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Abstract: Matricellular proteins are secreted extracellular proteins that bear no primary structural
functions but play crucial roles in tissue remodeling during development, homeostasis, and aging.
Despite their low expression after birth, matricellular proteins within skin compartments support
the structural function of many extracellular matrix proteins, such as collagens. In this review, we
summarize the function of matricellular proteins in skin stem cell niches that influence stem cells’
fate and self-renewal ability. In the epidermal stem cell niche, fibulin 7 promotes epidermal stem cells’
heterogeneity and fitness into old age, and the transforming growth factor-β—induced protein ig-h3
(TGFBI)—enhances epidermal stem cell growth and wound healing. In the hair follicle stem cell niche,
matricellular proteins such as periostin, tenascin C, SPARC, fibulin 1, CCN2, and R-Spondin 2 and
3 modulate stem cell activity during the hair cycle and may stabilize arrector pili muscle attachment
to the hair follicle during piloerections (goosebumps). In skin wound healing, matricellular proteins
are upregulated, and their functions have been examined in various gain-and-loss-of-function studies.
However, much remains unknown concerning whether these proteins modulate skin stem cell
behavior, plasticity, or cell–cell communications during wound healing and aging, leaving a new
avenue for future studies.

Keywords: matricellular proteins; basement membrane; extracellular matrix; epidermal stem cells;
fibroblasts; skin aging; wound healing; skin regeneration

1. Introduction

Matricellular proteins are nonstructural, modular, extracellular proteins that exert their
effects by binding to cell surface receptors, extracellular matrix (ECM) proteins, soluble
signaling molecules, and proteases, thereby modulating cellular responses to changes in
their microenvironment, particularly during tissue remodeling [1,2]. The term matricellular
protein was first introduced by Paul Bornstein in the 1990s to describe thrombospondin 1
(TSP1/THBS1), secreted protein acidic rich in cysteine (SPARC), and tenascin C [1]. Since
then, the list has substantially expanded and includes protein families of the cellular
communication network (CCN) factors, the fasciclin family, tenascins, galectins, R-Spondins
(RSPOs), fibulins, ecto-nucleotide pyrophosphatase/phosphodiesterases, small integrin-
binding ligand N-linked glycoproteins, and olfactomedins [3]. Although matricellular
proteins have no direct structural functions, they can bind to structural ECM proteins such
as collagens [4,5]. However, some structural ECM proteins have nonstructural functions,
such as fibrillin-1 [6] and fibronectin [7], which bind and regulate the bioavailability
of growth factors in the tissue microenvironment. Generally, matricellular proteins are
highly expressed during development, which decreases to low levels during homeostasis
but is upregulated upon tissue injury and disease [4]. While some knockout animal
models of matricellular proteins with developmental roles have exhibited embryonic
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or neonatal lethality [8–11], others have resulted in no apparent post-natal phenotypic
changes, and their biological functions were later discovered during tissue damage or in
other pathological contexts [12–15]. In this review, we summarize reports on matricellular
proteins in adult skin homeostasis, regeneration, and aging. We focus on the interaction
between matricellular proteins and tissue stem cells and how they modify the tissue stem
cell environment.

2. Skin Architecture, ECM, and Cellular Components

The skin is the largest organ of the body and protects us against environmental
insults. It shields the body from mechanical abrasion, pathological infections, dehydration,
and fluctuations in body temperature, while the nerves in the skin also provide us with
sensations of touch [16]. The skin needs to act as a resilient mechanical barrier, yet provide
structural flexibility. The functional unit of skin consists of the stratified epidermis and
dermis (including dermal adipose and skin appendages such as hair follicles, sweat, and
sebaceous glands) as well as the panniculus carnosus (PC) muscle and the subcutaneous
fascia (Figure 1). Notably, the human skin has a thicker epidermis and dermis compared
with mouse skin, and the epidermis exhibits undulations forming the rete ridge and inter-
ridge (also known as dermal papillae) structures that are absent in mouse skin (Figure 1).
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protein constituents and their roles are summarized in Table 1. Created with BioRender.com (accessed
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Table 1. Matricellular proteins in different compartments of the skin.

Skin
Compartment

Matricellular
Protein Function References & Study Model

Epidermis

Fibulin 2 binds to laminin 332 for BM Stability [17] (mouse)

Fibulin 7 BM localization, binds to collagen IV
in vitro [18] (mouse)

SPARC
binds to collagen IV in vitro and

induces expression of collagen IV and
VII

[19] (human skin & 3D culture), [20]
(molecular structure), [21] (summary of

works in mouse)
Hemicentin 1

(Fibulin 6) BM stability [22] (mouse), [23] (mouse & zebrafish)

Thrombospondin 1 inhibits angiogenesis [24] (human skin), [25] (summary of
works in mouse), [26] (mouse xenograft)

CCN3
promotes DDR1 binding to collagen IV
and inhibits melanocytes proliferation

in UV-mediated stress

[27] (human skin reconstructs), [28]
(summary of works in human skin & cell

culture)

Dermis

Tenascin C growth factors sequestration,
regulates cell proliferation

[29] (summary), [30] (mouse NR6 cells),
[31] (human skin), [32] (mouse), [33,34]

(molecular interactions)

Fibronectin * growth factor sequestration,
supports cell attachment and migration [35] (summary), [36] (mouse)

Fibrillin 1 *

supports elastic fiber formation and
homeostasis

[37] (human & bovine tissue)

Fibulin 2
[38] (mouse), [37] (human & bovine

tissue)

[39] (summary in human & mouse),
[40,41] (human genetic mutations), [42]

(mouse)
Fibulin 4
Fibulin 5

Periostin
modulates collagen structure and

stability, regulates keratinocyte
proliferation

[43] (human skin), [44] (mouse skin 3D
culture)

Thrombospondin 1 dermal vascularization balance,
interacts with collagen I

[25] (summary), [26] (mouse xenograft),
[45] (in vivo mouse & human dermal

fibroblasts)
Thrombospondin 2 collagen structural arrangement and

abundance
[46] (mouse)

SPARC [47] (mouse)

Dermal adipose
tissue

SPARC wound healing, modulates
adipogenesis [48,49] (mouse)

CCDC80/URB/DRO1 modulates adipogenesis [50] (mouse tissue and 3T3-L1 cells), [51]
(human & mouse tissue), [52] (mouse)

Hair follicle

Fibulin 1 BM homeostasis [53] (mouse), [54] [summary]
Periostin tendon-related genes, may provide

stability for arrector pili muscle and
hair follicle connection

[54,55] (mouse), [56,57] (rat)Tenascin C
SPARC

Sebaceous glands
Fibronectin* regulates cell differentiation [58] (mouse)
Tenascin C growth factor sequestration [59] (human & mouse eyelids)

Panniculus
carnosus muscle Fibulin 4 Panniculus carnosus muscle

homeostasis [60] (mouse)

* Fibrillin 1 and Fibronectin are not classified as matricellular proteins, but they bear non-structural functions too
via binding to matricellular proteins or regulating growth factors bio-availability.

2.1. Epidermis

The construction of the epidermis begins with the basal epidermal stem cells that
undergo a continuous and balanced process of symmetric self-renewal and asymmetric
division to produce progenitors and differentiated cells. These provide a constant supply
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of keratinocytes committed to terminal differentiation which form the suprabasal layers
and the cornified skin barrier [61]. Through hemidesmosomes and integrin receptors, the
basal epidermal stem cells are anchored to the basement membrane (BM), which connects
the epidermis to the underlying dermis. The BM’s primary constituents are structural
scaffolding matrix proteins such as collagens IV, VII, XVII, laminin 332, and laminin 511 [62].
Fibronectin is also present in the lamina lucida of the BM (the laminin-rich area) [63].
Matricellular proteins, such as fibulin 2 [17,64], fibulin 7 [18], SPARC [19,20], hemicentin 1
(fibulin 6) [22,23], THBS1 [24], and thrombospondin 5 (THBS5 or COMP) [65], are contained
in the epidermal BM via interactions with structural proteins or the integrin receptors.

Functionally, fibulin 2 binds to laminin 332 to stabilize the epidermal BM in neonatal
skin. The absence of fibulin 2 results in separation of the dermal–epidermal junction
(DEJ) and skin blisters [17]. Fibulin 7 is also expressed in the epidermal BM and has been
shown to bind to collagen IV in vitro [18], although its role in the BM arrangement remains
unknown. SPARC was similarly shown to bind to collagen IV in vitro and induce collagen
IV and VII expression in the epidermal BM in reconstructed human three-dimensional
skin culture models [19–21]. Hemicentin 1 co-localizes with laminin α2 at the epidermal
BM [22]. Hmcn1 null mice exhibit unevenly widened lamina lucida and lamina densa
and compromised hemidesmosomes [22], which suggests its function in BM organization.
Hemicentin 1 was further shown to compete with laminins for its binding site to the
nidogen 2 proteoglycan during BM formation and maintenance [23]. In contrast to other
matricellular proteins in the BM, THBS1 is believed to act as an endogenous angiogenesis
inhibitor, forming a barrier between the nonvascular epidermis and the vascularized
dermis [25,26]. Matricellular proteins at the BM/DEJ, such as fibulin 2 and SPARC, are
produced by both keratinocytes and fibroblasts [17,66–69], with hemicentin 1 and COMP
mainly being secreted by fibroblasts [22,70]. In contrast, a subset of basal keratinocytes
expresses Thbs1, albeit at low abundance during homeostasis [71]

In addition to keratinocytes, the epidermis is home to resident immune cells and
melanocytes, which provide pigmentation to the skin and hair [16]. Melanocytes are re-
generated by melanocyte stem cells, which are neural-crest-derived cells. Melanocytes
produce melanin and have long dendrites that can make physical connections with up
to 40 keratinocytes. Melanin is transferred to keratinocytes via caveolae-dependent inter-
nalization (lipid-raft-mediated endocytosis) to protect their nuclei from ultraviolet (UV)
radiation [72]. Melanocyte survival also depends on its attachment to the epidermal BM
via binding between its discoidin domain receptor 1 (DDR1) and collagen IV [27]. During
stress or UV radiation, keratinocytes secrete paracrine factors such as IL-1β that, in turn,
induce melanocytes to secrete the matricellular protein CCN3. CCN3 promotes DDR1
binding to collagen IV and inhibits melanocyte proliferation [27,28].

2.2. Dermis

Underneath the epidermal BM are the papillary and reticular dermal compartments,
which are distinct in their cellularization and ECM components (Figure 1) [73]. The upper
dermis/papillary dermis is densely populated with papillary fibroblasts that reside within
thin and loose networks of fibrillar collagens (I and III) and elastic fibers. They produce
ECMs such as collagen VI [74], fibronectin, and the matricellular proteins tenascin C and
fibulin 2 [66]. These ECM proteins interact with each other to maintain structural integrity
and provide biological cues for the surrounding cells. Fibronectin is a glycoprotein required
for the formation of microfibrils. It acts as a scaffold for the elastic fibers, modulates the
balance of skin rigidity and elasticity, and supports cell attachment and migration along
the ECM matrix, such as collagen fibers [75,76]. Fibronectin also possesses growth-factor-
binding ability [35,36]. Collagen VI fibrils interact with both fibronectin and collagen I [77]
and may promote the tensile strength of the skin [78]. While fibulin 2 binds to fibrillin 1
and regulates the homeostasis of elastic fibers [37,38], further maintenance of the dermal
ECM may come from the binding of tenascin C to fibronectin, collagen, and periostin [29].
Tenascin C has been reported to control cell proliferation by acting as a constitutive ligand
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to activate the cell surface epidermal growth factor receptor [30,31] and by sequestration of
soluble growth factors such as Wnt3a, TGFβ, and VEGF [29,32–34]. Similarly, periostin is
expressed in the papillary dermis, interacts with fibronectin, collagen I, and tenascin C [79]
and is reported to modulate collagen structure and stability [43]. Periostin also impacts
keratinocyte proliferation via fibroblast paracrine secretion of IL-6 [44].

The softer papillary dermis serves as a cushion connecting the stiffer epidermal BM
to the lower reticular dermis, a major part of the dermal compartment. Reticular dermis
contains more sparsely distributed reticular fibroblasts, thick and highly organized collagen
bundles that contribute to skin tensile strength [62,73]. Reticular fibroblasts produce ECMs
such as collagen I, fibrillin 1, fibronectin, emilin 1, and the matricellular proteins THBS1,
tenascin C, and fibulin 2 [66]. Fibrillin 1, elastin, emilin 1, fibronectin, and matricellular
proteins such as fibulin 2, 4, and 5 are expressed in the dermis and crucial for the formation
of elastic fibers, which provide the skin with elastic properties [39–42,80]. Aside from
regulating the balance of dermal vascularization, THBS1 is physically associated with the
collagen I KGHR motif, which is important for cross-linking. The loss of this interaction
results in abnormal collagen I and human dermal fibroblast differentiation into myofi-
broblasts [45]. Similarly, Thbs2 knockout mice have disarranged collagen fibril sizes and
patterns in the dermis, which correlate with reduced skin tensile strength [46]. Abnormal
collagen fibrils have also been observed in SPARC null mice, which exhibit decreases in the
amount of dermal collagen I, the fibril diameter, and the tensile strength [47].

Fibroblasts in the embryonic/neonatal mouse skin are proliferative. However, in the
mature skin, fibroblasts cease to divide and produce more ECM in the dermis. This ECM
(collagen) enrichment in the adult skin acts as negative feedback to further inhibit fibrob-
last proliferation, although this quiescent state is reversible and fibroblasts are activated
again upon skin injury [81]. Resident dermal immune cells are also activated to produce
various cytokines that modulate fibroblast differentiation and proliferation [81,82]. Dermal
fibroblasts originate from a common multipotent mesenchymal cell progenitor (expressing
Pdgfrα, Dlk1, and Lrig1) that give rise to papillary and reticular fibroblast progenitors [82].

2.3. Dermal Adipose Tissue

Reticular fibroblast progenitors can give rise to adipocyte precursors and mature,
lipid-filled adipocytes [82,83], which constitute the dermal fat layer. Dermal adipose
functions as energy storage, thermal insulation, and mechanical support. Furthermore,
it harbors innate immune antimicrobial functions [84,85]. Mature adipocytes express
the collagen IV BM protein, which is deposited pericellularly and is believed to act as a
strong scaffold to protect cells from mechanical stress in this loose connective tissue [86,87].
Collagen IV expression around these adipocytes is increased in obese compared with
lean human subcutaneous adipose tissue [88], possibly to counterbalance the physical
changes associated with an increase in adipocyte cell size. Other ECMs associated with
skin adipose are collagen I, III, V [89], and VI [90]. Proteoglycans such as versican, biglycan,
and decorin are also expressed in adipose tissue in order to bind to collagens, support
their scaffolding function, and counteract compressive forces. However, in cases of obesity,
these proteoglycans are present in excessive amounts, resulting in ECM defects and the
promotion of tissue inflammation [91–93]. Adipogenesis is influenced by the matricellular
protein SPARC, as its loss of expression leads to increased dermal adipose tissue [48]
and accelerated wound healing [49]. Similarly, the secreted protein coiled-coil domain
containing 80 (CCDC80/URB/DRO1) is highly expressed by adipocytes to modulate
adipogenesis, and its genetic deletion in mice promotes body fat deposition, including
subcutaneous fat [50–52].

2.4. The Hair Follicle

The hair follicle structure spans from the hypodermis (dermal adipose) up to the epi-
dermis. Its size changes according to the hair cycle, which consists of the telogen (resting),
anagen (growing), and catagen (regression) phases [94]. Hair follicles are connected to
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the sebaceous glands, arrector pili muscles, and dermal papilla at the base of the follicle
(Figures 1 and 2). During homeostasis, the hair follicle is mainly regenerated from hair
follicle stem cells in the bulge region, with coordination from signals originating from
mesenchymal cells in the dermal papilla, which control the exit from telogen and the
duration of anagen [95–100] (Figure 2). The dermal papilla cells are, in turn, replenished
by a subset of dermal sheath cells, which have self-renewal ability, also referred to as hair
follicle dermal stem cells [96]. Hair follicle BM proteins are expressed by both epithelial
cells and fibroblasts, with distinct contributions [101]. They consist of core structural BM
proteins such as laminins, collagens IV, VI, VII, XVII, and XVIII, netrins 1 and 4, fibronectin,
nephronectin, and matricellular proteins such as periostin, tenascin C, fibulin 1, SPARC,
SMOC1, spondin-1, and R-spondin 3 [75,101,102]. The function of fibulin 1 is likely re-
lated to the regulation of BM homeostasis through its binding to laminin and collagen
IV [53,103]. Nephronectin is produced by hair follicle stem cells to form an adhesion point
for the arrector pili muscle cells expressing α8β1 integrins. Arrector pili muscles and
the sympathetic nervous system cooperate with hair follicles to achieve piloerections to
keep warm air closer to the skin in response to cold temperatures or emotions [54]. It has
been proposed that hair follicle stem cells expressing periostin, tenascin C, and SPARC
resemble tendon-related gene functions, i.e., they are expressed in the tendonous part
of muscle tissue, which strengthens the bone–muscle connection and allows for skeletal
movement [55–57]. Similarly, their deposition in the hair bulge matrix may stabilize the
connection between arrector pili muscles and hair follicles during piloerections [54].
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2.5. The Sebaceous Gland

Sebaceous glands are located in the upper and permanent area of the hair follicle
(junctional zone) in hair-associated skin. However, they may also be present in the skin
independently of hair follicles such as in the meibomian glands of the eyelid [104,105].
The peripheral (basal) epidermal cells of these glands are proliferative and contain se-
baceous gland stem cells. The differentiated sebocytes reside in the inner layer of the
gland. Through cell death and lysis, lipids/sebum are released onto the skin surface to
promote barrier functions, water repulsion, and antimicrobial- and antioxidant activities
(vitamin E) [105–107]. To our knowledge, documentation regarding the ECM of the seba-
ceous gland is limited. A recent report indicated expression and interaction of fibronectin
with the sebaceous gland basal cells to regulate its differentiation [58]. Another report
discussed the ECM in the meibomian glands such as collagen IV, laminin α2, and β1, which
may serve as BM scaffolding proteins, and the matricellular protein tenascin C, which may
modulate growth factor bioavailability around sebaceous gland stem cells [59].

Table 2. Matricellular proteins for maintenance of hair follicles and sebaceous gland stem cells.

Process Matricellular
Protein Function References & Study

Model

Hair follicle stem
cells homeostasis

Tenascin C promotes WNT signaling and maintains hair
follicle stem cells [32] (mouse)

Periostin pro-cell proliferation in the hair follicles
post-wounding [108] (mouse)

CCN2 maintenance of hair follicle stem cell quiescence [109] (mouse)

R-spondin 2 activates hair follicle stem cells, cell proliferation
of dermal papilla and dermal sheath

[110] (human hair follicles
& mouse), [111] (human
scalp & mouse skin, [96]

(mouse)

R-spondin 3 cell proliferation of dermal papilla and dermal
sheath

[96] (mouse), [111] (human
scalp & mouse skin)

Mindin (Spon2) gene expression is decreased in aging hair follicle
stem cells, role unknown in the hair follicle [112] (mouse)

Thrombospondin 1
gene expression is increased in aging hair follicle

stem cells, hair follicle and vasculature
regression in catagen

[112] (mouse skin), [113]
(mouse)

Sebaceous gland
stem cells Fibronectin * maintenance of basal sebocytes [58] (mouse)

* Fibronectin is not classified as matricellular proteins but they bear non-structural functions too via binding to
matricellular proteins or regulating growth factors’ bio-availability.

2.6. The Panniculus Carnosus Muscle

The PC muscle is a layer of skeletal muscle located directly under the dermal adipose
tissue in some mammals to facilitate skin movement independently of deeper muscle
mass. The PC muscle has been suggested to mediate skin twitching during irritation,
facial skin movement for social expressions, shivering thermogenesis, and skin contraction
to promote wound closure [114]. In humans, PC muscle remnants exist only in certain
anatomical regions, such as the craniofacial muscle, the platysma muscle (ventral region
of the neck), and the palmaris brevis in the hand [114]. The PC muscle is reported to be
highly regenerative [115] and vascularized [116]. The fibulin 4 matricellular protein may
regulate PC muscle homeostasis, as the Fbln4 E57K homozygous mutation (the equivalent
of the human mutation causing cutis laxa) in mice exhibits a thinner dermis and PC muscle
layer, possibly due to elastic fiber defects and abnormal collagen fibrils [60]. However, it is
unknown whether this mutation compromises PC muscle function.
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2.7. Subcutaneous Fascia

The subcutaneous fascia ECM is enriched in an aqueous matrix containing gly-
cosaminoglycans such as hyaluronan to facilitate smooth gliding between the skin and
muscle. Fibroblasts and fasciacytes contribute to ECM production in the fascia [117].
Fibroblasts secrete fibrous matrix components such as fibrillin, elastin, fibronectin, and
collagens I and III, whereas hyaluronan is produced by fasciacytes [118]. Fasciacytes are
round, fibroblast-like cells expressing vimentin [119]. Little is known about the role of
matricellular proteins in subcutaneous fascia maintenance, although the loss of fibulin
3 compromises elastic fibers in the visceral fascia [120,121]. Interestingly, lineage tracing
experiments have demonstrated that, during wound healing, fascia fibroblasts are mainly
responsible for generating scar tissue and not dermal fibroblasts [122,123].

3. Matricellular Proteins in Stem Cell Regulation during Homeostasis, Injury Repair,
and Chronological Skin Aging

During physiological wear and tear or tissue injury, adult skin stem cells maintain
tissue functions by replenishing damaged cells. Activated stem cells proliferate to self-
renew and generate committed progenitor cells, forming terminally differentiated cells
with specified functions. Stem cell fate regulation is influenced by changes in its microenvi-
ronment [112,124,125]. Through mechanotransduction pathways involving crucial players
such as integrin receptors binding to the ECM, Piezo1 calcium channel, and YAP/TAZ
signaling, both stem cells and stromal cells sense changes in the biochemical and mechani-
cal properties of their microenvironment and respond accordingly [75,124,126–128]. The
ECM/matricellular proteins are components of the microenvironment and changes in their
quality and quantity with aging compromise skin functions.

In aged skin, the epidermis is thinner and less resistant to shear stress, and the
rete ridge structures are compromised [129]. Moreover, hair follicles are miniaturized or
depleted [130], while dermal fibroblasts lose their ability to produce collagen, exhibit altered
identity [131], and become more adipogenic [132]. Immunopathological changes also occur
in the dermis, and overall wound healing ability is impaired [129]. These declining skin
features are partly attributed to impaired stem cell functions due to stem cell depletion
or changes in their fate/behaviors. Furthermore, as skin ages, proliferating stem cells are
prone to accumulate DNA damage due to intrinsic replication stress and exposure to UV
irradiation over time. ECM stiffness may determine cells’ response of repairing double-
strand DNA breaks, which can lead to genetic instability. Low ECM stiffness weakens the
double-strand DNA break repair mechanism and renders cells more sensitive to genotoxic
stress [133]. In this section, we will discuss the reported roles of matricellular proteins
in maintaining stem cell homeostasis, changes during injury-induced regeneration, and
aged skin.

3.1. Epidermal Stem Cells

Epidermal stem cells (more specifically interfollicular epidermal stem cells) that form
stratified skin epithelium comprise heterogeneous populations in mouse [134] and human
skin [135,136] (Figure 3). They differ in their proliferative capacity (hence the names: slow-
and fast-cycling stem cell populations) and in their molecular characteristics [18,134,136,137].
In the mouse tail skin model, these two populations differentiate to form distinct territories,
with fast-cycling stem cells replenishing the scale region, whereas the slow-cycling stem
cells maintain the interscale region [134]. Interestingly, the gene expressions of the slow-
and fast-cycling stem cells in the mouse tail skin also show territorial expression patterns
that reflect the two basal epidermal stem cell regions of human skin, namely the inter-ridge
(slow-cycling region) and rete ridge (fast-cycling region) [135]. An early study using mon-
key palm skin demonstrated that tritiated thymidine-labelled cells are located at the tips
of the rete ridges [136], where basal cells express fast-cycling stem cell marker genes [135].
This suggests that the epidermal stem cell heterogeneity model is conserved [138,139].
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Several signaling pathways organize the territorial segregation of the slow- and fast-
cycling stem cells (in the interscale and the scale of tail skin), including Wnt, Lrig1, and
Edaradd [140,141]. ECM, such as collagen XVII, a hemidesmosome component expressed
by epidermal stem cells, is required for proper scale patterning [142], possibly through
positive regulation of Wnt signaling [143,144]. The distinctive characteristics between slow-
and fast-cycling stem cells raise intriguing questions about their biological relevance. It
has been suggested that such heterogeneity confers robustness to skin homeostasis during
environmental challenges such as UV exposure [135]. Interestingly, these two stem cell
populations become interchangeable during wound repair, although they return to their
initial territories once the wound is healed [134]. It is unknown whether the induction of
matricellular protein expression during injury repair modulates the behavior of the two
stem cell types.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 9 of 26 
 

 

 
Figure 3. Epidermal stem cell heterogeneity in human and mouse skin. Stem cells are illustrated in 
dark or light green (dark green for slow-cycling stem cells and light green for fast-cycling stem cells) 
with some of their respective gene expression markers in boxed regions [134,135]. Fibulin 7 matri-
cellular protein is localized in the basement membrane (BM) to support epidermal stem cell hetero-
geneity during skin aging. Other matricellular proteins regulating the BM, epidermal stem cells ho-
meostasis, and the re-epithelialization process in injury-induced regeneration are summarized in 
Tables 1 and 3. Created with BioRender.com (accessed on 22 July 2023). 

Several signaling pathways organize the territorial segregation of the slow- and fast-
cycling stem cells (in the interscale and the scale of tail skin), including Wnt, Lrig1, and 
Edaradd [140,141]. ECM, such as collagen XVII, a hemidesmosome component expressed 
by epidermal stem cells, is required for proper scale patterning [142], possibly through 
positive regulation of Wnt signaling [143,144]. The distinctive characteristics between 
slow- and fast-cycling stem cells raise intriguing questions about their biological rele-
vance. It has been suggested that such heterogeneity confers robustness to skin homeosta-
sis during environmental challenges such as UV exposure [135]. Interestingly, these two 
stem cell populations become interchangeable during wound repair, although they return 
to their initial territories once the wound is healed [134]. It is unknown whether the in-
duction of matricellular protein expression during injury repair modulates the behavior 
of the two stem cell types. 

3.1.1. Keratinocyte Regulation during Injury-Induced Skin Regeneration 
Skin wound healing is an intricate process involving the interactions of many ECMs, 

growth factors, and various cell types [3,145,146]. It begins with the injury site filling with 
blood clotting factors and chemokines to attract leukocytes, including neutrophils, to clean 
the wounded area. Macrophages then enter the area to phagocytize neutrophils and se-
crete growth factors to stimulate the activation of keratinocytes and fibroblasts, resulting 
in ECM and BM production, re-epithelialization, and granulation tissue formation accom-
panied by neo-vascularization and tissue remodeling [146]. Here, we focus on the effect 
of matricellular proteins during the re-epithelialization process (Table 3), where keratino-
cytes and multiple skin stem cells proliferate and migrate to close the wounded area. 

  

Figure 3. Epidermal stem cell heterogeneity in human and mouse skin. Stem cells are illustrated
in dark or light green (dark green for slow-cycling stem cells and light green for fast-cycling stem
cells) with some of their respective gene expression markers in boxed regions [134,135]. Fibulin 7
matricellular protein is localized in the basement membrane (BM) to support epidermal stem cell
heterogeneity during skin aging. Other matricellular proteins regulating the BM, epidermal stem
cells homeostasis, and the re-epithelialization process in injury-induced regeneration are summarized
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3.1.1. Keratinocyte Regulation during Injury-Induced Skin Regeneration

Skin wound healing is an intricate process involving the interactions of many ECMs,
growth factors, and various cell types [3,145,146]. It begins with the injury site filling with
blood clotting factors and chemokines to attract leukocytes, including neutrophils, to clean
the wounded area. Macrophages then enter the area to phagocytize neutrophils and secrete
growth factors to stimulate the activation of keratinocytes and fibroblasts, resulting in ECM
and BM production, re-epithelialization, and granulation tissue formation accompanied
by neo-vascularization and tissue remodeling [146]. Here, we focus on the effect of matri-
cellular proteins during the re-epithelialization process (Table 3), where keratinocytes and
multiple skin stem cells proliferate and migrate to close the wounded area.

BioRender.com
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Table 3. Matricellular proteins regulating wound healing (re-epithelialization), epidermal stem cells,
and aging skin.

Process Matricellular
Protein Function References & Study

Model

Wound
healing

(Re-epithelialization)

CCN1

upregulated during skin repair, induces myofibroblast
senescence to minimize fibrosis, enhances neutrophil

efferocytosis by macrophages for resolution of
inflammation

[147,148] (summary),
[149,150] (mouse)

promotes keratinocytes proliferation and induces EMT
during skin expansion

[151] (human primary
keratinocytes &

in vivo mouse), [152]
(human & rat skin)

Thrombospondin 1

spatiotemporal expression regulates wound healing
processes [153,154] (mouse)

promotes keratinocyte migration and proliferation

[71] (human
keratinocytes culture

& in vivo mouse),
[155] (mouse)

Thrombospondin 2 influences vascularization but not re-epithelialization [153,156] (mouse)

Thrombospondin 4 accelerates wound healing through increased
keratinocytes proliferation and fibroblasts migration

[157] (human &
mouse skin)

Thrombospondin 5 suppresses keratinocyte activation [65] (human skin)

Periostin regulates re-epithelialization and wound contraction,
downregulated in aging skin

[108,158,159] (mouse),
[43] (human skin)

R-spondin 1 regulates skin differentiation and malignancy, promotes
wound healing and re-epithelialization

[160] (human &
mouse), [161] (rat)

TGFBI BM component, promotes epidermal stem cell
proliferation and re-epithelialization

[162] (human &
mouse)

Aging

Fibulin 7
decreased in aged BM, maintains epidermal stem cell
heterogeneity, binds to periostin and tenascin C and

improves re-epithelialization in aging skin wound healing
[18] (mouse)

Thrombospondin 1
upregulated in epidermal stem cells and dermal
fibroblasts during aging and may contribute to

aging-associated vasculature changes

[124,163] (mouse),
[164] (human dermal

fibroblasts)

Mindin (Spon2)
Mindin promotes epidermal stem/progenitor cell

expansion downstream of Snail, inhibition of Mindin and
fibulin 5 rescues Snail-induced skin fibrosis

[165–167] (mouse)
Fibulin 5 [168] (mouse)

CCN1 promotes fibroblast senescence in skin dermis [149,169] (mouse)

CCN2 decreased in aging dermis is associated with collagen loss

[170] (human skin &
dermal fibroblasts),

[171] (human dermal
fibroblasts)

The CCN1 matricellular protein is upregulated during skin repair [147] and was ini-
tially found to promote wound healing by inducing myofibroblast senescence to minimize
fibrosis [149] and by enhancing neutrophil efferocytosis by macrophages to stimulate in-
flammatory resolution [150]. Later, CCN1 was found to support re-epithelialization by
promoting keratinocyte proliferation and migration [151]. Intriguingly, CCN1 has also been
shown to increase in the epidermis during skin expansion in humans and rats, inducing
proliferation and the epithelial-to-mesenchymal transition (EMT) [152,172], a reversible and
temporary process whereby epithelial cells gain mesenchymal properties that contribute to
increasing cell migration and re-epithelialization.

Thbs1 knockout mice exhibit delayed wound healing characterized by persistent in-
flammation, and reduced macrophage infiltration and TGFβ1 expression [153]. However,
constitutive overexpression of Thbs1 under the keratin 14 promoter has also resulted in
delayed re-epithelialization and overall wound healing due to defective granulation tissue
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and the inhibition of wound angiogenesis [26,154]. These observations underscore the
importance of spatiotemporal regulation of Thbs1 expression in wound healing. More-
over, a recent report using single-cell RNA sequencing indicated that basal keratinocytes
at the migrating front highly express Thbs1 [71,155]. These findings were supported by
immunostainings and in vitro studies describing THBS1′s role in promoting keratinocyte
migration and proliferation [71]. In contrast, Thbs2 deletion results in accelerated wound
healing in mice without changes in the re-epithelialization rate due to higher vascular-
ization, although the newly formed epidermis in Thbs2 null mice is thicker and forms an
unusual rete ridge structure similar to the human skin architecture [153,156]. THBS4 is also
upregulated in inflamed human psoriatic skin, post-burn injuries, and mouse dorsal skin
wound assays. The administration of recombinant THBS4 to wounded skin in mice has led
to faster wound healing, possibly due to increased keratinocyte proliferation and fibroblast
migration [157]. Furthermore, COMP/THBS5 co-localizes with laminin α1 and integrin
β1 at the DEJ, where it was found to suppress keratinocyte activation (proliferation and
migration) in an ex vivo wound healing model [65].

The fasciclin family of matricellular proteins (periostin and TGFβ-Induced
Protein (TGFBI)) is known to promote wound healing partly due to increased
re-epithelialization [3,44,162]. Periostin-deficient mice exhibited delayed wound heal-
ing with defective re-epithelialization [108] and myofibroblast activation that facilitates
wound contraction [158,159]. Similar to the over-expression of Thbs1 [154], constitutive
overexpression of periostin dampens the wound repair process by inhibiting neutrophil
and macrophage infiltration [173]. The other member of the family, TGFBI, was identified
as a BM component in the epidermis. It enhances wound healing by promoting epidermal
stem cell proliferation and re-epithelialization [162].

In wound healing, epidermal stem cells are empowered with plasticity that allows
them to temporarily convert to other lineages (a term known as lineage infidelity) during
re-epithelialization [174–177]. For example, post-injury hair follicle stem cells are mobilized
to take on the role of epidermal stem cells and regenerate the epidermis [174,175]. There is
still much that is unknown concerning how matricellular proteins modulate epidermal stem
cells as part of the wound healing process. Among them, the R-Spondin family is known to
activate Wnt signaling, which is crucial for adult epidermal stem cell maintenance [178,179].
R-Spondin 1 has been shown to regulate skin differentiation, have a predisposition for
squamous cell carcinoma [160], and its topical application in rat skin promotes wound
healing and re-epithelialization [161]. Interestingly, hair follicle-derived epidermal stem
cells are more responsive to R-Spondin 1 and WNT7a stimulation (a characteristic of hair
follicle stem cell activation) compared with native epidermal stem cells, suggesting they
retain the memory from their original niches [175]. Whether matricellular proteins directly
influence epidermal stem cell plasticity during injury remains unanswered and an open
subject to be explored.

3.1.2. Epidermal Stem Cell Aging

As we age, our skin becomes thinner and more fragile, and its wound healing ability
decreases. This is partly due to the impaired epidermal regeneration process in aged
skin, which suffers from imbalanced BM ECM and growth factor signaling, an increased
inflammatory microenvironment, the loss of epidermal stem cell heterogeneity, and dimin-
ished stem cell potential [18,125,180–185]. During aging, epidermal stem cells proliferate
less [186,187], Wnt signaling components are downregulated [112,188,189], and fast-cycling
epidermal stem cells are gradually depleted, which leads to reduced tissue fitness and
resilience. However, slow-cycling epidermal stem cells are maintained into old age [18].
These slow-cycling stem cells are enriched for collagen XVII expression (Figure 3) [135],
enabling their firm attachment to the BM and a higher self-renewal potential. In contrast,
low collagen XVII-expressing cells are outcompeted, delaminated, and differentiated in
aged skin [181].
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What changes occur in the BM during aging that promote the loss of epidermal stem
cell heterogeneity? In young human skin, wavy, undulating structures increase the DEJ
area and strengthen the connection between the epidermis and the underlying dermis to
increase skin mechanical resistance [190]. In aged human skin, however, the epidermis
appears flatter than in young skin [182,191]. Human epidermal stem cells residing on the
different areas of the undulating BM structures are also characterized by unique mechanical
properties that may contribute to their heterogeneity; cells in the tip area are softer (lower
Young’s modulus) and express higher β1 integrin stem cell marker levels compared with
cells at the base area [192]. Flattening of the DEJ in aging skin may affect epidermal stem cell
properties and shift the population balance towards stiffer stem cell populations, similar to
stem cells grown on a flat surface [192].

Although epidermal BM becomes stiffer and thicker during aging [125,193,194], the
expression of multiple constituents of the BM structural ECM is decreased, including
collagen IV, VII, and XVII and laminin-332 [181,194–197]. Aberrant matricellular protein
expression results in matrix re-arrangement, collagen cross-linking, and dysregulated
enzymatic activity, thus promoting tissue stiffness in tumorigenesis [4]. However, it is
unclear whether aging also induces alterations to matricellular proteins at the BM to
promote stiffness and epidermal stem cell deregulation. Here, we discuss the studies that
address some aspects of this question (Table 3).

The abundance of the matricellular protein fibulin 7 (encoded by FBLN7) at the epi-
dermal BM is decreased in aged skin, with a concomitant loss of epidermal stem cell
heterogeneity [18]. Fibulin 7 belongs to the short fibulin family of proteins but has no
elastogenic function like other family members, such as fibulin 4 and 5 [198]. Instead,
fibulin 7 is essential in maintaining long-term, fast-cycling epidermal stem cell potential
during chronological aging. Fibulin 7 loss of function in mice leads to early depletion of
fast-cycling stem cells, as shown by lineage tracing experiments after a 1-year chase [18].
Although the molecular mechanism of fibulin 7 regulation of fast-cycling stem cells is not
well-defined, fibulin 7 deletion results in higher fast-cycling stem cell proliferation at a
young age, which may have contributed to earlier fast-cycling stem cell exhaustion in the
aging Fbln7 null mice compared with wild type mice. Moreover, fibulin 7 loss of function is
correlated with augmented stem cell differentiation and lower collagen XVII expression, a
stem cell fitness marker [18,181].

Fibulin 7 can also form a direct interaction with collagen IV, which may support its
role in the BM to influence stem cell fate [18,199,200]. Other fibulin 7-binding proteins
include fibronectin [18,201], which regulates cell adhesion at the BM to keep basal ker-
atinocytes in an undifferentiated state [202–204], as well as periostin and tenascin C, which
are both matricellular proteins highly expressed during skin inflammation and wound heal-
ing [29,79]. Further characterization of fibulin 7 function in epidermal stem cells suggests
that it suppresses aging-associated inflammatory responses and lineage misregulation.
Finally, fibulin 7 has demonstrated an ability to ameliorate the re-epithelialization process
during full-thickness wound healing in 1-year-old, middle-aged mice, likely due to the
abovementioned roles and interactions [18].

Aging-induced epidermal stem cell differentiation and hemidesmosome instability
are also linked to age-related dermal stiffening and vasculature atrophy, as the induction
of dermal vasculature reverses this phenotype [124]. In this study, the authors focused on
an increased calcium influx in the basal keratinocytes mediated by the mechanosensitive
Piezo1 ion chanel and the secretion of the immune-responsive protein pentraxin 3 by aged
dermal fibroblasts, which plays an anti-angiogenic role in this context. Likewise, aged
epidermal stem cells and dermal fibroblasts upregulate the Thbs1 matricellular protein,
inhibiting angiogenesis [124]. This is supported by earlier studies that also found THBS1
upregulation in secreted proteins from human dermal fibroblasts isolated from intrinsically
aged skin compared with young donors [164] and found that cutaneous blood flow is
recovered and induced in aged Thbs1 or CD47 (a receptor for THBS1) null mouse skin [163].
It is still unknown whether the THBS1-CD47 axis directly regulates epidermal stem cells.
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However, in lung endothelial cells, THBS1-CD47 signaling inhibits self-renewal ability in
cultures [205], and BMP4-dependent THBS1 expression in lung endothelial cells triggers
differentiation of bronchioalveolar stem cells, which are activated during lung injury
repair [206,207]. Increased THBS1-CD47 signaling has also been observed in aging human
lung vasculature, promoting endothelial cell senescence [207,208].

Aging skin is associated with an increased risk of tumorigenic growth. Snail is a
transcription factor known to be a driver of the EMT, a process involved in the main-
tenance of cancer stem cells and metastasis [209]. When Snail is overexpressed in the
mouse epidermis, epidermal stem/progenitor cell populations expand, and stemness is
promoted [165,166,210]. In turn, Snail induces the transcription of Mindin (SPON2) ma-
tricellular protein, which binds to integrin αMβ2 (CD11b) in an autocrine manner and
activates c-Src and STAT3. Loss of function in Mindin was further shown to rescue the
effect of Snail overexpression on epidermal expansion and in squamous cell carcinoma
xenograft models [165]. In addition, a higher SNAI1 expression was found in the epidermis
of patients with systemic sclerosis, linking its function in skin fibrosis to the induction of
inflammation and fibroblast-mediated collagen secretion [167,168]. Mindin and fibulin 5
inhibition can rescue Snail-induced skin fibrosis, making them potential therapeutic targets.
As fibrosis and ECM stiffness are linked to tissue aging, it would be interesting to address
the role of these proteins in the context of aging skin.

3.2. Hair Follicle Stem Cells

Hair follicle stem cells reside in the bulge region, which is enriched for matricellular
proteins such as tenascin C, periostin, and Mindin/Spon2 [101] (Table 3). Tenascin C
can interact with the Wnt3a ligand, thus facilitating Wnt signaling to maintain the hair
follicle stem cell population and suppress aberrant differentiation [32]. Periostin positively
regulates the proliferation of cells in the hair follicles after skin wounding and in cultured
keratinocytes via activation of NFκB. The loss of periostin expression is further associated
with decreased fibronectin expression around the hair follicle BM [108].

Matricellular proteins are also expressed in the dermal papilla to regulate hair follicle
growth. For example, CCN2 maintains hair follicle stem cell quiescence, as its genetic
deletion from the dermal papilla niche results in an increased number of hair follicles
with a shorter telogen phase [109]. In contrast, the Wnt agonist R-Spondin 2, through
intradermal administration, activates hair follicle stem cells and sustains the anagen phase,
promoting hair growth [110]. Dermal papilla cells also express R-spondin 2 and R-spondin
3 to promote cell proliferation of hair follicle dermal stem cells that replenish the dermal
sheath and hair follicle progenitors [111]. However, the inhibition of TGFβ signaling
in skin fibroblasts induces dermal papilla niche reorganization, resulting in inefficient
hair production and a redistribution of progenitor cells, although their proliferation and
differentiation are generally preserved [211].

In aged hair follicle stem cells, Mindin/Spon2 gene expression is decreased while Thbs1
is increased [112]. The role of Mindin in hair follicle stem cells has not been reported,
although it may be related to stemness, as in the case of epidermal stem cells [165]. Hair
follicle stem cell activation is associated with the skin vasculature [212,213]. THBS1 is an
angiogenesis inhibitor and has been shown to induce hair follicle shrinkage and vascular
regression during the catagen phase of the hair cycle [113]. Thus, an increase in THBS1
expression may be linked to reduced hair density associated with aging. In line with
the involution of vasculature in aged skin and dermal ECM changes [124], YAP/TAZ
mechanosignaling is suppressed in aged dermal fibroblasts [127]. Conditional knockout
of YAP in these fibroblasts mimics the effect of aging skin (i.e., a reduced number of hair
follicles). In contrast, the expression of constitutively active YAP rescues skin from the
aging phenotype (a restored number of hair follicles) [127]. Fibroblast deregulation could
be further attributed to an increase in matricellular protein CCN1 in the aging dermis [169].
CCN1 augments fibroblast senescence, suppressing fibrotic genes such as Col1a1 [149], one
of the hallmarks of aging skin [214].
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3.3. Sebaceous Gland Stem Cells

Sebaceous gland stem cells are originated from hair follicle stem cells expressing
Sox9 or Lrig1 [215,216]. Sebaceous gland stem cells and progenitor cells express the
embigin cell surface receptor, which binds to fibronectin at the N-terminus domain for cell
adhesion. Embigin expression is regulated by Wnt signaling, and its deletion drives basal
cell detachment and differentiation, resulting in increased sebaceous glands areas and an
increased number of sebocytes. Intriguingly, tissue stiffness is increased in the ECM of the
basal progenitor cells upon loss of embigin [58]. Tissue stiffness has been reported in skin
aging, such as increased BM stiffness in the hair follicle stem cells [125], and sebaceous
glands tend to become larger during aging despite reduced sebum production [217]. It
has been suggested that the increased number of differentiated sebocytes due to embigin
deletion is potentiated with increased age [58], indicating that an aging-dependent factor
may be further modulating the embigin–fibronectin interaction.

Several signaling pathways involving Wnt, TGFβ, Shh, and Notch have been reported
for homeostasis regulation and aging of the sebaceous glands [218]. Matricellular pro-
teins such as the CCN family can bind to TGFβ, Notch, and the Wnt co-receptor LRP6,
thus affecting signaling outcomes [148,219–221], although their roles in sebaceous glands
aging have not been reported. In line with this, CCN protein expressions are changed
during aging, with CCN1 upregulated and CCN2/CTGF (connective tissue growth factor)
downregulated in the dermis of aged human skin [169–171].

3.4. Cross-Communications and Lineage-Fate Plasticity Potentially Involving Matricellular
Proteins in the Skin Network

Cross-communications between stem cells and the surrounding cells in the niche, such
as nerve cells, muscle cells, fibroblasts, immune cells, lymphatics, or vasculature, sustain
skin homeostasis. The importance of matricellular proteins in maintaining such cellular
cross-talks is largely unknown. For example, interactions between the hair follicle stem
cells with the sympathetic nervous system secreting the neurotransmitter noradrenaline
control stem cell activity. This interaction requires the arrector pili muscle, which harbors
the sympathetic innervations [222]. The attachment of the arrector pili muscle to the bulge
region has been attributed to the nephronectin ECM; however, matricellular proteins such
as periostin, fibulin 1, and tenascin C are also present in this region, possibly stabilizing
the structure [54]. Likewise, the melanocyte stem cells in the hair follicle are modulated by
the sympathetic innervation. Stress causes the rush of noradrenaline and hyperprolifera-
tion of melanocyte stem cells, followed by their differentiation, eventually depleting the
melanocyte stem cell pool leading to greying hair [223]. The lymphatic vasculature also
functions as a hair follicle stem cell niche [224,225]. The secretome of hair follicle stem cells
alters with the hair cycle; in the resting phase, they secrete angiopoietin-like protein 7 to
promote lymphatic fitness and stem cell quiescence, whereas during the growing phase,
netrin 4 ECM and angiopoietin-like protein 4 are increased to induce lymphatic capillary re-
modeling and stem cell activation [225]. Similarly, the hair cycle and hair follicle stem cells
are influenced by their neighboring blood vasculature [212]. Aging hair follicle stem cells
upregulate Thbs1 expression [112], which is anti-angiogenic and may change the stem cell–
vasculature interactions in aging skin. Moreover, there are defective interactions between
epidermal cells and dendritic T-cells in aging skin wound healing, and overall cellular
composition, transcriptomics, and cell–cell communication are compromised [180,226].

Much remains unknown regarding whether and how matricellular proteins
are involved in skin stem cell regulation during wound healing and inflammation.
Do matricellular proteins influence skin cell plasticity during injury-induced regeneration?
Inflammation-induced skin stem cells and skin cell plasticity have been well
reported [73,81,174–177,227–232]. Slow- and fast-cycling epidermal stem cells leave their
unique territories and become interchangeable in wound repair [134]. Hair follicle stem
cells contribute as epidermal stem cells in post-wounding epidermal regeneration. On the
contrary, epidermal stem cells are described as participating in large wound-induced hair
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follicle neogenesis [174,176,177]. Interestingly, differentiated sebocytes expressing Gata6
undergo de-differentiation and become epidermal stem cells during injury repair [229], and
a high degree of fibroblast heterogeneity has been observed in wound healing [83,233,234].
While the cause of such plasticity or heterogeneity is linked to the upregulation of stress-
associated transcription factors [174,175,227], the role of the ECM or microenvironment
is unclear. In aging skin, DNA damage leads to the proteolysis of collagen XVII in the
BM of hair follicle stem cells, resulting in an epidermal fate and hair loss [130], although
aging-induced lineage conversion and the role of the stem cell microenvironment is still
an ongoing discussion [112]. Our findings of the loss of fibulin 7 in the aging epidermal
BM and its association with the loss of fast-cycling epidermal stem cells further suggest
that microenvironmental alterations affect stem cell fate [18]. Matricellular proteins can
influence cell behaviors [3,146]; hence, future studies that address their roles in skin stem
cell regulation and cell–cell interactions would be of great interest.

4. Concluding Remarks

While matricellular proteins are abundantly expressed during skin development or
in an inflammatory context during injury repair or disease, a basal level of expression is
maintained in various compartments of the skin, which is necessary to support overall skin
functioning. This occurs through matricellular proteins interacting with structural ECMs,
such as collagens and elastic fibers, and through regulation of growth factor bioavailability
and cell–cell or cell–matrix adhesion, thereby orchestrating cellular responses and tissue
functions (Tables 1–3). The importance of matricellular protein’s spatiotemporal expression
has been demonstrated in studies where constitutive null and overexpression mice have
yielded identical phenotypes, adding difficulties to studying the function of these proteins
in vivo. Inducible tissue-specific over-expression or loss-of-function studies would facilitate
efforts to further elucidate their roles in the skin, especially in stem cell regulation. Of
note, even though human and mouse skin share some similarities, they do have notable
differences [235] that could limit our interpretation from studies using rodent skin.

Given the known significance of the presence of matricellular proteins during tis-
sue development or inflammation, where various stem cells are activated, it would be
unsurprising if matricellular proteins modulate stem cell niche and function during organo-
genesis, as well as adult stem cells and their response to injury, as shown by studies using
fibulin 7 and TGFBI (Table 3) [18,162]. Nevertheless, few of the matricellular proteins that
have been reported to regulate the re-epithelialization process (Table 3) link their functions
to epidermal stem cells. Finally, it remains to be explored whether matricellular protein
dynamics in the stem cells’ niche affect epigenetic changes involved in tissue stem cell
inflammatory memory and stem cell aging [125,175,228]. This holds promise for potential
future applications in regenerative medicine.
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