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Abstract: Extracellular vesicles (EVs) contribute to osteoarthritis pathogenesis through their release
into joint tissues and synovial fluid. Synovial fluid-derived EVs have the potential to be direct
biomarkers in the causal pathway of disease but also enable understanding of their role in disease
progression. Utilizing a temporal model of osteoarthritis, we defined the changes in matched syn-
ovial fluid and plasma-derived EV small non-coding RNA and protein cargo using sequencing
and mass spectrometry. Data exploration included time series clustering, factor analysis and gene
enrichment interrogation. Chondrocyte signalling was analysed using luciferase-based transcrip-
tion factor activity assays. EV protein cargo appears to be more important during osteoarthritis
progression than small non-coding RNAs. Cluster analysis revealed plasma-EVs represented a
time-dependent response to osteoarthritis induction associated with supramolecular complexes.
Clusters for synovial fluid-derived EVs were associated with initial osteoarthritis response and
represented immune/inflammatory pathways. Factor analysis for plasma-derived EVs correlated
with day post-induction and were primarily composed of proteins modulating lipid metabolism.
Synovial fluid-derived EVs factors represented intermediate filament and supramolecular complexes
reflecting tissue repair. There was a significant interaction between time and osteoarthritis for CRE,
NFkB, SRE, SRF with a trend for osteoarthritis synovial fluid-derived EVs at later time points to have
a more pronounced effect.

Keywords: extracellular vesicles; osteoarthritis; multi-omics

1. Introduction

Osteoarthritis (OA) is the most common equine joint disease characterised by car-
tilage degradation and changes to other joint tissues [1], severely affecting welfare and
performance leading to early retirement [2]. It results in substantial morbidity and mor-
tality [3]. Despite the huge socioeconomic importance of OA, our understanding of the
pathophysiological mechanisms involved is limited [4]. Characterised by synovitis [5],
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gradual destruction of the articular cartilage [6], formation of osteophytes [7] and remod-
elling of subchondral bone [8], its pathogenesis is complex, with age, previous joint injury,
joint loading and genetics among its most important risk factors. In the horse, there are
a number of risk factors for OA development including secondary joint trauma, farri-
ery, ageing and conformation (reviewed [9]). Whilst studying equine OA is important
to veterinary clinicians and researchers, there is also a prospect that the horse could be
utilised as a translational model to study EV-based therapies for joint diseases. This is
because this athletic species develops primary OA like humans, but provides substantially
larger sample volumes. OA is characterised by an increase in cartilage extracellular matrix
(ECM) degradation and a reduction in its production [10]. There are no disease-modifying
therapeutics available, with OA medication offering symptomatic pain relief only. Early
diagnosis is thus important, as substantial joint pathology is usually present at the time
of clinical diagnosis. Thus, biomarkers of early-stage OA are actively sought, and among
these, extracellular vesicles (EVs) are emerging as a potential source.

EVs are nanoparticles secreted by nearly all cells, enabling the transfer of proteins and
RNA between cells and tissues [11] and are found in serum, synovial fluid, articular cartilage
and joint cell culture media [12]. EV cargo is involved in cross-talk between cells within
joint tissues and affects ECM turnover and inflammation [13,14], thus representing a crucial
step in the regulation of OA (Supplementary File S1). The role of EVs in OA provides a
foundation to create novel disease-modifying treatments [13,15]. Promising results were
obtained in the therapeutic application of mesenchymal stem cell-derived EVs for cartilage
repair in experimental OA [16]. Additionally, EVs have therapeutic potential in rheumatoid
arthritis [13]. Synovial fluid-derived EVs have a close relationship with the pathogenesis of
arthritis [17]. Recent studies described synovial fluid-derived EVs as biomarkers for different
stages of joint disease [18], whilst we [15,19,20] and others [21] have interrogated EV cargo
using sequencing and metabolomics [22]. There are few studies on the EV protein cargo in
synovial fluid-derived EVs in OA [23,24] and none in the horse. We formerly identified that
differential expression of small nucleolar RNAs (snoRNAs) [25–27] and microRNAs [28,29]
contributes to this imbalance, which isa key mechanism in OA. We require biomarkers to
identify early OA before cartilage ECM is irreversibly degraded. Our group has identified
small non-coding RNAs (sncRNAs) distinguishing early equine OA synovial fluid [30] as well
as identifying synovial fluid proteins as potential biomarkers [31–36].

Our work has described the small non-coding RNA EV cargo in a temporal model
of equine OA [19]. In this present study, we have identified the differential EV protein
cargo in synovial fluid and plasma from the same samples using SWATH-MS (Sequential
Window Acquisition of all Theoretical Mass Spectra). This enabled in-depth local joint
insight, whilst also enabling future translation for potential blood-based biomarkers. We
test the hypothesis that synovial fluid and plasma-derived EV protein cargo can be used to
identify OA at an early stage before clinical signs and irreversible cartilage degradation.
Additionally, by determining changes in protein cargo in a longitudinal manner and
combining this data using a multi-omics approach with small non-coding RNA EV data,
we may be able to further elucidate the pathogenesis of early OA.

2. Results

2.1. Model Outcome

We have previously described the synovial membrane score and histological eval-
uation of the third metacarpal bone [19,37] at the end point of the model (day 70 post
induction). Briefly, the end point synovial membrane scores were significantly increased
for the OA joints compared to control joints (p < 0.05), including cellular infiltration, intimal
hyperplasia, subintimal oedema and total final histological score. Histological evaluation of
the third carpal bone cartilage demonstrated significantly increased scores for the OA joints
compared to control joints (p < 0.05), including chondrocyte necrosis, cluster formation,
focal cell loss and final score.
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2.2. EV Characteristics

EV characteristics for plasma and synovial fluid-derived EVs at all time points have
been reported previously [19]. Briefly, nanoparticle tracking analysis identified the mean
and mode particle size (±s.d. and range) for control synovial fluid to be 219.8 (±49.7,
114.6–360.3) nm and 180.9 (±44.5, 91.6–319.7) nm, OA synovial fluid 221.8 (±40.2,
154.9–312.1) nm and 195.0 (±64.8, 121.7–407.9) nm and plasma 158.4 (±18.9, 125.0–203.7)
nm and 123.3 (±22.3, 90.4–163.2) nm. For synovial fluid-derived EVs, no statistical dif-
ference in size, size distribution or concentration between the control and OA joints was
identified. However, for plasma-derived EVs, a reduction in the mean EV size was identi-
fied on day 49 (147.3, ±11.2, 133.4–158.2) nm compared to day 0 (167.1, ±18.5, 144.3–183.0)
nm (p = 0.01). Exoview analysis identified positive staining for CD63 and CD81 markers on
both synovial fluid and plasma EVs.

2.3. Characterisation of the Equine Plasma and Synovial Fluid EV Proteome

The EV spectral libraries initially identified 444 and 2271 proteins in plasma and
synovial fluid, respectively. At the individual sample analysis level, 259 proteins were
identified in at least one sample from plasma-derived EVs and 1201 from synovial fluid-
derived EVs [19].

We filtered the data by two criteria: each protein needed complete observations for
all samples for at least one time point and <30% missing values. This was so we could
make statistical inferences on the same data downstream in the analysis [38,39]. After
filtering, there were 331 proteins for synovial fluid-derived EVs and 203 for plasma-derived
EVs. The overlap of proteins shared between plasma and synovial fluid-derived EVs after
filtering and quality control is shown in Figure 1A. The cargo of the synovial fluid EVs
was found to be more heterogeneous than plasma EVs and varied considerably sample
to sample (Supplementary File S2C,D). Among all the filtered proteins, 102 overlapped
between the synovial fluid EVs and plasma EVs.

We carried out over-representation analysis (ORA) on the filtered proteins for the
plasma (Figure 1B) and synovial fluid (Figure 1C), to identify which gene ontology (GO)
terms were enriched in the EVs compared to the whole equine proteome [40]. ORA
analysis identified several terms that were functionally enriched in EV cargo for both
biofluids compared to the whole proteome including ‘complement activation classical
pathway’, ‘complement activation alternative pathway’ and ‘serine-type endopeptidase
inhibitor activity’. These terms are all in keeping with the known role of EVs driving
tissue inflammation and repair [15,41–44] and support their potential as biomarkers of OA
progression. However, there were also terms unique to each biofluid. In plasma, we saw
several terms relating to lipoproteins and proteasome were enriched. In synovial fluid,
the term ‘leukocyte cell-cell’ adhesion was uniquely enriched. Overall, this step served to
establish that the proteins we identified were in keeping with known EV biology but also
demonstrated that different equine biofluids have their own particular proteomic signature.
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Figure 1. Proteins identified in plasma and synovial fluid-derived EVs. (A) Venn diagram showing
shared and discrete proteins identified in EVs from each biofluid after filtering. Proteins were first
filtered using the package DEP and then by filtering by % missing values (rows with >30% missing
values were filtered). (B) Dotplot of ORA results from plasma-derived EV proteins versus the whole
equine proteome. (C) Dotplot of ORA results from synovial fluid-derived EV proteins versus the
whole equine proteome. The colour of dots relates to the adjusted p-value, size of dots relates to the
number of proteins that map to each GO term.

2.4. A Multivariate Approach Identified a Separation by Day for Proteins from Plasma-Derived
EVs

After characterising the respective cargos of plasma and synovial fluid-derived EVs,
we then investigated whether these cargos could be used to identify markers of OA pro-
gression across time. Firstly, we used multi-level principal component analysis (mPCA) to
explore the variance in our data and whether this variance corresponded to a biological
effect. We used mPCA over classical PCA as this accounts for intraclass correlation within
horses across repeated measurements. Following multi-level decomposition, we derived
principal components that captured the variance in our data. In plasma EVs, PC1 and
PC2 accounted for 28% and 14% of the variance, respectively, and allowed us to see some
separation by days since induction across both PCs (Figure 2A). Pearson’s correlation
demonstrated moderate but significant correlation (0.43*) between PC1 and days since
induction. In the synovial fluid-derived EVs, PC1 and PC2 captured 30% and 16% of the
variance, respectively; however, this variance did not appear to correspond to days since
OA induction (Figure 2B) or disease (Figure 2C), as there was no significant correlation
between any of the PCs and biological factors.
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Figure 2. Scatterplots showing the mPCA results of plasma and synovial fluid-derived EV proteomics
data. The x-axis corresponds to the variance captured by PC1 and the y-axis corresponds to the
variance captured by PC2. The samples are projected into PC space and coloured by biological
factors to allow us to visualise if the variance corresponds to features of biological interest from
the phenotype table. (A) Plasma-derived EVs by time, (B) synovial fluid-derived EVs by time,
(C) synovial fluid-derived EVs by disease. The first two principal components are plotted. Samples
based on SWATH-MS. Each plotted point represents a sample, which is coloured by the time following
OA induction (days) and disease status control and osteoarthritis (OA). Treatment relates to the
number of days following OA induction.

2.5. Differential Expression of Plasma and Synovial Fluid-Derived EVs

Next, we carried out differential expression analysis on the filtered proteomics data
for plasma- and synovial fluid-derived EVs. ProDA was used for differential expression
analysis as it is specifically designed to handle proteomics data with high numbers of
missing values such as in our data [45]. It does this by modelling the missing values with
a probabilistic drop-out model rather than directly imputing them, reducing the odds of
false-positives. Table 1 shows the number of differentially expressed proteins in plasma
and synovial fluid-derived EVs for each time point compared to day 0 (p < 0.05) (modelled
as a series of pair-wise comparisons) as well as over the entire time course (time modelled
as a continuous variable). Supplementary File S3 contains the identities of each protein.

However, among these proteins Coagulation factor XIII A chain was the only signifi-
cant protein after correcting for FDR (set at 0.05) in plasma-derived EVs at day 35. As only
one protein was significant after correcting for FDR, we did not carry out any functional
analysis on the differential expression results. This study was low-powered, limiting the
amount of statistical inference we could do on the proteomics data, so instead we opted for
multi-omics integration to see if we could capture any latent factors that correspond to OA
progression or any features that co-vary across OA progression.
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Table 1. Number of differentially expressed proteins in plasma and synovial fluid-derived EVs
compared to day 0 (p < 0.05). Time was either handled as a series of pairwise comparisons against day
0 or as a continuous linear model; this was to identify proteins with linear and non-linear responses
to OA induction.

Biofluid Day (Versus Day 0) p-Value < 0.05

Plasma 10 4

Plasma 35 8

Plasma 42 5

Plasma 49 12

Plasma 56 8

Plasma 63 3

Plasma continuous 36

Synovial fluid 10 34

Synovial fluid 35 6

Synovial fluid 42 12

Synovial fluid 49 3

Synovial fluid 56 6

Synovial fluid 63 6

Synovial fluid continuous 2

2.6. Small RNA Sequencing Analysis Quality Control Prior to Multi-Omics Analysis

To carry out multi-omics integration, we used our previously published small RNA
sequencing data, as these data are matched and come from the same samples (a requirement
for many multi-omics techniques). Prior to using the small RNA sequencing data in the
multi-omics integration, we carried out a quality control step by diagnosing the source of
missing values (which was found to correspond to sequencing depth) and then filtering
again by missingness (Supplementary File S4).

We next carried out PCA to see if our remaining sequencing data captured relevant
biological variance. Following filtering, there were only two remaining plasma-derived EV
snoRNAs, snoRNA U3 and snord58, and two synovial fluid-derived EV snoRNAs, snoRNA
U3 and snord58 [14]. Therefore, we did not carry out PCA for the snoRNAs. The clustering
of samples in PCA space demonstrated no separation by days since induction, disease,
or horse for miRNA (Figure 3A), lncRNA (Figure 3B) or snRNA (Figure 3C). When all
sequencing data were combined (Figure 3D), plasma-derived EV samples showed a mild
separation by time across PC1 (24% variance explained). Furthermore, synovial fluid-EVs
appeared to show time separation, but this did not appear to be OA-specific. Overall, the
PCA results suggested that there was a mild biological signal in the data that could be used
for multi-omics integration.

2.7. Multi-Omics Time Series Reveals Patterns of Expression during OA Progression

Multi-omics time series clustering was used to identify which features (proteins and
small RNAs) co-vary together over time, and whether any of these clusters appear to
correspond to OA progression. This allowed us to identify potential global trends in
our data.

Multi-omic time series clustering was undertaken for plasma and synovial fluid-
derived EVs using the mfuzz algorithm (Figure 4). The ideal number of clusters was
identified using the elbow method. For plasma-derived EVs, cluster 4 appeared to represent
a time-dependent response to OA induction after day 10. The features with the highest
membership for this cluster were proteins. Clusters 2 and 3 had very similar profiles,
showing low variance across time, and contained a higher proportion of small non-coding
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RNAs. Cluster 1 had a distinct profile, though as it fluctuated it was difficult to speculate
how it translated to OA progression (Figure 4A,B). For the synovial fluid-derived EVs,
there were two clusters corresponding to an initial response at OA induction at day 10
(clusters 1 increased at day 10 and cluster 3 decreased at day 10). It appeared that clusters 5
and 6 were redundant due to a correlation between their centroids, whilst clusters 4 and 5
had inverse profiles at day 10 (Figure 4C,D).
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Figure 3. Exploratory data analysis using PCA plots. (A) microRNA, (B) lncRNA, (C) snRNA, (D) all
sequencing data combined with plasma-derived and synovial fluid-derived EVs shown for each class.
The first two principal components are plotted. The x-axis corresponds to the variance captured by
PC1 and the y-axis corresponds to the variance captured by PC2. Samples based on small non-coding
RNA sequencing data. Each plotted point represents a sample, the different horses are represented
as shapes and coloured by the time. Red–blue gradient represents plasma samples, blue–yellow
gradient represents synovial fluid samples.
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Figure 4. Time series multi-omics clustering using MFuzz. (A) Plasma centroid clustering using
fuzzy c-means, (B) per cluster membership for plasma, (C) synovial fluid centroid clustering using
fuzzy c-means, (D) per cluster membership for synovial fluid. For per cluster membership, each
individual protein belonging to the cluster is plotted on top of the centroid. The more intense the
colour, the higher the membership score.

To validate whether any of these clusters corresponded to a biological response rather
than noise, we carried out functional enrichment on their protein members. For plasma-
derived EVs, only cluster 4 had any significant GO terms associated with it.These were
primarily associated with organelles and supramolecular complexes (Figure 5A). For syn-
ovial fluid-EVs, only clusters 1 and 3 had significantly enriched GO terms. Cluster 1 was
highest at 10 days and appeared to be an immune response to the initial intervention
(Figure 5B). This is reflected in the enriched terms (immune response, humoral immune
response, complement activation).
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Figure 5. Overrepresentation analysis (ORA) of GO biological process terms enriched in the protein
component of multi-omics time series clusters. (A) Terms enriched in plasma-derived EVs for cluster 4,
(B) terms enriched in synovial fluid-derived EVs for cluster 1. The size of the dot represents the
number of features that match to that term and the colour represents the adjusted p-value.
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2.8. Multi-Omics Factor Analysis Demonstrates That Proteins Drive the Bulk of EV Cargo
Variation during OA Progression

Multi-omics time series clustering revealed that there were features (small RNAs and
proteins) that co-varied together across time after OA induction and that some of these
features appeared to correspond to a biological response. Next, we employed multi-omics
factor analysis for plasma and synovial fluid-derived EVs to see if we could reduce the
data to latent factors that captured the variance associated with OA progression. Latent
factors represent new features that are combinations of the original features from the data
(protein and small RNA) and can capture information that would otherwise be hidden.
The factors are composed of feature weights and can be used to extract knowledge from
complex datasets. In this case, a factor might correspond to the variance associated with
OA progression. We can then inspect the feature weights to see if any proteins/RNAs drive
the bulk of the variance.

We used MOFA2 to carry out the multi-omics factor analysis [46]. The MOFA2 model
produced six factors for both datasets, which were sufficient to capture the variation
present. For plasma-derived EVs, the proteomics data explained 50% of the variance and
the sequencing data explained 15% of the variance (Figure 6A). Factor 1 and factor 3 were
found to be somewhat correlated with each other.
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Figure 6. Multi-omics data integration for plasma-derived EVs (A–C) and synovial fluid-derived
EVs (D–F) using MOFA. Latent factors were identified by the model. (A) plasma-EV plot of variance
explained per modality, (B) number of features per view used to train the model for plasma-EVs,
(C) Pearson correlation between all factors identified by the model for plasma-EVs. (D–F) Multi-omics
data integration for synovial fluid-derived EVs using the MEFISTO implementation of MOFA2 with
multi-group (i.e., “control” and “OA”) comparisons. Latent factors were identified by the model that
identify sources of variation within each group. (D) Synovial fluid-derived EV plot of the overall
variance explained per modality per group, (E) number of features per view used to train the model
for the control and OA group in synovial fluid-derived EVs, (F) Pearson correlation between all
factors identified by the model for synovial fluid-derived EVs.

For synovial fluid-derived EVs, we employed a multi-group structure to capture
sources of variation within the control and OA groups over time. Interestingly, in the control
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group, the small non-coding RNA sequencing data contributed to a higher proportion
of the variance (>10%) than in the OA group (<5%) (Figure 6D–F). This suggested that
changes in protein cargo might be a more important driver of OA progression than changes
in the small non-coding RNA cargo.

The factor data for plasma-derived EVs protein heatmap for factor 1 are shown in
Figure 7A,B, which shows the Pearson correlation between covariates in the phenotype
data and latent factors. For both plasma and synovial fluid-derived EVs, the proteomics
and small non-coding sequencing data showed little integration for the latent factors
(Figures 7C and 8C). Generally, the variance captured by each factor was explained by either
the proteomics data or the small non-coding sequencing data, rather than a combination
of the two. This was demonstrated by the weightings for factor 1, where the highest
weighted proteins had a weighting > 0.8 and the highest weighted small non-coding RNAs
had a weighting < 0.025. This suggested the two-omics had different modalities and
were not correlated with each other. This complemented findings from the multi-omics
clustering analysis.
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Figure 7. Factor data for plasma-derived EVs. (A) Protein heatmap for factor 1, the columns are
ordered by day, whereas hierarchical clustering was carried out on the rows. The data were scaled for
each feature. (B) Pearson correlation between covariates in the phenotype data and latent factors.
Colour corresponds to log10 adjusted p-values. (C) Proportion of total variance (R2) explained by
each latent factor per modality. (D) Loadings of the top features of Factors 1 in proteomic data
(absolute weight). (E) Loadings of the top features of Factors 2 for sequencing data. (F) Loadings for
Factor 1 in sequencing data (absolute weight). Note that the signs are relative within a single latent
factor for biomarker weights.
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Note that the signs are relative within a single latent factor for biomarker weights.

We correlated the latent factors with phenotype (day, disease status) data. For the
plasma-derived EVs, factor 1 was significantly correlated with day and factor 3 slightly
correlated with day (in agreement with the two factors being correlated with each other).
Factors 5 and 6 were correlated with horse (Figure 7B). It appeared most of the variance
that correlated with phenotype came from the proteomics data (Figure 7C). The weightings
for the proteins contributing to factor 1 can be seen in Figure 7D. Figure 7E,F shows the
loadings of the top features of factors 2 and 1 in sequencing data, respectively.

For synovial fluid-EVs, factor 2 captured the variance between horses and was mainly
due to protein cargo (Figure 8A). For the synovial fluid-derived EVs, factor 6 was most
strongly correlated with day (Figure 8B), with factors 3 and 4 also being weakly correlated
with day. For factors 6 and 4, most of the variation came from the sequencing data and
for factor 3, most of the variation came from the proteomics data. The separation by day
for factor 3 was not very pronounced; however, there did appear to be a tendency for the
abundance of these proteins to be lower in the OA samples (Figure 8C,D). For factor 6, the
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separation by day was also not especially pronounced; however, there appeared to be a
trend for the abundance of these proteins to be lower in the OA samples (Figure 8D).

The weights of the different features contributing to factor 6 for sequencing are shown
in Figure 8E and contributing to factor 3 for protein data in Figure 8F.

As we established that the latent factors captured variation associated with features in
the phenotype data, especially for the plasma-derived EVs, we next wanted to map this to
biological processes to understand how the latent factors might drive OA progression. We
first used Cluster Profiler’s compare Cluster function to carry out simultaneous GSEA on all
the proteins contributing to the latent factors for plasma- and SF-derived EVs. Only factor
1 for plasma-derived EVs and factors 2 and 3 for SF-derived EVs had significantly enriched
GO terms, perhaps reflecting that these factors captured relevant biological variation rather
than technical variation. Notably, plasma-EV factor 1 showed significant enrichment for
lipid metabolism (Figure 9A), indicating that EVs may modulate lipid metabolism in OA.
SF-EVs factor 2 only had one enriched GO term, protein-containing complex assembly
(GO:0065003), but this did not appear to correlate with any phenotype data. SF-EVs factor 3
showed enrichment for intermediate filaments and supramolecular complexes (Figure 9C).
As this factor showed slight correlation with day, this could reflect tissue repair in response
to induction of OA or normal EV cargo transport during tissue turnover. Factor 6 did not
have any enriched GO terms, most likely because small ncRNAs derive the variation in
this factor.
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Figure 9. Functional enrichment of latent factors associated with covariates in the phenotype
data. Absolute weights of the proteomics data were used as a ranking metric for GSEA analysis.
(A) Dotplot of plasma-EV factor 1 GSEA results. The size of each dot is proportional to the number
of proteins that map to the term. The colour of the dot corresponds to the adjusted p-value after
correcting for FDR. (B) Sample GSEA plot for one of the plasma-EV factor 1 enriched GO terms. The
top portion of the plot shows the running enrichment score for the gene set. The middle section
shows where the members of the gene set appear in the ranked list. The bottom portion of the plot
shows the ranking metric. (C) Dotplot of SF-EV factor 3 GO term GSEA results, the interpretation
of this is the same as the plasma results above. (D) Sample GSEA plot for one of the SF-EV factor 3
enriched GO terms. Only factors 1 for plasma and factor 3 for synovial fluid had significant terms.
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2.9. Synovial Fluid-Derived EVs Induced Intracellular Chondrocyte Signaling

To validate whether EVs from the model have functional effects, synovial fluid-derived
EVs from the model were analyzed for the activity of 13 transcription factor complexes
representative of specific signalling pathways related to OA in SW1353 cells [47].

Four reporters showed potential changes with OA induction; CRE, NFKB, SRE, SRF
(Figure 10A–D). Next, we fit a linear fit interaction model to determine whether there
was an interaction between reporter value and control or OA-derived synovial fluid EVs
over time. All four reports displayed a time dependent increase in reporter activity in
OA-derived synovial fluid EVs. Figure 10F–I shows the fitted model for CRE, NFKB, SRE
and SRF. There was a significant interaction between time and OA for each reporter shown
following FDR correction (Figure 10J).
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Figure 10. Synovial fluid-derived EV signaling. (A) CRE, (B) NFKB, (C) SRE, (D) SRF showed
significant changes in reporter activity (false discovery rate < 1%). (E). Table of Wilcoxon ranking
statistical analysis test result for each time point. Response of transcription reporter assay over time
to synovial fluid-EVs for (F) CRE, (G) NFKB, (H) SRE, (I) SRF. (J) Table of linear interaction output.
The models were fitted using a linear interaction model in R using the lm() function. For each reporter
with a significant effect, the model was plotted using ggplot2. The fitted model is shown as a line
for the OA (blue) and control (red) SF-derived EVs. The 95% confidence intervals for each group are
shown as a shaded area. The raw data are included as individual points.
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3. Discussion

This is the first study to our knowledge that has interrogated temporally extracellular
vesicles in the development of OA in any species. Our combined analysis of omics datasets
has increased the understanding of the role of EVs in OA. We implemented a multi-omics
approach, integrating the proteomics data with our previously published small non-coding
RNA sequencing data to capture underlying trends occurring in OA EVs during disease
progression. Multi-omics time series clustering and factorisation captured variance that
was associated with time since OA induction. One of the primary findings of our research
approach was the demonstration that EV protein cargo appears to be more important
during OA progression than small non-coding RNA cargo. There was no correlation
between the two. Our novel synovial fluid versus plasma approach makes it possible to
identify plasma measurable biomarkers that reflect the synovial fluid status. We undertook
a DIA proteomics approach for our EVs. Using this, we identified 2271 and 444 proteins in
the synovial fluid and plasma libraries, respectively. These are similar numbers to other
studies [48,49]. Thus, we identified significantly fewer proteins in plasma-EVs. Proteomic
characterization of plasma-derived EVs is challenging due to the presence of a few highly
abundant plasma proteins, limiting the detection of lower abundant proteins. Indeed,
85% of the mass spectrometric data corresponds to the seven most abundant proteins
together [50]. Others have demonstrated that plasma depletion prior to EV isolation
provides slightly elevated protein coverage (474 vs. 386) [49], an approach that could be
useful for future studies.

The spectral data were characterised by a large number of missing values, especially
for the synovial fluid-derived EVs. Therefore, in our proteomics analysis we attempted to
determine whether the missing values were due to sampling error, technical limitations or a
biological factor by replacing the missing values with zeroes and carrying out unsupervised
clustering. We assumed that if the missing values clustered by a biological effect, they
were biological zeroes and could be included in downstream statistical analysis. However,
the clustering appeared to be at random and the missing values were most likely due to
sampling error (Supplementary File S5A,B).

It was notable that whilst fewer proteins were identified in the plasma-derived EVs,
overall these proteins were identified more consistently in all of the samples
(Supplementary File S5C). For synovial fluid-derived EVs, the maximum number of pro-
teins consistently identified in the samples was ~50 (Supplementary File S5D). This could
be reflective of the technical difficulty of working with synovial fluid compared to the
established biofluid plasma, or due to the increased abundance of EVs in plasma compared
to synovial fluid [19]. However, there is also some evidence that sampling at a disease site
provides a more complex mixture of EVs (and thus perhaps cargo) than sampling from
a circulating source [51]. Indeed, interrogation of the plasma and synovial fluid protein
libraries identified surface marker proteins for joint cells. We hypothesised that the source
of the EVs in the synovial fluid (multiple cell types adjacent to the fluid; chondrocytes,
synoviocytes, mesenchymal stem cells, bone) could contribute more to variability than the
EV cargo. Synovial fluid-derived EVs contained more surface markers for chondrocyte,
synoviocyte, mesenchymal stem cells than plasma, and synovial fluid-EVs alone contained
bone surface markers (Supplementary File S6).

Interestingly, despite the differences in plasma and synovial fluid-derived EV protein
cargo, many of the proteins mapped to the same GO terms, including proteins relating
to serine endopeptidase activity, which we had previously shown were modulated by
mesenchymal stem cell treatment [22]. Among the plasma-derived EVs, GO terms related
to lipid homeostasis (low-density lipoprotein particle, very-low-density lipoprotein particle,
spherical high-density lipoprotein) were more enriched compared to synovial fluid-derived
EVs. Apart from our group, there is only a single study which interrogated globally EV
cargo in equine OA. The group found that in EV-enriched pellets, saturated fatty acids
palmitic acid, stearic acid and behenic acid indicated OA when comparing samples from
horses with clinical disease. These observed fatty acid modifications could be detrimental
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and contribute to inflammatory processes and cartilage degradation in the disease [52].
Utilising the same samples using a targeted approach, they also identified an inverse
relationship between the OA grade and hylauronic acid–EV count [53]. Coagulation factor
XIII A chain was the only significant protein differentially expressed after correcting for
FDR. This was in plasma-derived EVs at day 35. This may be due to the small number of
horses used in the large animal study and the nature of this temporal study. Coagulation
factor XIII A chain promotes cross-linking between fibrin molecules at the final stage
of the blood coagulation cascade. Macrophages in the synovium are one of the sources
of Coagulation factor XIII A [54]. Interestingly, the plasma concentration levels of this
protein were associated with inflammatory arthritis and cartilage breakdown [55]. When
comparing our data to the literature, few studies have interrogated in an unbiased manner
the EV proteome of synovial fluid-EVs and none temporally. However, one human study
did identify haptoglobin, orosomucoid and ceruloplasmin as significantly up-regulated,
and apolipoprotein down-regulated in OA-EVs derived from female synovial fluid. In
males, they identified β-2-glycoprotein, and complement component 5 proteins as up-
regulated and Spt-Ada-Gcn5 acetyltransferase-associated factor 29 as down-regulated
in male OA EVs. However, this study did not apply FDR correction to their findings
and the EVs were isolated using ultracentrifugation alone, which is known to increase
contamination issues [56]. In our study, the horses consisted of two gelded males and two
mares; therefore, inference of sex could not be determined.

One of the advantages of our methods was that by reducing the data to latent factors,
we identified features in the data that may have been otherwise hidden. This is the first
study to describe that during OA progression, plasma EV content has altered lipid home-
ostasis, and this was despite no change in EV numbers [19]. Lipid metabolism is closely
related to the progression of OA [57], but the role of EVs in this process remains unclear.

This study has a number of limitations. As a large animal model, the study was limited
in terms of animal numbers. This was compounded by the longitudinal nature of the data
so that few proteins were significantly differentially abundant following FDR correction.
The volume of biofluids collected was limited and had been used in our previous work.
This, together with its use in multiple experiments, meant there was none left to validate
our findings with other methodologies.

When combining small RNA sequencing and proteomics data, there appeared to be
mild time series patterns of expression during OA progression. Following OA induction
for plasma-derived EVs, there was an initial decrease at 10 days followed by an increase
to day 63 in cluster 4. This was largely composed of proteins associated with organelles
and supramolecular complexes. The assembly of supramolecular complexes is associated
with signal transduction and regulates many signalling events (reviewed [58]). It could
be that the molecules within EVs during OA progression in our model are contributing
to the pathways regulating inflammation and cell death/survival. This is because it is
known that the regulation of the assembly and silencing of these complexes plays impor-
tant roles in these events. For the synovial fluid-derived EVs, there were two clusters
which correlated to an initial response at day 10. However, only cluster 3 had significant
GO-terms associated with it. These related to changes in immune response (humoral
immune response, complement activation); we predict these were due to the initial inter-
vention. Day 10 was the first time point taken, so the changes that were occurring in EV
content before this are unknown and warrant further study.

The use of luciferase reporter assays for studying cellular responses in biofluids such as
synovial fluid has been presented in relatively few studies [59]. This is the first time to our
knowledge that a luciferase reporter has been used to determine the biological responses in
EVs. We aimed to determine if signaling pathways could be affected directly by EVs from
our OA model. These assays could inform on relevant signaling pathway activity promoted
by extracellular vesicle cargo. The use of these assays could give information on signaling
pathways. We had previously used the assay to undertake the first mechanistic comparison
between non-OA and OA synovial fluid. Here, we highlighted that MAPKs, cPKC/NFkB
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and PI3K/AKT were crucial OA-associated intracellular signaling routes [47]. There was a
significant interaction between time and disease status of the synovial fluid-EVs for cAMP
response element (CRE), Nuclear factor-kappa B response element (NFKB), serum response
element (SRE) and serum response factor response element (SRF) reporters. As time pro-
gressed, CRE, NFKB, SRE, SRF reporter activity increased. When analyzing the static
time points, this appeared to be the greatest at day 56 but was not significantly different.
This may have been to the small number of donors for each time point or the large data
variation. As the changes particularly at day 56 looked convincing, we further interrogated
the data using a linear model and identified a significant interaction between OA-derived
EVs and time. There was a significant interaction between time and OA for CRE, NFkB,
SRE, SRF. Thus, transcription factor activity analysis identified increased activation of
NFkB, MAPK (i.e., SRE, CRE), RhoGTPase (i.e., SRF) and PKA (i.e., CRE) signaling in EVs
derived from synovial fluid in a time-dependent manner. Interestingly, in our previous
study, we described that NFkB, SRF and SRE were more strongly induced by OA-synovial
fluid than non-OA-synovial fluid. CRE and SRE are often associated with cellular growth
and differentiation. CRE is responsive to the transcription factors ATF and CREB, which
can be activated by both MAPK signaling and cAMP/PKA signaling [60]. Th While SRE
activation requires both MAPK/ERK and RhoA/ROCK signaling, SRF-RE is responsive to
RhoA/ROCK alone [61]. We propose, based on our previous studies, that equine synovial
fluid-EVs could induce phenotypic processes in chondrocytes including chondrocyte dedif-
ferentiation predominantly driven by ERK signaling via SRE but also via PI3K, ROCK and
JNK via activation of SRF and CRE. Chondrocyte fibrosis may be affected, directed via JNK
and CPC driven by CRE and NFkB, respectively. Inflammatory responses characterised by
transcription of chemokine genes dependent upon cPKC signalling through activation of
SRE and NFkB as well as ERK activationvia SRE could be affected. Finally, extracellular
matrix degradation mediated via cPKC and ERK signalling through activation of NFkB
and SRE could be downstream consequences. However, it is not proven to what extent
the EVs within SF contribute to the signaling induction evident here. We propose to study
the ability of extracellular vesicles from a variety of sources to effect the chondrocyte and
synoviocyte phenotype. It is clear that EV cargo comprising integrated sets of biological
information can impact cell signaling. As we have demonstrated that OA-synovial fluid can
induce chondrocyte proliferation and protein translation in human articular chondrocytes
(HACs) to a greater degree (double) than non-OA-synovial fluid [47], it would be beneficial
to determine if EVs from these sources elicit the same effects.

4. Materials and Methods

All reagents are Thermo Scientific, Altringham, UK unless otherwise stated.

4.1. Horses and Study Design, Induction of Osteoarthritis

All experiments are fully documented in our previous manuscript [19]. In brief,
Danish Animal Experiments Inspectorate (permit 2017-15-0201-01314) and the local ethical
committee of the Large Animal Teaching Hospital, University of Copenhagen approved the
experimental protocol. Procedures were undertaken according to EU Directive 2010/63/EU
for animal experiments.

Four skeletally mature Standardbred trotters were included in this study (two mares
and gelded males). As previously described, OA was surgically induced in the left middle
carpal joint and the right middle carpal joint underwent sham surgery [62]. Plasma plus
synovial fluid, sampled from both middle carpals before and following OA induction
were collected. Two weeks following OA induction, horses were exercised with 2 min of
trot (4.4–5.3 m/s), 2 min of fast trot/gallop (9 m/s) and 2 min of trot (4.4–5.3 m/s) for
5 days/week on a treadmill.
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4.2. Synovial Fluid and Plasma Sampling

Synovial fluid and plasma samples were obtained from both middle carpal joints prior
to (day 0) and 10, 35, 42, 49, 56, 63 days following surgery. Biofluids were processed within
one hour and stored at −80 ◦C immediately following centrifugation.

4.3. Post-Mortem Examination

Following euthanasia, cartilage and synovium from the middle carpal joints were
placed in neutral buffered 10% formalin and processed for histology with staining for
haematoxylin and eosin and safranin O (cartilage only). Grading of the synovial membrane
and cartilage was performed [2].

4.4. EV Isolation

The synovial fluid and plasma collected on days 0, 10, 35, 42, 49, 56 and 63 from
OA and control joints were thawed, and synovial fluid was subsequently treated with
1 µg/mL hyaluronidase (from bovine testes; Sigma–Aldrich, Gillingham, WI, USA) for 1 h
at 37 ◦C. Both the synovial fluid and the plasma were centrifuged at 2500× g for 10 min
and 10,000× g for 10 min at 4 ◦C. EVs were subsequently isolated by size exclusion chro-
matography using qEV single columns (IZON, Lyon, France) following the manufacturer’s
instructions. Briefly, 3.5 mL of phosphate-buffered saline (PBS; Sigma–Aldrich, Gillingham,
United Kingdom), previously processed using a 0.22-µm polyethersulfone filter (Sartorius,
Göttingen, Germany) was passed through the column, followed by 150 µL of synovial fluid
or plasma. The first five 200 µL flowed through fractions were discarded, and the following
five 200 µL fractions pooled (isolated EVs). Isolated EVs were subsequently concentrated
to a volume of 100 µL using a 2 mL 100,000 kDa Vivaspin column (Sartorius).

4.5. EV Characterisation

EVs were characterised using nanoparticle tracking analysis (Nanosight NS300,
Malvern Panalytical Ltd., Malvern, UK) and Exoview (Nanoview, Malvern, UK), as de-
scribed previously [19].

4.6. Plasma and Synovial Fluid-Derived EV Spectral Library Preparation for Proteomics

EVs were isolated from an 8 mL pool of all study plasma samples. For synovial
fluid-derived EVs, 11 mL equine synovial fluid was used. This was a SF pool derived
from our equine musculoskeletal biobank (VREC561), with samples collected from our
Clarke et al. study [15] and samples from the present study. For both libraries, the pools
were centrifuged at 100,000× g and 4 ◦C for 70 min and then resuspended in 200 µL 6M
urea/1M ammonium bicarbonate/0.5% sodium deoxycholate. The sample was transferred
to a 1.5ml Eppendorf and sonicated to disrupt the vesicle membranes. An aliquot of 10 µL
was analysed by Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE),
resulting in a total protein estimate of 100 µg. The sample was reduced and iodoacetylated
prior to the addition of 4 µg Trypsin/LysC (Promega < Southampton, UK). It was incubated
at 37 ◦C for 3 h, urea concentration was reduced by the addition of 1 mL of water, and
then incubation continued overnight at 37 ◦C. The next day, 4 mL cation exchange buffer A
(10 mM KH2PO4/25% ACN pH3) was added and the pH was adjusted to 3 with concen-
trated phosphoric acid. The sample was filtered through a 0.2 µm filter and the entire
sample was loaded onto a Polysulfoethyl. A strong cation-exchange column (200 × 4.6 mm,
5 µm, 300 Å; Poly LC, Columbia, SC, USA) was installed on an Agilent 1100 system (Agilent
Technologies, Santa Clara, CA, USA). Peptides were eluted using a gradient from 0–15%
solvent B (1 M KCl in 10 mM KH2PO4/25% ACN pH3) in 45 min and 15–50% solvent B
in 15 min at a flow rate of 1 mL/min, and 2 mL fractions were collected. The fractions
were evaporated to dryness and desalted using a macroporous C18 high-recovery reversed
phase column (4.6 × 50 mm, Agilent Technologies, Santa Clara, CA, USA) installed on
an Agilent 1260 system before being dried once more. The peptides were resuspended
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in 10 µL 0.1% formic acid just prior to liquid chromatography tandem mass spectrometry
(LC-MS/MS) analysis.

Half of each of the 16 fractions was loaded onto a trap column (nanoACQUITY UPLC
Symmetry C18 Trap Column (Waters, Manchester, UK)) installed on an Eksigent NanoLC
415 (Sciex, Framingham, MA, USA) and washed for 10 min with 2% ACN/0.1% formic
acid. Peptides were separated on a bioZEN 2.6 µm Peptide XB-C18 (FS) nano column
(250 mm × 75 µm, Phenomenex, Torrance, CA, USA) using a gradient from 2−50%
ACN/0.1% formic acid (v/v) over 120 min at a flow rate of 300 nL/min. Data-dependent
acquisition was performed on a Triple TOF 6600 (Sciex, Frammingham, MA, USA) in
positive ion mode using 25 MS/MS per cycle (2.8 s cycle time), and the data were searched
using ProteinPilot 5.0 (Sciex, Frammingham, MA, USA) and the Paragon algorithm (Sciex,
Frammingham, MA, USA) against the horse proteome (UniProt Equus cabullus reference
proteome, 9796, May 2021, 20,865 entries). Carbamidomethyl was set as a fixed modifica-
tion of cysteine residues and biological modifications were allowed. The data were also
searched against a reversed decoy database and proteins lying within a 1% or 5% global
false discovery rate (FDR) were included in the library. For retention time alignment of
SWATH data, the library was regenerated with no biological modifications allowed.

4.7. Plasma and Synovial Fluid-Derived EV Sample Preparation for SWATH-MS

EVs isolated from individual plasma and synovial fluid samples were centrifuged
at 100,000× g and 4 ◦C for 45 min and were then resuspended in 100 µL 6 M urea/1 M
ammonium bicarbonate/0.5% sodium deoxycholate. The samples were sonicated and 10 µL
was set aside for analysis by SDS-PAGE. Following reduction and iodoacetylation, samples
were incubated with a 1:1 mixture of hydrophilic and hydrophobic magnetic carboxylate
SpeedBeads (Cytiva, Marlborough, MA, USA) (12 µL beads in total) in the presence of
50% ethanol for 1 h at 24 ◦C and 1000 rpm. After washing with 80% ethanol, the beads
were resuspended in 100 µL 100 mM ammonium bicarbonate and 2.4 µg trypsin/LysC was
added. The samples were incubated overnight at 37 ◦C and 1000 rpm. The supernatants
were collected, acidified by the addition of 900 µL 0.1% trifluoroacetic acid and desalted
as above. The dried fractions were resuspended in 10 µL 0.1% formic acid just prior to
LC-SWATH-MS analysis.

Aliquots of 5 µL were delivered into a TripleTOF 6600 mass spectrometer (Sciex,
Frammingham, MA, USA), as described above, and the same 2 h gradient was applied.
SWATH acquisitions were performed using 100 windows of variable effective isolation
width to cover a precursor m/z range of 400–1500 and a product ion m/z range of 100–1650.
Scan times were 50 ms for TOF-MS and 33 ms for each SWATH window, giving a total cycle
time of 3.7 s. Retention time alignment and peptide/protein quantification were performed
by Data-Independent Acquisition by Neural Networks (DIA-NN) 1.8 [63], using the same
reference horse proteome as above to reannotate the library, a precursor FDR of 1% and
with a match between runs and unrelated runs selected. Proteins with missing values were
removed from the protein group matrix prior to analysis using Partek Genomics Suite 7.18
(Partek Inc, Chesterfield, MO, USA).

Proteomics data are available via ProteomeXchange with identifier PXD041515.

4.8. Small RNA Sequencing of EVs

Plasma and synovial fluid-derived EV small non-coding alterations in our temporal
model of OA using the same samples analysed with proteomics have been previously
published [19] and are also available at GEO ID GSE200330.

We investigated whether the missing values evident in the small RNA-sequencing
data (microRNAs, snRNAs, snoRNAs, lncRNA) were true zeroes or sampling zeroes
(due to sequencing depth). Pearson correlation of the total number of missing values by
sequencing depth and principle component analysis (PCA) with complete observations vs
PCA with missing values as zeroes were used. Both suggested the zeroes were sampling
zeros rather than biological zeros (Supplementary Files S1 and S2). Therefore, for further
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data processing, we filtered rows that had >60% zeros and replaced the zeros with NAs.
The threshold for missingness was set at this level due to the lower number of features
and MOFA2′s robustness to missing values. As we only had tRNA data available for the
plasma, we did not include this class of small RNAs in further analysis.

4.9. Reporter Gene Assay

To determine the functional effects induced by extracellular vesicles derived from
synovial fluid, we analysed the activity of transcription factor complexes representative of
specific signalling pathways we have previously demonstrated to have a role in OA [47,64].
Stably transduced response element (i.e., NFκB-RE, SBE, NFAT5-RE, TCFLEF-RE, CRE,
ARE, AP1, SRE, SRF-RE, SIE, ISRE, GRE, NB) driven Nano luciferase SW1353 (HTB-
94, ATCC) reporter cell lines were generated according to a previously published proto-
col [47]. Reporter cells were trypsinized and re-seeded (60.000 cells/cm2) into 384-well
plates (Greiner Bio-One, Stonehouse, UK) and cultured overnight with Dulbecco’s Mod-
ified Eagles Medium (DMEM/F12) supplemented with 0.5% foetal calf serum. Serum-
starved cells were stimulated with 10% synovial fluid-derived extracellular vesicles for six
hours. Samples used for this study were identical to those used for proteomics; synovial
fluid was obtained from both middle carpal joints prior to (day 0) and 10, 35, 42, 49, 56,
63 days following surgery (n = 4 donors). Stimulation with 0.1% foetal bovine serum was
used as a control. After stimulation, cells were lysed using 15 µL Milli-Q. Following the
addition of Nano-Glo reagent (1:1 ratio; Promega, Southampton, UK), luminescence was
quantified using the Tristar2 LB942 multi-mode plate reader (Berthold Technologies, Bad
Wildbad, Germany).

4.10. Statistical Analysis

4.10.1. Single-Modality Approaches

All statistical analysis was carried out using the R statistical programming environ-
ment [15]. During quality control of the proteomics data, different normalisation methods
were assessed using NormalyzerDE [65]. Due to the high number of missing values in
some samples shifting the distributions higher (assessed using the DEP package), data
were log2 transformed [66]. We assessed whether missing values were absent completely
at random (MCAR), missing not at random (MNAR) or missing at random (MAR) by
replacing them with zeroes and carrying out unsupervised clustering. The samples were
then filtered in a group-aware manner using the DEP package so that each protein needed
complete observations for at least one time point, followed by an additional filtering step
to remove any proteins with >30% missing values.

Differential expression analysis was carried out using the proDA package [36]. We
used proDA in favour of other more established packages due to the sparsity of the data,
as proDA implements a powerful probabilistic drop-out model to handle the missing
values. We checked for agreement in our results using the more established package:
limma. For both packages, we modelled time as a continuous variable and as a series of
pair-wise comparisons to account for linear and non-linear responses. All statistical tests
were corrected for FDR using the Benjamini–Hochberg method. Results were considered
significant at 5% FDR.

4.10.2. Statistical Analysis of Reporter Data

Reporter intensities were expressed as ratios to intensities observed following stim-
ulation with 0.1% foetal bovine serum. To ascertain whether a reporter had biologically
relevant levels of expression, normalised ratios were ordered and plotted from highest
to lowest. NFkB, SRE, SRF and CRE reporters were retained for downstream analysis.
Univariate statistical analysis for each reporter was performed using a Wilcoxon rank
test to assess differences between Control and OA samples at each time point. Noting a
time-dependent effect, further linear interaction models were built to assess the interaction
between Control and OA samples for each reporter with time as a continuous variable.
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4.10.3. Multi-Omics Time Series Clustering

For both stages of the multi-omics analysis, we integrated the proteomics data obtained
here with our previously published sequencing data. The processed count data was TMM-
normalised to account for sequencing depth, then converted into log-CPM values using the
EdgeR-limma workflow [67].

To carry out time series clustering, the proteomics data were mean and variance filtered
to remove proteins that had low expression and low variance (as clustering methods are
sensitive to noise). The proteomics and sequencing data were then Z-score transformed
and concatenated following previously published guidance [68]. The combined data were
analysed using the mfuzz soft-clustering algorithm and cross-validated using the dtwclust
hard-clustering algorithm [69]. The number of clusters were selected using the elbow
method (four or less for plasma and six or less for synovial fluid).

4.10.4. Multi-Omics Factor Analysis

Multi-Omics Factor Analysis (MOFA) model training was undertaken on the 26 plasma
samples and 52 synovial fluid samples using the MOFA2 package [46]. The inputs for
the MOFA model training comprised 99 non-coding RNAs, 203 proteins for plasma and
117 non-coding RNAs and 331 proteins for synovial fluid. Package default options were
used for training except for convergence mode, which was set to “slow” and max iterations,
which were set to “3000”. Due to the small sample size, we set the number of factors to
six. Each latent factor had to explain a minimum of 2% variance in at least one data time.
As the synovial fluid design was more complex, with treatment and control across time,
we used the MEFISTO implementation of MOFA2 with a multi-group design [70]. Latent
factors and feature loadings were then extracted for down-stream analysis.

4.10.5. Functional Enrichment

Over-Representation Analysis (ORA) and Gene Set Enrichment Analysis (GSEA) were
carried out using the ClusterProfiler package [71]. For the initial protein identification
analysis, we used the entire equine proteome as the background. For later analysis, we
used the filtered protein list from the relevant biofluid as the background. For the GSEA,
the proteins were ranked by fold-change or factor loading for the differential expression
and factor analysis, respectively. Gene ontology (GO) term annotation for the proteins
was extracted from the Uniprot database. The full parent-child term map was then built
using the buildGOmap function. We used the pRoloc package to convert GO identifications
to names.

4.10.6. Visualisation

For PCA and multi-level PCA, we only used data that had complete observations.
Any rows with missing values were filtered out. The plots that depicted study data were
created using ggplot, pheatmap or the VennDiagram packages in R.

5. Conclusions

Ultimately, EVs have numerous potential roles in OA clinical research and application,
including the identification of disease specific biomarkers, the administration of non-
diseased EVs as a targeted therapeutic, the blocking of EV signaling cascades and EV
release, the disruption of EV cargo using novel therapeutics to prevent disease progression
and as a surrogate for drug delivery. This study has identified a series of proteins which are
differentially abundant between control and diseased plasma- and synovial fluid-derived
EVs. Thus, these proteins may not only have potential application as markers of OA
status and progression, but may ultimately help to further characterise the differences
between healthy and OA EVs, aiding the compositional development of synthetic non-
diseased EVs as a therapeutic. Crucially, this study has also identified that OA synovial
fluid-derived EVs exhibit a differential effect on four response elements, which upstream
are involved in G protein-coupled receptor, cytokine and growth factor signaling. This
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therefore demonstrates potential mechanistic disruptions to normal chondrocyte signaling
caused by OA synovial fluid-derived EVs within the joint. Thus, this evidence supports the
hypothesis that therapeutic targeting of OA synovial fluid-derived EVs or their cargo may
provide a viable option for disease-specific OA treatment.
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