collected:
(i) clinical aspects (socio-economic situation, anthropometric data, comorbidities, smok-
ing, respiratory symptoms, exacerbations, quality of life, anxiety–depression scale,
daily life activities, treatments); (ii) respiratory function (spirometry, blood gases, hy-
perinflation, diffusion, respiratory pressures); (iii) BODE index (main study variable);
(iv) peripheral muscle function; and (v) blood work-up (including IgE and cardiovascu-
lar risk factors). In addition, a serum bank was created for the future determination of
biomarkers, and some of the samples analyzed in this study were taken from this. The
rest of the samples were collected at the pneumology area of the Juan Ramón Jiménez
Hospital of Huelva, Spain during 2018–2020.

The blood samples were obtained by venipuncture of the antecubital region using BD
Vacutainer SST II tubes with gel separator and Advance vacuum system. The samples were
then cooled and protected from light to prevent clotting (t = 30 min). After centrifugation
(2000 g, 10 min), the serum samples were frozen at −80 ◦C until analysis. The study was
performed in accordance with the principles contained in the Declaration of Helsinki and
approved by the Ethics Committee of the regional Andalusian Government (Ethical code
num. 1898-N-21).

Patient data were anonymized in a database with hierarchical access control in order
to guarantee secure information access. Clinical parameters such as age, gender, LC or
COPD stage, smoking habits, and comorbidities are shown in Table 1.

5.2. Determination of Elements in Serum Samples via ICP-MS

For simple and fast sample preparation, a previously reported method was used [48].
Briefly, the serum samples (0.5000 g) were weighted and diluted with 4.5 mL of a solution
containing 0.05% ethylenediaminetetraacetic acid (EDTA, 99.995% trace metals basis),
0.05% triton-X 100, 5% 1-butanol, and 0.25% NH4OH. Rh, Sc, and Bi were added as internal
standards (100 ng g−1 each).

clinicaltrials.gov
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Table 1. Clinical characteristics of patients included in the study.

Clinical Characteristics HC LC COPD COPD-LC

Gender (male/female) 38/16 29/18 60/14 15/1

Age (years ± SD) 61 ± 11 66 ± 11 65 ± 9 56 ± 8

Smoking habits
Non-smoker 24 11 0 1

Smoker 15 24 42 6
Ex-smoker 15 12 32 9

Adenocarcinoma - 33 - 4
NSCLC type Carcinoide - 2 - 6

Squamous cell
lung cancer - 8 - 2

Epidermoide - 4 - 4

Mild - - 33 4

COPD grading Moderate - - 10 8
Severe - - 10 0

Very Severe - - 21 4

Comorbidities
DM 5 8 7 3
AH 17 18 34 11
DLP 20 25 21 7

HC: healthy control; LC: lung cancer; COPD: chronic obstructive pulmonary disease; COPD-LC: COPD patients
who developed LC during follow-up: COPD-vs: very severe COPD; COPD-s: severe COPD; COPD-mo: moderate
COPD; COPD-mi: mild COPD; DM: diabetes mellitus; AH: arterial hypertension; DLP: dyslipidemia.

A multielement analysis was carried out in a triple quadrupole ICP-MS model 8800
(Agilent Technologies, Tokyo, Japan) using collision gas (helium) at a flow rate of
4.5 mL min−1. A mixture of H2 (2 mL min−1) and O2 (40%) was used in the MS/MS
mode for Se. The following isotopes were monitored (0.3 s of dwell time per isotope):
24Mg, 27Al, 51V, 55Mn, 57Fe, 59Co, 53Cr, 60Ni, 63Cu, 65Cu, 64Zn, 66Zn, 75As, 78Se, 80Se,
95Mo, 103Rh, 112Cd, 114Cd, 182W,205Tl, 208Pb, and 238U. A tuning aqueous solution of Li,
Co, Y, and Tl at 1 µg L−1 was used to tune the ICP-MS.

A multielement calibration standard-2A solution (10 mg L−1 of Al, V, Cr, Mn, Fe, Co,
Ni, Cu, Zn, As, Se, Cd, Tl, and Pb) (Agilent Technologies) was used to prepare multielemen-
tal internal calibrations curves. After reshaping the calibration function, the concentrations
at the detection (LOD) and quantification (LOQ) limits were obtained [1], and elemental
levels below the LOQ were excluded from further statistical evaluations. The samples were
performed five times for the instruments (n = 5). Supplementary Table S10 shows the LODs
and LOQs for the elements.

The validation of the multielemental methodology was carried out using two serum
reference materials: Seronorm trace elements reference material at level L-2 (SERO AS,
Hvalstad, Norway) and ClinChek, serum control, lyophilized, for trace element analysis,
level II (RECIPE, München, Germany). As is shown in Supplementary Table S11, the results
for accuracy and precision (related standard deviation, RSD) obtained in the internal quality
control procedure were within the certified ranges.

Other operational parameters for ICP-MS, such as sampling depth, RF forward power,
carried gas flow rate, or type of nebulizer, are detailed in Supplementary Table S12.

5.3. Statistics

Statistica 8 (Statsoft, Tulsa, OK, USA) was used to analyze the data. The concentrations
of elements and selenoproteins in the serum samples were expressed as medians and stan-
dard errors of the means (S.E.) (median ± S.E.). A Levens’s test revealed no homogenous
variances or skewed distributions (checked using normal probability plots), and all the
data were analyzed using nonparametric methods. Group comparisons were performed
using Krustal–Wallis tests, and only p-values < 0.05 were considered statistically significant.
When possible, fold changes (FCs) were calculated for pairwise comparisons among the
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studied groups by dividing the median concentrations of elements determined in the serum
samples. The areas under the receiver operating characteristic curves (AUC values from
ROC curves) were also calculated so that we could delve into the specificity and sensitivity
of the novel potential biomarkers. In addition, partial least squares-discriminant analyses
(PLS-DAs) were performed and heatmaps were produced to investigate the potential con-
tributions of the elemental compositions present in the serum samples and discriminate
the studied groups. MetaboAnalyst version 5.0 was used as a statistical tool for the ROC
curves and heatmaps “https://www.metaboanalyst.ca/ (accessed on 15 December 2022)”.

6. Conclusions

In this work, we determined the elemental concentrations in serum samples from LC
subjects and COPD patients with varying disease severity, including a group of patients
who developed LC during follow-up, using ICP-MS. Our results indicate significant alter-
ations in the concentrations of several elements, including Al, As, Pb, Mg, Mn, Cd, Ni, and
Se in the LC, COPD, and COPD-LC groups compared with the controls, and this could be
of clinical utility due to the good AUC values obtained from the ROC analysis. We found
significant changes in some elements, especially in the LC and COPD-LC groups compared
with the HC group. Furthermore, we reported numerous associations between elements,
especially in the LC group, indicating intertwined mechanisms and dyshomeostasis, both
of which should be further explored.
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