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Abstract: New 1,2,3-triazolo(thieno)stilbenes were synthesized as mixtures of isomers and effi-
ciently photochemically transformed to their corresponding substituted thienobenzo/naphtho-
triazoles in high isolated yields. The resulting photoproducts were studied as acetyl- (AChE)
and butyrylcholinesterase (BChE) inhibitors without or with interconnected inhibition potential
of TNF-α cytokine production. The most promising anti-inflammatory activity was shown again by
naphtho-triazoles, with a derivative featuring 4-pentenyl substituents exhibiting notable potential as a
cholinesterase inhibitor. To identify interactions between ligands and the active site of cholinesterases,
molecular docking was performed for the best potential inhibitors. Additionally, molecular dynamics
simulations were employed to assess and validate the stability and flexibility of the protein–ligand
complexes generated through docking.

Keywords: anti-inflammatory activity; cholinesterase inhibition; molecular docking; molecular
dynamics; naphtho/thienobenzo-triazoles; photochemical synthesis

1. Introduction

A small and simple triazole core is present in compounds that possess antimicro-
bial, antitumor, antitubercular, antidepressant, anti-inflammatory, and numerous other
activities. Triazoles show a wide range of biological activities and are found in many
powerful, biologically active compounds such as trazodone (antidepressant), hexaconazole
(an antifungal drug), alprazolam (tranquilizer) and others [1]. So far, modifications of
triazoles have proven to be very effective, and some of the newly prepared derivatives
have been observed to have better activity and less toxicity. Drugs are also being developed
for the treatment of neurodegenerative diseases such as Alzheimer’s disease (AD), with a
characteristic 1,2,3-triazole core [2]. Triazolostilbenes have been synthesized in the context
of nonlinear optical (NLO) materials [3,4]. In addition to the synthesis of new industrial
materials, such as the triazole derivative of the natural pigment curcumin with significant
biological and spectroscopic properties [5–7], functionalized trans-1,2,3-triazolostilbenes
have been synthesized as suitable derivatives for further photochemical and photophysical
research due to easily achievable change in their structures [8].
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Non-steroidal anti-inflammatory drugs have a wide therapeutic application in the
treatment of various types of inflammatory conditions. The long-term use of these drugs
has harmful effects on the gastrointestinal tract and subsequently leads to problems such
as kidney damage, stomach ulcers, and hepatotoxicity [9]. This is exactly why there is an
effort to synthesize new types of these compounds that should be highly effective and
have improved safety so inflammations can be suppressed with as few unwanted effects as
possible. Numerous studies related to such compounds have been conducted. Considering
the biological and medical importance of ibuprofen (Figure 1) and 1,2,3-triazole, new
chemical compounds were investigated based on these compounds’ previously known
biological significance.
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Figure 1. The structural formula of ibuprofen (left) and ibuprofen derivative (right) with 1,4-
disubstituted 1,2,3-triazole nucleus.

Ibuprofen-based compounds containing 1,4-disubstituted 1,2,3-triazole were synthe-
sized and examined for in vivo anti-inflammatory activity, and one of the compounds
(Figure 1) showed a strong effect as the reference anti-inflammatory drug ibuprofen at the
same concentration (10 mg/kg body weight). The compounds in Figure 2 also showed
significant anti-inflammatory activity. Their bactericidal profiles were also examined for all
mentioned triazole analogs (including the ibuprofen derivative from Figure 1). All com-
pounds showed significant bactericidal activity against Gram-positive and Gram-negative
strains of bacteria. It is an interesting fact that the presence of an electron-withdrawing
group or atom (NO2 or Cl) in the meta- or para-position (C3 or C4) of the benzyl or phenyl
ring on triazole leads to a significant increase in anti-inflammatory and bactericidal activ-
ity [10].
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Figure 2. Ibuprofen derivatives with 1,4-disubstituted 1,2,3-triazole with significant anti-
inflammatory activity.

Potential anti-inflammatory activity was also shown by compounds that contain both
triazole and tetrazole rings in their structure (Figure 3). Their anti-inflammatory effect
was evaluated by a test with carrageenan (a polysaccharide obtained from red seaweed),
and they showed superior anti-inflammatory activity compared to other synthesized
compounds [11,12].
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On the other side, benzene-triazole derivatives (BTA) are active against a wide range
of target molecules. Also, BTA is of biological and industrial importance [13,14]. Due to
its pharmacological activities, 1H-benzo[d]-1,2,3-triazole is considered a favored structure.
Used as a template for the design of new pharmacologically active compounds, BTA is
undergoing rapid development in the synthesis of heterocycles. Research has shown that
BTA has various pharmacological activities (anti-inflammatory, antimicrobial, antifungal,
and anticarcinogenic). It is also known that molecules containing the benzotriazole core
have CNS (Central Nervous System) activity [15].

The first confirmation of the strong connection between the cholinergic and immune
systems appeared at the beginning of the last century by researching the effects of CNI-1493
on laboratory mouse models. It has been observed that the anti-inflammatory effects of the
compound are indirect and occur due to the compound’s activity in the brain and not in
the blood (immune cells) [16]. Further testing of the compound in animal models showed
a dose-dependent reduction in the systemic production of tumor necrosis factor, TNF-α,
after endotoxin (LPS) challenge [17]. It is known that the cholinergic anti-inflammatory
system is a powerful instrument by which the body regulates the amount of inflamma-
tion. The key participant in this pathway is the neurotransmitter acetylcholine (ACh).
Increased calcium levels in cells in that pathway lead to activation of the transcription
factor NFαB and suppression of the immune response [18]. This mechanism can be in-
terrupted by cholinesterase (ChE) enzymes that break down ACh, acetyl- (AChE), and
butyrylcholinesterase (BChE) enzymes. Inhibitors of these enzymes could also have anti-
inflammatory effects [19–21]. AChE and BChE also represent pharmacologically suitable
targets in neurodegenerative disorders (Alzheimer’s disease, AD), given their physiological
roles in the body. Treatment of neurodegenerative disorders currently includes common
reversible cholinesterase enzyme inhibitors, such as galantamine, with proven efficacy in
improving cognitive function [2,22,23].

In our previous research, we have proven that some of the thienobenzo-triazoles
obtained by photochemical cyclization have a dual activity. They showed very good
cholinesterase enzyme inhibition interconnected with anti-inflammatory activity (Structure
A, Figure 4) [24,25]. On the other hand, naphtho-triazoles (Structures B and C, Figure 4)
showed a much more potent anti-inflammatory effect but not cholinesterase inhibition.
This work evaluated a new series of naphtho/thienobenzo-triazoles to confirm previous
experimental and computational data on biological activity.
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anti-inflammatory activity.

2. Results and Discussion
2.1. Synthesis of New Thienobenzo/Naphtho-Triazoles 1–13

New triazolo-stilbenes 1a–7a and triazolo-thienostilbenes 8a–13a (Scheme 1) were
prepared by the Wittig reaction from phosphonium bromide and the 1-substituted-1,2,3-
triazole-4-carbaldehydes, according to the previously described procedure [26]. Wittig
reaction provided the new triazolo-stilbenes 1a–7a and triazolo-thienostilbenes 8a–13a as
mixtures of cis- and trans-isomers (isolated yields on the mixtures were 42–78%, Scheme 1)
which were not separated in this research into pure geometrical isomers but immedi-
ately converted into photoproducts, naphtho-triazoles 1–7 and thienobenzo-triazoles 8–13
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(Scheme 1) as new biological targets by an intramolecular electrocyclization reaction in high
isolated yields (29–60%, Scheme 1). According to 1H NMR spectroscopy, the substituent on
the triazole ring directed the ratio of geometric isomers in the Wittig reaction (see Materials
and Methods). In the 1H NMR spectra of the mixture of geometrical isomers 1a–7a, it can be
seen the resolved patterns for ethylenic protons with the characteristic coupling constants,
the signals for the protons on various substituents, and the singlets for the protons on the
triazole rings.
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Scheme 1. Synthetic pathway for the new thienobenzo/naphtho-triazoles 1–13. Numbers given in
parentheses represent isolated yields.

In aerobic conditions, preparative irradiations of 1a–13a at 313 nm in toluene solu-
tions gave the naphthotriazoles 1–7 and thienobenzo-triazoles 8–13; after that, they were
successfully isolated and fully characterized by NMR spectroscopy and HRMS analyses
(see Materials and Methods and Suppl. Material). The formation of the electrocyclization
photoproducts 1–13 was generally accompanied by the formation of some high-molecular-
weight products, which were not investigated. In their 1H NMR spectra, it can be seen the
disappearance of the ethylenic protons and the singlets on the 1,2,3-triazole rings.

As explained in previous research, the inhibitors of enzyme cholinesterases could
also have anti-inflammatory effects [24]. For the stated reason, thienobenzo-triazoles 14–31
(Figure 5), which stood out as very good inhibitors of these enzymes, were also tested
here for their possible interconnected inhibition potential of TNF-α cytokine production.
Most of these molecules showed better inhibition of the enzyme butyrylcholinesterase
(BChE) [27]. Also, the binding affinity of BChE for even seven new compounds was similar
to that reported for common cholinesterase inhibitors.

2.2. Anti-Inflammatory Activity of 1,2,3-Triazole Derivatives 1–31

The potential to act anti-inflammatory was evaluated for 1,2,3-triazole derivatives
1–31 in vitro in an assay where PBMCs from 2 healthy donors were stimulated with LPS
to induce the immune response. As a measurement of response, the pro-inflammatory
cytokine TNF-α was determined. The highest potency in TNF-α production inhibition
was observed for naphtho-triazoles 1–4 and 6 (Figure 6) and thienobenzo-triazoles 18–22
and 26–27 (Table 1). However, cell viability was determined following incubation with
compounds by measuring ATP levels inside the cells to ensure that the lower TNF-α
production did not result from cytotoxicity. While the naphthotriazoles did not affect cell
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viability, for the most potent thienobenzo-triazoles 19, 20, and 26, cell viability reduction
was observed at the highest tested concentration.
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Figure 6. Naphthotriazoles 1 (a), 2 (b), 3 (c), and 6 (d) concentration-dependently inhibited TNF-α
production in PBMCs stimulated with LPS, with average IC50 values in 2 donors 8.1 µM, 10.4 µM,
12.0 µM, and 1.9 µM, respectively.
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Table 1. In vitro activity of novel 1,2,3-triazoles on inhibition of TNF-α production in PBMC stimulated
with LPS. The IC50 values shown are average values from testing in 2 independent experiments
(donors).

Compound IC50/µM (av.)
PMBC-LPS/TNF-α Compound IC50/µM (av.)

PMBC-LPS/TNF-α

1 8.1 17 >100

2 10.4 18 27.7

3 12.0 19 10.2 **

4 19.1 20 8.9 **

5 >100 21 17.0

6 1.9 22 16.1

7 >100 23 >100

8 >100 24 >100

9 >100 25 >100

10 19.2 26 9.4 **

11 38.7 27 12.2

12 40.6 28 >100

13 21.3 29 >100

14 38.8 30 >100

15 n/a * 31 >100

16 >100 dexamethasone 0.007
* could not be calculated due to high variations. ** cell viability reduction at 100 µM.

2.3. Cholinesterase Inhibition of 1,2,3-Triazole Derivatives 1–13

Since previously studied thienobenzo/naphtho-triazoles displayed activity toward
cholinesterase inhibition, further functionalization and examination of these core units
were imposed. The inhibition of AChE and BChE was assessed for seven naphtho-triazoles
and six thienobenzo-triazole derivatives in a wide range of concentrations. If more than
50% inhibition is achieved, the IC50 value is determined (Table 2). Results were compared
to a reference compound galantamine.

Naphtho-triazoles with methoxy substituent at aryl moiety and various substituents
at triazole ring were studied previously [25] and showed no significant activity. Change in
the type of substituent improved activity since almost all of the tested compounds achieved
IC50 values. Derivatives 1, 2, 3, and 7 showed activity with IC50 values in similar ranges of
concentrations toward both enzymes. Among naphtho-triazoles, structure 3 with pentenyl
substituent showed the most potent activity with IC50 values in a very good range (IC50
51.3 µM for AChE and 53.5 µM for BChE), but still less than galantamine (IC50 7.9 µM for
BChE and 0.15 µM for AChE). Selective inhibition toward AChE was demonstrated by
derivatives 5 and 6, with meta substituents at phenyl moiety. The one with m-fluorophenyl
substituent 5 achieved a very good IC50 value, while change of the fluorine atom to para
position in derivative 4 diminished inhibitory activity. A similar structure to 1, with a
methyl group at aryl moiety, was studied earlier [24], and it can be concluded that the
change to methoxy derivative improved activity toward AChE. At the same time, affinity
toward BChE remained the same.
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Table 2. Inhibition of AChE and BChE and calculated IC50 values by compounds 1–13.

Compound
AChE BChE

IC50/µM % Inhibition * IC50/µM % Inhibition *

1 329.0 58.1 ± 1.6 (500) 261.1 65.3 ± 0.7 (500)

2 91.8 77.9 ± 3.6 (500) 109.6 80.2 ± 0.7 (500)

3 51.3 64.8 ± 5.3 (250) 53.5 76.6 ± 1.8 (250)

4 - 35.1 ± 2.0 (500) - 25.0 ± 0.5 (500)

5 55.5 80.8 ± 1.8 (250) - 43.8 ± 1.8 (250)

6 176.7 78.6 ± 3.8 (250) - 47.8 ± 0.5 (250)

7 109.5 81.4 ± 0.8 (500) 294.2 60.9 ± 0.4 (500)

8 - 43.5 ± 2.1 (350) 206.5 62.6 ± 0.2 (350)

9 83.0 78.8 ± 1.9 (350) 69.8 76.1 ± 0.8 (350)

10 66.6 83.6 ± 3.7 (350) 99.7 65.2 ± 0.3 (350)

11 217.7 71.3 ± 0.3 (350) 122.7 72.3 ± 5.6 (350)

12 - 41.8 ± 1.0 (350) - 46.1 ± 4.(350)

13 - 46.4 ± 2.5 (250) 40.7 86.5 ± 5.0 (250)

Galantamine 0.15 90.0 ± 1.5 (60) 7.9 90.1 ± 3.4 (4.5)
* Numbers given in parentheses represent maximal concentrations tested in µM.

Previous results show that introducing a thiophene ring in the core of these structures
improves their biological activity [25]. Numerous thienobenzo-triazoles with different
substituents at the triazole ring were examined. They showed higher affinity toward
BChE, where some of them, particularly derivative A (Figure 4), achieved better IC50
values than reference galantamine. Structure 13, examined here, represents one in a series
of such derivatives. The results are consistent with the previous ones, i.e., it showed
selective inhibition for BChE with a very good IC50 value. The subsequent modification
in the structure of the tested compounds refers to introducing a methyl substituent on the
thiophene ring (compounds 8–12). Derivatives with p-fluorophenyl substituent showed
the best results among this group, while the same substituent had the opposite effect on
naphtho–triazoles (derivative 4). Generally, none of the compounds in this group displayed
remarkable results since IC50 values, where achieved, are in the good to moderate range. A
comparison of structure 8 with its analogs without methyl group (structure A) shows that
introducing methyl at thiophene decreases the activity for BChE five times and completely
reduces activity toward AChE. Reduction of activity toward BChE inhibition by introducing
the methyl group was also observed for 9, 10, and 12 compared to their non-methylated
analogs [27]. The presence of a furan ring at the triazole unit diminished enzyme activity,
and 50% of inhibition was not achieved.

Among the tested compounds in this research, the two with pentenyl substituent, 3
and 13, showed the best results, with one significant difference: naphtho derivative is active
toward both enzymes while thienobenzo derivative is completely selective toward BChE.
The introduction of methyl substituent at the thiophene ring is not a desirable structure
modification since no improvement was observed for the inhibition of enzymes.

Concerning the evidence of a strong link between the cholinergic and immune sys-
tems [28], it is known that the cholinergic anti-inflammatory system, a part of the vagus
nerve system, is a powerful tool by which the organism regulates the inflammation ex-
tent to ensure the elimination of the threat and prevent any potential tissue disruption
or damage. The key player in this pathway is acetylcholine (ACh). As cholinesterases
degrade ACh to acetic acid and choline, the inhibitors of these enzymes could also have
anti-inflammatory effects.
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As a result of experimental data in this research obtained by testing inhibition of
cholinesterases and inhibition of TNF-α cytokine production, it can be concluded that
naphtho-triazoles show better anti-inflammatory activity than thienobenzo-triazoles, espe-
cially compounds 1, 2, 3 and 6. The best candidate showing the associated inhibition of
cholinesterase and anti-inflammatory effect is naphtho-triazole 3, for which the possibility
of the described mechanism in which ACh is the link can be assumed.

2.4. Docking and Molecular Dynamics Study of 1,2,3-Triazole Derivatives

To elucidate the interactions underpinning the stability of complexes formed between
the triazole derivatives and cholinesterases, we conducted molecular docking on the
compounds that exhibited the most potent inhibitory activity in experimental assays.
Notably, for AChE, the most promising outcomes were observed with compounds 3 and 5.
The structures of complexes obtained by docking 3 and 5 into the active site of AChE are
shown in Figure 7a,b, respectively.
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Figure 7. (a) Structure of the complex between compound 3 and the active site of AChE, obtained
by molecular docking; (b) compound 5 docked into the active site of AChE. Distances are given in
angstroms. Hydrogen atoms of the residues were omitted for clarity.

These structural representations unveil the presence of non-covalent interactions
between each ligand and residues within the active site, which are responsible for the
complex’s stability. The placement of the most stable ligand pose into the active site of AChE
for both molecules exhibits a striking similarity, which is to be expected given that their
only structural divergence lies in the substituent at the triazole subunit. Both compounds 3
and 5 occupy the peripheral anionic site (PAS), thereby enabling the naphthalene subunit
to engage in π-π stacking interactions with residues Trp286 and Tyr72, and the triazole ring
to interact with Tyr341. The substituent at the triazole subunit in compound 3, pentenyl,
engages in a hydrophobic interaction with Phe338, while its counterpart in compound
5, m-fluorobenzyl, interacts with the same residue through orthogonal π-π stacking. No
hydrogen bonds are observed; this orientation places the triazole ring in a position where
there are no residues that could act as hydrogen bond donors to nitrogen atoms of triazole.
The lowest free energies of binding (∆Gbind) estimated by molecular docking of compounds
3 and 5 into AChE are −8.91 and −9.53 kcal mol−1, respectively (Table S1). Expectedly,
these values are not as good as those estimated for the reference ligand galantamine, whose
∆Gbind of −10.11 kcal mol−1 was obtained using the same docking procedure.

For BChE, the most potent inhibitory activity was observed with compounds 3 and 13.
The structures of the complexes formed by docking molecules 3 and 13 into the active site
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of BChE are depicted in Figure 8a,b. Despite the difference in the scaffold, where one of the
phenyl rings in compound 3 is replaced by thiophene in compound 13, both compounds
exhibit similar placement within the active site.
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Docked molecules are presented using a ball-and-stick model, with hydrogen atoms of residues
omitted for clarity.

This alignment enables π-π stacking interactions between the aromatic scaffold of
both compounds and Trp82. Furthermore, on the opposing side of the ligand scaffold, π-π
interaction occurs with His 438, residue belonging to the catalytic triad. In both of these
ligands, the substituent at the triazole subunit is the same, 4-pentenyl, and its conformation
allows for hydrophobic alkenyl-π interaction with Tyr332, a residue located within the
PAS of BChE. Docking scores for these systems are presented in Table S2: the lowest free
energies of binding estimated by molecular docking of compounds 3 and 13 into BChE
are −7.56 and −6.81 kcal mol−1, respectively, while, for reference, the ligand galantamine
∆Gbind was estimated to be −7.49 kcal mol−1.

Additionally, we conducted molecular dynamics (MD) simulations on studied systems
to assess the stability of protein–ligand complexes suggested by molecular docking. For
each investigated protein–ligand complex, the structure with the lowest estimated free
energy of binding was chosen, and a 30 ns MD simulation was performed. Root-mean-
square deviation values (RMSD) were computed for each system to gauge the structural
alterations of the protein–ligand complex throughout the simulation time. RMSD analysis
was conducted on all atoms within each protein–ligand complex, excluding hydrogen
atoms. Additionally, RMS fluctuation values (RMSF) are calculated as average quadratic
fluctuations of positions of α carbons over the trajectory. The RMSD quantifies how much
a structure diverges from the initial one, and the RSMF values here show which parts of
the protein backbone are the most mobile. Finally, the gyration radius (Rg) was computed
to estimate the proteins’ compactness. Rg is calculated as a root-mean-square average of
the distance of all atoms from the center of mass of the protein–ligand system. Systems
where Rg does not increase significantly during the simulation can be described as compact.
The results of MD simulations analysis for complexes of AChE with compounds 3 and 5,
respectively, are shown in Figure 9.
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and 5: (a) RMSD, (b) RMSF, and (c) radius of gyration plots.

After an initial 5–10 ns period, both systems achieve convergence, with no significant
fluctuations in subsequent RMSD values. Notably, the complex containing compound 3
(represented by the blue line in Figure 9a) exhibits slightly better performance. Across the
entire blue trajectory, the average RMSD stands at 1.69 Å, with a maximum value of 2.01 Å,
resulting in a 0.32 Å difference between the maximum and average RMSD values. An
examination of the last 20 ns of this trajectory, where the system had converged, reveals an
average RMSD of 1.34 Å and a maximum value of 1.58 Å, reducing the difference between
them to 0.24 Å. For AChE with ligand 5 (illustrated by the red line in Figure 9a), the average
RMSD value is 1.74 Å, accompanied by a maximum RMSD of 2.19 Å, resulting in a 0.45 Å
difference. This difference decreases to 0.32 Å when the analysis is limited to the last
20 nanoseconds of the trajectory, where the average RMSD is 1.46 Å with a maximum value
of 1.78 Å.

In both complexes, the RMSF values obtained during the entire simulation indicate
that α-carbon positions in the protein backbone exhibit small fluctuations compared to
their reference positions. Specifically, in the system containing ligand 3, these fluctuations
range from 0.34 to 1.75 Å, while in AChE complexed with ligand 5, α-carbon positions vary
between 0.32 and 2.13 Å. Similarly, the radius of gyration does not change significantly
throughout the simulation; for a complex of AChE with 3, this parameter varies within the
range of 22.57 to 22.93 Å, while in the AChE with ligand 5, the values span from 22.60 to
23.08 Å.

To gain a visual understanding of the complexes under study in molecular dynamics
(MD), we analyzed the final 20 ns of each simulation to derive their average structure.
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Then, the structure with the least RMSD compared to the calculated average structure was
selected for each of the two complexes. Figure 10 showcases detailed representations of the
AChE active site with ligands 3 and 5 taken from these selected protein–ligand complex
structures.
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with ligand 5. Ligands are presented using a ball-and-stick model, with hydrogen atoms of residues
omitted for clarity.

Similar to the complexes generated through docking, structures closest to the average
ones obtained through MD resemble ligand placement within the peripheral anionic site
of the AChE active site. The predominant stabilizing interaction observed is again π-π
stacking. Ligand 3 maintains contact with Trp286 and Tyr341, whereas ligand 5 shifts away
from Trp286 towards the His447 of the esteratic site and establishes contact with Trp86.

The analysis of MD simulation results for BChE complexes with compounds 3 and
13 is shown in Figure 11. These complexes exhibit structural stability throughout the
simulations, with average RMSD values of 1.97 Å and 1.74 Å, and maximum values of
2.43 Å and 2.17 Å, respectively. During the last 20 nanoseconds of the trajectories, the
average RMSD decreases to 1.52 Å and 1.64 Å, with maxima at 1.90 Å and 2.16 Å. Ligand 3
induces more pronounced structural changes in the protein than molecule 13, as evident
from the RMSF values: RMS fluctuation reaches 2.82 Å in the complex with 3 and 2.47 Å
for compound 13. The compactness of the protein remains stable during the simulations,
with gyration radius values similar to those observed in the complexes of AChE.

The active site of BChE with ligands 3 and 13 that are structurally closest to the
calculated average structures obtained by MD is presented in Figure 12.

Despite the displacements and structural fluctuations during the simulation, the
dominant structure in both BChE–ligand complexes derived by the docking study remained
similar to the initial one, thus preserving all relevant stabilizing interactions observed
earlier: the π-π stacking between residue Trp82 and ligand, the distance from His438 in the
esteratic subsite, and, finally, the contact between the 4-pentenyl, substituent attached to
the triazole ring, andTyr332 of PAS.
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Figure 12. Protein–ligand complexes derived from MD simulation as structures with the least RMSD
from the calculated average structures. (a) The active site of BChE with ligand 3; (b) BChE active site
with ligand 13. Ligands are presented using a ball-and-stick model, with hydrogen atoms of residues
omitted for clarity.
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2.5. Genotoxicity Testing on 1,2,3-Triazole Derivatives 1–31

Pharmaceutical development of new drugs requires a thorough investigation into all
impurities present in the active pharmaceutical compound (API) and the finished drug
product. Impurities that are or can be theoretically present in the API, as well as in each
of the intermediates in every step of the manufacturing process of the API, as well as the
finished drug, have to be evaluated for their genotoxic potential. The primary evaluations
are always done with the in silico models. So, within the scope of impurities of drug sub-
stances and drug products, this special subcategory of mutagenic/cancerogenic impurities
is extremely important, and all possible risks must be evaluated. These compounds are
more strictly regulated and controlled at much lower levels than other impurities. The
regulation that is followed for them is the ICH M7 Guideline, and the levels that can be
present in the drug substance or the drug product have to be calculated individually for
each identified PMI (possible mutagenic compound) based on their determined acceptable
daily intake (AI) and the maximum daily dose (MDD) of the final dosage form in question.
Suppose toxicological studies on animals have not determined the AI. In that case, the most
conservative approach must be taken with the most strict presumed AI described in the
guideline itself.

When developing new API and finished drugs, it is expected that the impurities will
also be new compounds and that no experimental data will be available for them in the
genotoxicity databases. In these cases, the Q(SAR) approach is of vital importance. (Q)SAR
models predict biological activity based on structural components [29]. This approach used
to determine the mutagenic potential of impurities can also be used during the early stages
of searching for potentially active drug substances. The elimination of all compounds that,
even if they have biological activity, can also have mutagenic potential can be made fast
and easy. The most commonly used tool is the Lhasa Nexus v.2.5.2 software because it uses
two complementary models, and their predictions are then reviewed one more time by
an expert.

In the case of compounds 1–31 investigated in this paper, several compounds had
the Sarah Nexus v.3.2.1 software predictions positive (Table 3). Still, only one structure
was found to have a very high risk of being genotoxic. Structures 5 and 6 had very low
probability, according to Sarah’s prediction, and all of the others (7, 9–11, 15, 18, 21, 22, 24,
27, 29, and 30) had the model rely on the data for the thiophene ring, with also a relatively
low percentage of certainty.

Table 3. Compounds with a positive mutagenic potential by Lhasa M7 evaluation.

Structure ICH M7 Class Derek
Prediction

Sarah
Prediction Experimental Data Overall In Silico

5 Class 5
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3. Materials and Methods 

3.1. General Remarks 

Nuclear magnetic resonance (NMR) spectroscopic data for 1H and 13C nuclei were 

recorded at room temperature on Bruker Avance 300 and 600 MHz (Coventry, UK) spec-

trometers. Deuterated chloroform, CDCl3, with TMS as a standard, was used to record 

NMR spectra. All solvents used are commercially available and purified by distillation. 

Anhydrous MgSO4 was used to dry the organic layers after extraction. Column chroma-

tography was performed on silica gel columns (60 Å , technical grade). Abbreviations used 

in this experimental procedure were NMR—nuclear magnetic resonance; EtOAc—ethyl 

acetate; PE—petroleum ether; E—diethyl ether; EtOH—ethanol; MeOH—methanol; and 

DCM—dichloromethane. Preparative photochemical reactions were carried out in a 

closed quartz cuvette in a Rayonet photochemical reactor equipped with 313 nm UV 

lamps. HRMS analyses were performed with a mass spectrometer (MALDI TOF/TOF an-

alyzer) (Agilent Technologies, Santa Clara, CA, USA) equipped with a Nd:YAG laser op-

erating at 355 nm with a firing rate of 200 Hz in a positive (H+) or negative (H–) ion reflec-

tor. All solvents were removed from the solutions using a rotary evaporator under re-

duced pressure. 

3.2. Synthesis of Starting Thieno-Triazole Stilbenes 1a–13a 

Starting compounds 1a–13a were obtained as mixtures of cis- and trans-isomers of 

heterostilbene synthesized by the Wittig reaction. The reaction apparatus was purged 

with nitrogen for 15 min before adding the reagents. Solutions of 2-thienyl-phosphonium 

salt (11 mmol) were dissolved in 50 mL of absolute EtOH (dried on a 3 Å  sieve) in three-

necked round-bottomed flasks (100 mL). Solutions of sodium ethoxide (11 mmol, 1.1 

equiv Na dissolved in 10 mL absolute ethanol) were added dropwise under strictly anhy-

drous conditions under a nitrogen atmosphere. Various triazole aldehydes (11 mmol) 

were added directly to the mixed solutions. The reaction mixtures were allowed to stir for 

24 h at room temperature under a nitrogen bubble. After removing the solvent with a 

rotary evaporator under reduced pressure, the solid reaction mixtures were extracted 

with toluene p.a. (3 × 25 mL). The organic layers were dried over anhydrous MgSO4. The 

final products, a mixture of cis- and trans-isomers 1a–13a, were isolated by silica gel col-

umn chromatography using PE/E as eluent and confirmed via 1H NMR and 13C NMR 

spectroscopy and HRMS analyses. 

3.3. .Synthesis of Cyclization Photoproducts 1–13 

Mixtures of previously synthesized compounds 1a–13a were dissolved in toluene 

p.a. (~ 2.5 × 10−3 M) and transferred to a quartz cuvette (50 mL) with the addition of a 

catalytic amount of iodine and illuminated with 10 UV lamps at 313 nm in a Rayonet pho-

tochemical reactor (The Southern New England Ultraviolet Co., Branford, USA) for 1–3 h 

to achieve almost complete conversion. After removing the solvent with a rotary 
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As for structure 31, here the probability is very high, and this structure also has a
Derek (Derek Nexus v.6.2.1 software); positive prediction, with a much higher certainty. Here,
the Q(SAR) found a very similar compound (condensed aromatic system with the amide
functionality linked directly) with a positive AMES test for mutagenicity in vitro. This
can be taken as a compound that can be eliminated from further research because the
probability of its genotoxic potential is high.

3. Materials and Methods
3.1. General Remarks

Nuclear magnetic resonance (NMR) spectroscopic data for 1H and 13C nuclei were
recorded at room temperature on Bruker Avance 300 and 600 MHz (Coventry, UK) spec-
trometers. Deuterated chloroform, CDCl3, with TMS as a standard, was used to record
NMR spectra. All solvents used are commercially available and purified by distillation.
Anhydrous MgSO4 was used to dry the organic layers after extraction. Column chromatog-
raphy was performed on silica gel columns (60 Å, technical grade). Abbreviations used
in this experimental procedure were NMR—nuclear magnetic resonance; EtOAc—ethyl
acetate; PE—petroleum ether; E—diethyl ether; EtOH—ethanol; MeOH—methanol; and
DCM—dichloromethane. Preparative photochemical reactions were carried out in a closed
quartz cuvette in a Rayonet photochemical reactor equipped with 313 nm UV lamps. HRMS
analyses were performed with a mass spectrometer (MALDI TOF/TOF analyzer) (Agilent
Technologies, Santa Clara, CA, USA) equipped with a Nd:YAG laser operating at 355 nm
with a firing rate of 200 Hz in a positive (H+) or negative (H–) ion reflector. All solvents
were removed from the solutions using a rotary evaporator under reduced pressure.

3.2. Synthesis of Starting Thieno-Triazole Stilbenes 1a–13a

Starting compounds 1a–13a were obtained as mixtures of cis- and trans-isomers of
heterostilbene synthesized by the Wittig reaction. The reaction apparatus was purged
with nitrogen for 15 min before adding the reagents. Solutions of 2-thienyl-phosphonium
salt (11 mmol) were dissolved in 50 mL of absolute EtOH (dried on a 3 Å sieve) in three-
necked round-bottomed flasks (100 mL). Solutions of sodium ethoxide (11 mmol, 1.1 equiv
Na dissolved in 10 mL absolute ethanol) were added dropwise under strictly anhydrous
conditions under a nitrogen atmosphere. Various triazole aldehydes (11 mmol) were
added directly to the mixed solutions. The reaction mixtures were allowed to stir for
24 h at room temperature under a nitrogen bubble. After removing the solvent with a
rotary evaporator under reduced pressure, the solid reaction mixtures were extracted
with toluene p.a. (3 × 25 mL). The organic layers were dried over anhydrous MgSO4.
The final products, a mixture of cis- and trans-isomers 1a–13a, were isolated by silica gel
column chromatography using PE/E as eluent and confirmed via 1H NMR and 13C NMR
spectroscopy and HRMS analyses.
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3.3. Synthesis of Cyclization Photoproducts 1–13

Mixtures of previously synthesized compounds 1a–13a were dissolved in toluene p.a.
(~2.5 × 10−3 M) and transferred to a quartz cuvette (50 mL) with the addition of a catalytic
amount of iodine and illuminated with 10 UV lamps at 313 nm in a Rayonet photochemical
reactor (The Southern New England Ultraviolet Co., Branford, USA) for 1–3 h to achieve
almost complete conversion. After removing the solvent with a rotary evaporator under
reduced pressure, photoproducts 1–13 were purified by column chromatography using
PE/E (60%) as eluent and obtained in the first fractions.
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1-isopropyl-8-methoxy-1H-naphtho[1,2-d][1–3]triazole (1): 20 mg, 50% isolated yield;
yellow oil; Rf (PE/E (70%)) = 0.83; 1H NMR (CDCl3, 600 MHz) δ/ppm: 7.95 (d, J = 9.3 Hz,
1H), 7.86 (d, J = 8.8 Hz, 1H), 7.74 (d, J = 2.7 Hz, 1H), 7.64 (d, J = 9.0 Hz, 1H), 7.30 (dd, J = 8.8,
2.4 Hz, 1H), 5.50–5.44 (m, 1H), 4.00 (s, 3H), 1.91 (s, 3H), 1.90 (s, 3H); 13C NMR (CDCl3,
150 MHz) δ/ppm: 158.6, 144.9, 131.1, 128.5, 127.8, 125.9, 121.3, 116.0, 115.8, 104.0, 55.6, 53.4,
and 22.7. MS (ESI) m/z (%, fragment): 242 (100); 200 (30); HRMS (m/z) for C14H16N3O: [M
+ H]+calcd = 241.1215, and [M + H] + measured = 241.1221.

1-(but-3-en-1-yl)-8-methoxy-1H-naphtho[1,2-d][1–3]triazole (2): 9 mg, 43% isolated
yield; yellow oil; Rf (PE/E (80%)) = 0.90; 1H NMR (CDCl3, 600 MHz) δ/ppm: 7.94 (d,
J = 9.1 Hz, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 8.8 Hz, 2H), 7.30 (dd, J = 8.8, 2.9 Hz, 1H),
5.96–5.89 (m, 1H), 5.20–5.14 (m, 2H), 5.09 (t, J = 7.7 Hz, 2H), 3.98 (s, 3H), 2.89–2.85 (m, 2H);
13C NMR (CDCl3, 150 MHz) δ/ppm: 158.7, 145.0, 133.0, 131.1, 128.7, 127.8, 125.9, 121.0,
118.3, 116.8, 115.7, 103.3, 55.5, 49.9, and 34.2. MS (ESI) m/z (%, fragment): 254 (10); 167
(100); HRMS (m/z) for C15H16N3O: [M + H] + calcd = 253.1215, and [M + H]+measured =
253.1220.

8-methoxy-1-(pent-4-en-1-yl)-1H-naphtho[1,2-d][1–3]triazole (3): 9 mg, 50% isolated
yield; yellow oil; Rf (PE/E (80%)) = 0.71; 1H NMR (CDCl3, 600 MHz) δ/ppm: 7.94 (d,
J = 9.3 Hz, 1H), 7.85 (d, J = 8.5 Hz, 1H), 7.64–7.62 (m, 2H), 7.29 (dd, J = 8.9, 2.5 Hz, 1H),
5.90–5.84 (m, 1H), 5.15–5.07 (m, 2H), 5.03 (t, J = 7.4 Hz, 2H), 3.99 (s, 3H), 2.28–2.19 (m, 4H);
13C NMR (CDCl3, 150 MHz) δ/ppm: 158.6, 145.0, 136.1, 131.1, 128.7, 127.8, 125.9, 121.1,
116.6, 116.5, 115.7, 103.5, 55.5, 50.1, 30.6, and 28.9. MS (ESI) m/z (%, fragment): 268 (100);
167 (15); HRMS (m/z) for C16H18N3O: [M + H]+calcd = 267.1371, and [M + H] + measured
= 267.1376.
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1-(4-fluorobenzyl)-8-methoxy-1H-naphtho[1,2-d][1–3]triazole (4): 12 mg, 40% isolated
yield; yellow oil; Rf (PE/E (70%)) = 0.85; 1H NMR (CDCl3, 600 MHz) δ/ppm: 7.90 (d,
J = 5.3 Hz, 1H), 7.88 (d, J = 4.5 Hz, 1H), 7.66 (d, J = 8.8 Hz, 1H), 7.36 (d, J = 2.6 Hz, 1H),
7.21 (dd, J = 8.8, 2.3 Hz, 1H), 7.16–7.14 (m, 2H), 7.03 (t, J = 8.5 Hz, 2H), 6.24 (s, 2H), 3.75
(s, 3H); 13C NMR (CDCl3, 150 MHz) δ/ppm: 158.5, 145.3, 131.1, 130.8, 129.1, 127.9, 127.8,
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126.3, 120.7, 117.6, 116.5, 116.2, 115.6, 103.4, 55.4, and 53.4. MS (ESI) m/z (%, fragment): 308
(100); HRMS (m/z) for C18H15N3OF: [M + H]+calcd = 307.1120, and [M + H] + measured =
307.1124.

1-(3-fluorobenzyl)-8-methoxy-1H-naphtho[1,2-d][1–3]triazole (5): 10 mg, 29% isolated
yield; yellow oil; Rf (PE/E (70%)) = 0.80; 1H NMR (CDCl3, 600 MHz) δ/ppm: 7.89 (d,
J = 8.9 Hz, 1H), 7.88 (d, J = 9.1 Hz, 1H), 7.66 (d, J = 8.8 Hz, 1H), 7.33–7.29 (m, 2H), 7.20
(dd, J = 8.7, 2.3 Hz, 1H), 6.99 (ddt, J = 8.6, 7.3, 2.4 Hz, 1H), 6.96 (d, J = 7.9 Hz, 1H), 6.85 (d,
J = 9.6 Hz, 1H), 6.26 (s, 2H), 3.74 (s, 3H); 13C NMR (CDCl3, 150 MHz) δ/ppm: 164.1, 162.5,
158.6, 145.3, 137.8, 131.9, 130.7, 129.1, 127.8, 126.3, 121.7, 120.6, 117.8, 115.3, 113.3, 103.2,
55.5, and 53.4. MS (ESI) m/z (%, fragment): 308 (100); HRMS (m/z) for C18H15N3OF: [M +
H]+calcd = 307.1120, and [M + H] + measured = 307.1125.

8-methoxy-1-(3-methoxybenzyl)-1H-naphtho[1,2-d][1–3]triazole (6): 19 mg, 55% iso-
lated yield; yellow oil; Rf (PE/E (70%)) = 0.82; 1H NMR (CDCl3, 600 MHz) δ/ppm: 7.88
(d, J = 8.1 Hz, 1H), 7.85 (d, J = 9.7 Hz, 1H), 7.64 (d, J = 8.9 Hz, 1H), 7.38 (d, J = 2.5 Hz, 1H),
7.24 (d, J = 8.4 Hz, 1H), 7.18 (dd, J = 8.9, 2.5 Hz, 1H), 6.82 (dd, J = 8.1, 2.3 Hz, 1H), 6.78 (dd,
J = 7.7, 1.1 Hz, 1H), 6.67 (s, 1H), 6.22 (s, 2H), 3.72 (s, 3H), 3.68 (s, 3H); 13C NMR (CDCl3,
150 MHz) δ/ppm: 160.4, 158.5, 145.3, 136.9, 130.6, 130.3, 129.2, 127.7, 126.2, 120.8, 118.4,
117.9, 115.5, 113.5, 112.2, 103.3, 55.5, 55.2, and 53.9. MS (ESI) m/z (%, fragment): 320 (100),
250 (45); HRMS (m/z) for C19H17N3O2: [M + H]+calcd = 319.1321, and [M + H] + measured
= 319.1323.

8-methoxy-1-(thiophen-2-ylmethyl)-1H-naphtho[1,2-d][1–3]triazole (7): 20 mg, 60%
isolated yield; yellow oil; Rf (PE/E (70%)) = 0.91; 1H NMR (CDCl3, 600 MHz) δ/ppm: 7.88
(d, J = 7.7 Hz, 1H), 7.87 (d, J = 7.7 Hz, 1H), 7.65 (d, J = 8.9 Hz, 1H), 7.55 (d, J = 2.4 Hz, 1H),
7.26–7.25 (m, 1H), 7.23 (dd, J = 9.1, 2.4 Hz, 1H), 6.95–6.93 (m, 2H), 6.39 (s, 2H), 3.85 (s, 3H);
13C NMR (CDCl3, 150 MHz) δ/ppm: 158.6, 145.2, 137.5, 130.8, 128.9, 127.8, 127.4, 126.2,
125.9, 120.8, 117.7, 115.5, 103.4, 55.6, and 49.7. MS (ESI) m/z (%, fragment): 296 (100); 167
(20); HRMS (m/z) for C16H14N3OS: [M + H]+calcd = 295.0779, and [M + H] + measured =
295.0781.
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16.4. MS (ESI) m/z (%, fragment): 310 (80); 121 (100); HRMS (m/z) for C17H16N3OS: [M + 

H]+calcd = 309.0935, and [M + H]+measured = 309.0940. 

1-allyl-7-methyl-1H-thieno[3′,2′:3,4]benzo[1,2-d][1–3]triazole (8): 10 mg, 50% isolated
yield; yellow oil; Rf (PE/E (80%)) = 0.55; 1H NMR (CDCl3, 600 MHz) δ/ppm: 7.89 (d,
J = 9.2 Hz, 1H), 7.89 (d, J = 8.5 Hz, 1H), 7.33 (s, 1H), 6.19–6.13 (m, 1H), 5.50–5.49 (m, 2H),
5.31 (d, J = 9.9 Hz, 1H), 5.09 (d, J = 16.7 Hz, 1H), 2.68 (s, 3H); 13C NMR (CDCl3, 150 MHz)
δ/ppm: 144.5, 142.7, 139.2, 131.5, 128.2, 122.9, 118.8, 118.4, 118.2, 115.1, 51.5, and 16.3. MS
(ESI) m/z (%, fragment): 232 (100); 230 (90); HRMS (m/z) for C12H12N3S: [M + H]+calcd =
229.0674, and [M + H] + measured = 229.0679.

1-(4-fluorobenzyl)-7-methyl-1H-thieno[3′,2′:3,4]benzo[1,2-d][1–3]triazole (9): 13 mg,
42% isolated yield; yellow oil; Rf (PE/E (70%)) = 0.65; 1H NMR (CDCl3, 600 MHz) δ/ppm:
7.91 (d, J = 8.1 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.17 (dd, J = 8.7, 5.0 Hz, 2H), 7.14 (s, 1H),
7.03 (t, J = 9.1 Hz, 2H), 6.05 (s, 2H), 2.61 (s, 3H); 13C NMR (CDCl3, 150 MHz) δ/ppm: 163.4
(d, JC-F = 244.1 Hz), 161.7, 144.7, 142.9, 139.4, 131.1, 128.4, 128.1, 122.8, 119.1, 117.8, 116.1,
115.1, 52.3, and 16.3. MS (ESI) m/z (%, fragment): 298 (100); 227 (10); HRMS (m/z) for
C16H13N3FS: [M + H]+calcd = 297.0735, and [M + H] + measured = 297.0736.

1-(4-methoxybenzyl)-7-methyl-1H-thieno[3′,2′:3,4]benzo[1,2-d][1–3]triazole (10): 14 mg,
49% isolated yield; yellow oil; Rf (PE/E (80%)) = 0.62; 1H NMR (CDCl3, 600 MHz) δ/ppm:
7.69 (d, J = 8.7 Hz, 1H), 7.68 (d, J = 8.9 Hz, 1H), 7.20 (s, 1H), 7.14 (d, J = 8.6 Hz, 2H), 6.84 (d,
J = 8.8 Hz, 2H), 7.02 (s, 2H), 3.76 (s, 3H), 2.62 (s, 3H); 13C NMR (CDCl3, 150 MHz) δ/ppm:
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159.5, 144.7, 142.6, 139.3, 128.0, 127.4, 112.9, 118.9, 118.1, 115.0, 114.4, 55.1, 52.6, and 16.4. MS
(ESI) m/z (%, fragment): 310 (80); 121 (100); HRMS (m/z) for C17H16N3OS: [M + H]+calcd
= 309.0935, and [M + H] + measured = 309.0940.
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7-methyl-1-(thiophen-2-ylmethyl)-1H-thieno[3′,2′:3,4]benzo[1,2-d][1–3]triazole (11):
8 mg, 36% isolated yield; yellow oil; Rf (PE/E (80%)) = 0.60; 1H NMR (CDCl3, 600 MHz)
δ/ppm: 7.89 (d, J = 9.0 Hz, 1H), 7.68 (d, J = 8.7 Hz, 1H), 7.34 (s, 1H), 7.24 (d, J = 4.4 Hz,
1H), 7.00 (d, J = 3.7 Hz, 1H), 6.93 (d, J = 4.8, 3.8 Hz, 1H), 6.22 (s, 2H), 2.66 (s, 3H); 13C NMR
(CDCl3, 150 MHz) δ/ppm: 144.6, 142.8, 139.5, 137.4, 127.8, 127.3, 126.4, 126.1, 122.9, 119.0,
117.9, 115.1, 46.2, and 16.4. MS (ESI) m/z (%, fragment): 286 (100); 97 (30); HRMS (m/z) for
C14H12N3S2: [M + H]+calcd = 285.0394, and [M + H] + measured = 285.0392.

1-(furan-2-ylmethyl)-7-methyl-1H-thieno[3′,2′:3,4]benzo[1,2-d][1–3]triazole (12): 15 mg,
51% isolated yield; yellow oil; Rf (PE/E (80%)) = 0.58; 1H NMR (CDCl3, 600 MHz) δ/ppm:
7.88 (d, J = 8.7 Hz, 1H), 7.69 (d, J = 8.7 Hz, 1H), 7.43 (s, 1H), 7.37 (s, 1H), 6.32 (s, 2H), 6.04
(s, 2H), 2.69 (s, 3H); 13C NMR (CDCl3, 150 MHz) δ/ppm: 148.3, 144.5, 143.0, 142.6, 139.5,
128.1, 123.1, 118.9, 118.2, 115.0, 110.9, 109.1, 46.3, and 16.3. MS (ESI) m/z (%, fragment): 270
(100); HRMS (m/z) for C14H12N3OS: [M + H] + calcd = 269.0623, and [M + H]+measured =
269.0627.

1-(pent-4-en-1-yl)-1H-thieno[3′,2′:3,4]benzo[1,2-d][1–3]triazole (13): 8 mg, 45% isolated
yield; yellow oil; Rf (PE/E (60%)) = 0.78; 1H NMR (CDCl3, 600 MHz) δ/ppm: 7.97 (d,
J = 9.1 Hz, 1H), 7.80 (d, J = 9.4 Hz, 1H), 7.73 (d, J = 5.4 Hz, 1H), 7.68 (d, J = 5.7 Hz, 1H),
5.88–5.81 (m, 1H), 5.10 (d, J = 16.7 Hz, 1H), 5.07 (d, J = 9.2 Hz, 1H, 4.91 (t, J = 7.9 Hz,
2H), 2.23–2.15 (m, 4H); 13C NMR (CDCl3, 150 MHz) δ/ppm: 144.4, 139.8, 136.5, 128.5,
127.9, 122.6, 119.7, 118.9, 116.4, 116.1, 48.9, 30.5, and 29.0. MS (ESI) m/z (%, fragment): 244
(100); HRMS (m/z) for C13H14N3S: [M + H]+calcd = 243.0830, and [M + H] + measured =
243.0835.

3.4. In Vitro Biological Activity

PBMC isolation. Human peripheral blood mononuclear cells (PBMCs) were isolated
from buffy coats obtained from healthy adult volunteers. The buffy coats were diluted
with sterile PBS and layered over Lymphoprep (Axis-Shield Diagnostics, Dundee, UK).
Tubes were centrifuged for 35 min at 400× g (RT; acceleration and break turned off). After
centrifugation, the mononuclear ring was collected, transferred into a new 50 mL tube, and
washed thrice with sterile PBS. The remaining erythrocytes were lysed with an isotonic
solution of ammonium chloride (150 mM; Kemika, Zagreb, Croatia). The cell pellet was
resuspended in Roswell Park Memorial Institute (RPMI) 1640 medium (Lonza, Basel,
Switzerland) supplemented with 10% FBS (Biowest, Nuaillé France).

Treatment and stimulation of human PBMCs. Immediately after isolation, 200,000
PBMCs were seeded per well of a 96-well plate. Compounds were dissolved in 100%
dimethyl sulfoxide (DMSO, Sigma, Darmstadt, Germany), and serial dilutions in DMSO
were prepared and added to cells, with starting concentration for test compounds 100 µM
or 1 µM for reference dexamethasone. After pre-incubation for 1h with the compounds,
lipopolysaccharide (LPS) from E. coli 0111:B4 (Sigma, Darmstadt, Germany) was added
to cells at 1 ng/mL final concentration. Plates were incubated for 24 h at 37 ◦C, 5% CO2,
followed by the collection of supernatants for measurement of TNF-α and cell viability
assessment.
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Enzyme-linked immunosorbent assay (ELISA) and cytotoxicity analysis. TNFα
concentration in PBMC supernatants was measured using ELISA assay, using antibodies
obtained from BD Pharmingen (San Diego, CA, USA) and recombinant human TNFα
protein (standard) from R&D Systems (Minneapolis, MN, USA). Lumitrac 600 384-well
plates (Greiner Bio-One, Kremsmünster, Austria) were coated overnight with 1 µg/mL of
TNFα capture antibody diluted in phosphate-buffered saline (PBS, Thermo Fisher Scientific,
Waltham, MA, USA), followed by a washing step and blocking with 5% sucrose in assay
diluent (1% bovine serum albumin (BSA; Sigma, Darmstadt, Germany) in PBS) for 4 h at
RT. After the blocking step, the plates were washed, and samples/standards were added to
the plates. After overnight incubation at 4 ◦C, detection antibodies diluted in assay diluent
to a final concentration of 250 ng/mL were added. Following incubation for 2 h at RT,
plates were washed, and streptavidin-HRP (Thermo Fisher Scientific, Waltham, MA, USA)
solution was added (final concentration 500 ng/mL, prepared in assay diluent). Plates
were incubated for 20 min at RT in the dark and washed, followed by adding Luminol
substrate (Sigma, Darmstadt, Germany). Luminescence was measured using EnVision
2104 Multilabel Plate Reader (PerkinElmer, MA, USA), with an exposition time of 0.1 s.
To evaluate cell viability, Cell Titer Glo reagent was used (Promega, Madison, WI, USA)
according to the manufacturer’s instructions.

Data analysis. For ELISA, the blank was subtracted from measured RLU values,
and TNFα concentrations in samples were interpolated from the standard curve. QC
parameters for each plate were calculated from raw data. Percentages of inhibition of
each compound were calculated from obtained cytokine concentrations using the formula:
PIN = 100 − (((compound − no trigger)/(trigger − no trigger)) ∗ 100). For viability as-
sessment, the average luminescence value was calculated from all trigger vehicle samples,
and the percentage of vehicle value was calculated for all samples. The compound effect
was considered cytotoxic if reduction from a vehicle was ≥20%, and these concentrations
were excluded from further analysis. IC50 values of tested compounds were determined
in GraphPad Prism 9 software using nonlinear regression curve fit (four parameters, with
variable slope).

3.5. In Vitro ChE Activity Assay

The inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) was
assessed using a modified spectrophotometric method based on Ellman’s approach [30].
AChE (EC from electric eel) and BChE (EC from equine serum), along with Trizma base,
acetylthiocholine iodide (ATChI), S-butyrylthiocholine iodide (BTChI), and Galantamine
were procured from Sigma-Aldrich (Darmstadt, Germany). Additionally, 5,50-dithiobis-(2-
nitrobenzoic acid) (DTNB), known as Ellman’s reagent, was obtained from Zwijndrecht
(Antwerpen, Belgium). Galantamine served as a reference standard in the experiment.
The assessment of AChE/BChE activity was performed using a 96-well microplate reader
(IRE 96, SFRI Medical Diagnostics, Saint Jean d’Illac, France) at 405 nm. The measurement
lasted for 6 min at room temperature after the initiation of the enzymatic reaction. In each
well of the microplate, the following components were present: 180 µL of Tris-HCl buffer
(50 mM, pH 8.0), 10 µL of the respective enzyme (final concentration 0.03 U/mL), 10 µL of
the tested solution with varying concentrations (final concentrations ranging from 10 to
350 µM, depending on solubility), and 10 µL of DTNB (final concentration 0.3 mM). The
enzymatic reaction was initiated by adding 10 µL of ATChI/BTChI (final concentration of
0.5 mM prepared in Tris buffer) to each well. For the control measurement, a buffer solution
was used in place of the tested compound. Additionally, for non-enzymatic hydrolysis,
each measurement included a blank with the enzyme substituted by an equivalent buffer
amount. To ensure accuracy, the experiment was conducted in triplicate. The solvent used
in the experiment was ethanol. The percentage of enzyme inhibition was calculated using
the measured data based on the equation: inhibition (%) = [(Ac − AT)/Ac] × 100, where
Ac represents the enzyme activity without the test sample, and AT represents the enzyme
activity with the test sample, calculated as mean values ± standard deviation. The IC50
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value was determined through a nonlinear fit of compound concentration values using the
mean inhibition data.

3.6. Computational Details

The geometry optimizations of the chosen ligands were performed using the Gaus-
sian16 program package [31] at the M06-2X/6-31G(d) level of theory and then served as
inputs for subsequent molecular docking. The molecular docking studies were conducted
employing the Autodock program package [32]. The crystal structure 4EY7.pdb [33] from
the Protein Data Bank was utilized for AChE, while 1P0I.pdb [34] was employed for BChE.
Docking simulations were executed utilizing the Lamarckian Genetic Algorithm, generat-
ing 25 genetic algorithm dockings with 25 binding poses for each ligand. The residues of the
enzymes were kept rigid during the docking. The most stable complexes between protein
and ligand obtained by docking were used as starting structures for molecular dynamics
study. Protein–ligand complexes were solvated with a truncated octahedron of the OPC
water box and neutralized with Na+ ions using the Amber16 suite of programs [35]. The
ff14SB force field [36] was employed for the protein part of the enzyme, and the GAFF
force field [37] was used for ligands. Partial charges for ligands were derived using the
RESP procedure. Equilibrations of all four systems involved energy minimizations and
short (20 ps) MD simulations with systematic decreases to zero of the harmonic restraints
and relaxation of the volume and temperature with target values of the temperature and
pressure set to 300 K and 1 atm, respectively. Production MD simulation with no constraints
was performed in the duration of 30,000 ps, under NPT conditions (300 K and 1 atm).

4. Concluding Remarks

New naphtho- and thienobenzo-triazoles were synthesized through irradiation as pho-
toproducts derived from triazolo-stilbenes and triazolo-thienostilbenes synthesized using
the Wittig reaction. In vitro evaluation of their anti-inflammatory potential demonstrated
promising outcomes, with five naphtho-triazoles and seven thienobenzo-triazoles display-
ing effective inhibition of the proinflammatory cytokine TNF-α. Among the compounds
assessed for their inhibitory activity against acetylcholinesterase and butyrylcholinesterase,
three emerged as particularly promising: naphtho-triazoles 3 and 5, and thieno-triazole 13.
Interestingly, compounds 3 and 13 share the same 4-pentenyl substituent on the triazole
ring, yet only compound 3 exhibited inhibitory action on both cholinesterases, while 13
displayed selectivity towards BChE. Molecular docking studies of non-covalent complexes
formed between these ligands and cholinesterases unveiled that the primary stabilizing in-
teraction involved π-π stacking between the aromatic rings of the ligands, accompanied by
a hydrophobic alkenyl-π interaction when the pentenyl substituent was present. Molecular
dynamics simulations further confirmed the stability of these complexes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms241914676/s1, 1H and 13C NMR spectra of synthesized
compounds 1–13 (Figures S1–S78); MS spectra and HRMS analyses of synthesized compounds 1–13
(Figures S79–S91); free energies of binding obtained by docking (Tables S1 and S2); RMSD, RMSF,
and Rg for protein–ligand complexes derived by MD simulation (Tables S3 and S4).
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Synthesis, photochemistry and computational study of novel 1,2,3-triazole heterostilbenes: Expressed biological activity of their
electrocyclization photoproducts. Bioorg. Chem. 2022, 121, 105701. [CrossRef] [PubMed]
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