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Abstract: MiRNAs are critical regulators of numerous physiological and pathological processes.
Ascosphaera apis exclusively infects bee larvae and causes chalkbrood disease. However, the function
and mechanism of miRNAs in the bee larval response to A. apis infection is poorly understood.
Here, ame-miR-34, a previously predicted miRNA involved in the response of Apis mellifera larvae
to A. apis invasion, was subjected to molecular validation, and overexpression and knockdown
were then conducted to explore the regulatory functions of ame-miR-34 in larval body weight and
immune response. Stem-loop RT-PCR and Sanger sequencing confirmed the authenticity of ame-
miR-34 in the larval gut of A. mellifera. RT-qPCR results demonstrated that compared with that
in the uninfected larval guts, the expression level of ame-miR-34 was significantly downregulated
(p < 0.001) in the guts of A. apis-infected 4-, 5-, and 6-day-old larvae, indicative of the remarkable
suppression of host ame-miR-34 due to A. apis infection. In comparison with the corresponding
negative control (NC) groups, the expression level of ame-miR-34 in the larval guts in the mimic-
miR-34 group was significantly upregulated (p < 0.001), while that in the inhibitor-miR-34 group was
significantly downregulated (p < 0.01). Similarly, effective overexpression and knockdown of ame-
miR-34 were achieved. In addition, the body weights of 5- and 6-day-old larvae were significantly
increased compared with those in the mimic-NC group; the weights of 5-day-old larvae in the
inhibitor-miR-34 group were significantly decreased in comparison with those in the inhibitor-NC
group, while the weights of 4- and 6-day-old larvae in the inhibitor-miR-34 group were significantly
increased, indicating the involvement of ame-miR-34 in modulating larval body weight. Furthermore,
the expression levels of both hsp and abct in the guts of A. apis-infected 4-, 5-, and 6-day-old larvae were
significantly upregulated after ame-miR-34 overexpression. In contrast, after ame-miR-34 knockdown,
the expression levels of the aforementioned two key genes in the A. apis-infected 4-, 5-, and 6-day-
old larval guts were significantly downregulated. Together, the results demonstrated that effective
overexpression and knockdown of ame-miR-34 in both noninfected and A. apis-infected A. mellifera
larval guts could be achieved by the feeding method, and ame-miR-34 exerted a regulatory function
in the host immune response to A. apis invasion through positive regulation of the expression of hsp
and abct. Our findings not only provide a valuable reference for the functional investigation of bee
larval miRNAs but also reveal the regulatory role of ame-miR-34 in A. mellifera larval weight and
immune response. Additionally, the results of this study may provide a promising molecular target
for the treatment of chalkbrood disease.
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1. Introduction

Apis mellifera, an excellent bee species with worldwide distribution, pollinates for
a substantial quantity of crops and wildflowers [1]. In addition, A. mellifera is widely
reared in beekeeping practice and benefits humans by producing abundant api-products
such as honey and royal jelly [2]. Ascosphaera apis is a widespread fungal pathogen that
exclusively infects bee larvae, giving rise to chalkbrood disease, which severely weakens
colony population and productivity [3].

MiRNAs are endogenous small RNAs (sRNAs) ranging from 18 nt to 25 nt in length [4].
Accumulating evidence demonstrates that miRNAs are not only crucial regulators in cell
metabolism, proliferation, differentiation, and apoptosis [5–7], but also key players in
modulating a great number of pivotal biological processes such as development and immu-
nity [8,9]. In honey bees, miRNAs have been suggested to be involved in the regulation
of development [10], queen spawning [11], dance behavior [12], and immune defense [13].
A subseries of A. mellifera miRNAs had been documented until now, e.g., Cristino et al. [14]
found that miR-932 was engaged in the formation of plasticity and long-term memory of
A. mellifera neurons; Freitas et al. [15] reported that miR-34-5p regulated the expression
of pair-rule and cytoskeleton genes in A. mellifera and further affected embryonic devel-
opment; Michely et al. [16] discovered that both miR-12 and miR-124 exerted regulatory
functions in early memory formation in A. mellifera workers; Liu et al. [17] observed that the
expression level of ame-miR-279a in the heads of A. mellifera nurse bees was significantly
higher than that in the heads of forager bees, overexpression of ame-miR-279a significantly
decreased the proboscis extension response (PER) of workers to saccharose solution, while
ame-miR-279a knockdown significantly enhanced workers’ PER. By feeding or injecting
specific mimics and inhibitors, effective overexpression and knockdown of miRNAs could
be achieved in a series of insects including honey bees [16,18].

MiR-34 was once called longevity-related miRNA since it played a role in promoting
longevity [19]. Zhang et al. [20] reported that miR-34 promoted the apoptosis of lens
epithelial cells of cataract rats via the TGF-β/Smad signaling pathway. Ye et al. [21]
found that miR-34 participated in the wing polyphenism regulation of rice planthoppers.
In addition, previous studies showed that miR-34 played a critical part in modulating
the physiological and pathological processes of Drosophila melanogaster. For example,
Xiong et al. [22] discovered that D. melanogaster miR-34 was involved in the regulation of
steroid signal transduction and immune defense against bacteria, overexpression of miR-34
resulted in an enhanced host immune response, whereas miR-34 knockdown attenuated
the immune response of D. melanogaster. Lai et al. [23] documented that miR-34 prevented
chronic neurodegeneration that prevented senescence in D. melanogaster and suppressed
development-related axonal pruning in mushroom γ neurons. However, study on miR-34
in honey bees is still lacking until now. At present, whether and how miR-34 participates
in regulating the body weight and immune response of honey bees is still unclear.

Here, the expression and sequence of A. mellifera ame-miR-34 were verified using
stem-loop RT-PCR and Sanger sequencing, followed by prediction and analysis of ame-miR-
34-targeted genes; furthermore, a functional investigation of ame-miR-34 was conducted
based on overexpression and knockdown to decipher the effect of ame-miR-34 on larval
body weight and immune response to A. apis infection. The findings in this current work
could not only unravel the regulatory function of ame-miR-34 in the body weight and
immune response of A. mellifera larvae but also provide a candidate molecular target for
the diagnosis and control of the chalkbrood disease.

2. Results
2.1. Molecular Verification of ame-miR-34 Expression and Sequence

Agarose gel electrophoresis showed that the fragment with the expected size (ap-
proximately 82 bp) was amplified from the 6-day-old larval gut (Figure 1A). In addition,
Sanger sequencing results suggested that the fragment sequence was consistent with the
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predicted sequence of ame-miR-34 based on transcriptome data (Figure 1B). The results
were indicative of the existence and expression of ame-miR-34 in the A. mellifera larval gut.
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Figure 1. Validation of expression and sequence of ame-miR-34 in the A. mellifera larval gut.
(A) Agarose gel electrophoresis for the amplification product from stem-loop RT-PCR of ame-miR-34;
(B) Sanger sequencing of the amplified fragment from ame-miR-34.

2.2. Expression Level of ame-miR-34 in the Larval Guts was Altered Due to A. apis Infection

Stem-loop RT-PCR results indicated that the expected fragment (approximately 150 bp)
was amplified from A. apis-inoculated 4-, 5- and 6-day-old larval guts, whereas no fragment
was amplified from corresponding uninoculated larval guts or sterile water (Figure 2A),
confirming the A. apis infection of A. mellifera larvae. Additionally, RT-qPCR results demon-
strated that in comparison with that in the uninfected larval guts, the expression level
of ame-miR-34 was significantly downregulated (p < 0.001) in the guts of 4-, 5-, and
6-day-old larvae infected by A. apis (Figure 2B), suggesting remarkable suppression of host
ame-miR-34 during the A. apis infection process.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 18 
 

 

2. Results 
2.1. Molecular Verification of ame-miR-34 Expression and Sequence 

Agarose gel electrophoresis showed that the fragment with the expected size (ap-
proximately 82 bp) was amplified from the 6-day-old larval gut (Figure 1A). In addition, 
Sanger sequencing results suggested that the fragment sequence was consistent with the 
predicted sequence of ame-miR-34 based on transcriptome data (Figure 1B). The results 
were indicative of the existence and expression of ame-miR-34 in the A. mellifera larval 
gut. 

 
Figure 1. Validation of expression and sequence of ame-miR-34 in the A. mellifera larval gut. (A) 
Agarose gel electrophoresis for the amplification product from stem-loop RT-PCR of ame-miR-34; 
(B) Sanger sequencing of the amplified fragment from ame-miR-34. 

2.2. Expression Level of ame-miR-34 in the Larval Guts was Altered Due to A. apis Infection 
Stem-loop RT-PCR results indicated that the expected fragment (approximately 150 

bp) was amplified from A. apis-inoculated 4-, 5- and 6-day-old larval guts, whereas no 
fragment was amplified from corresponding uninoculated larval guts or sterile water 
(Figure 2A), confirming the A. apis infection of A. mellifera larvae. Additionally, RT-qPCR 
results demonstrated that in comparison with that in the uninfected larval guts, the ex-
pression level of ame-miR-34 was significantly downregulated (p < 0.001) in the guts of 4-
, 5-, and 6-day-old larvae infected by A. apis (Figure 2B), suggesting remarkable suppres-
sion of host ame-miR-34 during the A. apis infection process. 

 
Figure 2. PCR validation and expression detection of ame-miR-34 in the guts of A. mellifera larvae 
inoculated with A. apis. (A) PCR validation of A. apis infection of A. mellifera larvae. Lane M: DNA 
Figure 2. PCR validation and expression detection of ame-miR-34 in the guts of A. mellifera larvae
inoculated with A. apis. (A) PCR validation of A. apis infection of A. mellifera larvae. Lane M: DNA
marker; lane P, pure spores of A. apis (positive control). Lane N, sterile water (negative control);
(B) RT-qPCR detection of host ame-miR-34 during A. apis infection, data were presented as mean SD
and subjected to Student’s t-test, ns: p > 0.05, ***: p < 0.001.
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2.3. Overexpression and Knockdown of ame-miR-34 in Uninfected and A. apis-Infected Larval Guts

The RT-qPCR results suggested that as compared with that in the mimic-NC group,
the expression level of ame-miR-34 in the 4-, 5-, and 6-day-old larval guts in the mimic-
miR-34 group was significantly upregulated (p < 0.001) (Figure 3A). Comparatively, the
expression level of ame-miR-34 in the guts of 4-, 5-, and 6-day-old larvae in the inhibitor-
miR-34 group was significantly downregulated in comparison with that in the inhibitor-NC
group (p < 0.001) (Figure 3B). In addition, the expression level of ame-miR-34 in the 4-,
5-, and 6-day-old larva guts in the mimic-miR-34 group was significantly upregulated
as compared with that in the inhibitor-miR-34 group (p < 0.001) (Figure 3C). The results
together indicated that effective overexpression and knockdown of ame-miR-34 in the
larval guts were achieved by feeding mimic-miR-34 and inhibitor-miR-34.
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Figure 3. Determination of relative expression level of ame-miR-34 in un-infected A. mellifera larval
guts. (A) Relative expression level of ame-miR-34 in the larval guts after feeding mimic-miR-34;
(B) relative expression level of ame-miR-34 in the larval guts after feeding inhibitor-miR-34; (C) rela-
tive expression level of ame-miR-34 in the larval guts after feeding mimic-miR-34 in comparison with
that after feeding inhibitor-miR-34. Data were presented as mean SD and subjected to Student’s t-test,
***: p < 0.001, ****: p < 0.0001.

It is observed that as compared with that in the A. apis + mimic-NC group, the
expression level of ame-miR-34 in the 4-, 5- and 6-day-old larval guts in the A. apis+
mimic-miR-34 group was significantly upregulated (p < 0.05) (Figure 4B). In contrast, the
expression level of ame-miR-34 in the guts of 4-, 5-, and 6-day-old larvae in the A. apis+
inhibitor-miR-34 group was significantly downregulated in comparison with that in the
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A. apis + inhibitor-NC group (p < 0.01) (Figure 4B). Moreover, as compared with that in the
inhibitor-miR-34 group, the expression level of ame-miR-34 in the guts of 5- and 6-day-old
larvae in the mimic-miR-34 group was significantly upregulated (p < 0.01); however, the
expression level of ame-miR-34 in the 4-day-old larval gut was upregulated (p > 0.05) but
there was no significant difference between these two groups (Figure 3C). These results
demonstrated that effective overexpression and knockdown of ame-miR-34 in the larval
guts infected by A. apis were also achieved by feeding mimic-miR-34 and inhibitor-miR-34.
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Figure 4. Detection of relative expression level of ame-miR-34 in A. apis-infected A. mellifera larval
guts. (A) Relative expression level of ame-miR-34 in the A. apis-infected larval guts after feeding
mimic-miR-34; (B) relative expression level of ame-miR-34 in the A. apis-infected larval guts after
feeding inhibitor-miR-34; (C) relative expression level of ame-miR-34 in the larval guts after feeding
mimic-miR-34 in comparison with that after feeding inhibitor-miR-34. Data were presented as mean
SD and subjected to Student’s t-test, ns: p > 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001.

2.4. Effect of ame-miR-34 Overexpression and Knockdown on Body Weights of A. mellifera Larvae

As compared with the body weight of larvae in the mimic-NC group, that of 4-day-old
larvae in the mimic-miR-34 group was increased (p > 0.05), whereas the body weights of
5- and 6-day-old larvae were significantly increased (p < 0.01) (Figure 5). In comparison
with the body weight of larvae in the inhibitor-NC group, that of 6-day-old larvae in the
inhibitor-miR-34 group was significantly increased (p < 0.001); that of 4-day-old larvae was
increased (p > 0.05), but no significant difference was detected; while that of 5-day-old
larvae was significantly decreased (p < 0.001) (Figure 5). Collectively, the results were
suggestive of the involvement of ame-miR-34 in the modulation of the body weight of
A. mellifera larvae.
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Figure 5. Statistics of body weights of A. mellifera larvae after ame-miR-34 overexpression and
knockdown. SPSS statistics software was used to conduct one-way analysis of variance (ANOVA)
for the average body weight of larvae in each group, with p < 0.05 as the significance threshold.
Experimental data were compared and analyzed by the Tukey test and the letter significance labeling
methods. Data are mean ± SE; the same lowercase letters above the curve indicate non-significant
difference (p > 0.05), while the different lowercase letters above the curve indicate significant difference
(p < 0.05) (Tukey test).

2.5. Analysis of ame-miR-34-Targeted Genes and the Corresponding Regulatory Network

Ame-miR-34 was predicted to target 121 genes, including hsp and abct, and there was
a complex regulatory network between ame-miR-34 and its targets (Figure 6A, see also
Table S1). GO database annotation showed that these targets were involved in six molecular
function-associated terms, such as binding and catalytic activity, 10 cellular component-
associated terms, such as cell and cell part, and 12 biological process-associated terms, such
as cellular process and metabolic process (Figure 6B, see also Table S1). Additionally, the
target genes were also annotated to 108 KEGG pathways, such as the tricarboxylic acid
cycle, biosynthesis of secondary metabolites, and Wnt signaling pathway (Figure 6C, see
also Table S1).
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2.6. Effect of ame-miR-34 Overexpression and Knockdown on the Expression of hsp and abct in
A. apis-Infected Larval Guts

The targeting relationship between ame-miR-34 and the hsp gene is shown in Figure 7A.
The RT-qPCR results indicated that the expression level of hsp in the 4-, 5-, and 6-day-old
larval guts in the A. apis + mimic-miR-34 group was significantly upregulated (p < 0.01)
in comparison with that in the A. apis + mimic-NC group (Figure 7B), while that in the
guts of 4-, 5-, and 6-day-old larvae in the A. apis + inhibitor-miR-34 group was signifi-
cantly downregulated (p < 0.01) compared with that in the A. apis + inhibitor-NC group
(Figure 7C).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 18 
 

 

old larval guts in the A. apis + mimic-miR-34 group was significantly upregulated (p < 0.01) 
in comparison with that in the A. apis + mimic-NC group (Figure 7B), while that in the 
guts of 4-, 5-, and 6-day-old larvae in the A. apis + inhibitor-miR-34 group was significantly 
downregulated (p < 0.01) compared with that in the A. apis + inhibitor-NC group (Figure 
7C). 

 
Figure 7. Determination of relative expression level of hsp in the A. apis-infected A. mellifera larval 
guts after ame-miR-34 overexpression and knockdown. (A) Target binding relationship between hsp 
and ame-miR-34; (B,C) RT-qPCR detection of hsp in the 4-, 5-, and 6-day-old larval guts. Data were 
presented as mean SD and subjected to Student’s t-test, ***: p < 0.001. 

As shown in Figure 8A, there was a potential targeting relationship between ame-
miR-34 and the abct gene. The expression level of abct was upregulated (p > 0.05) in the 4-
day-old larval gut in the A. apis + mimic-miR-34 group in comparison with that in the A. 
apis + mimic-NC group, while it was significantly upregulated (p < 0.05) in the guts of 5- 
and 6-day-old larvae (Figure 8B). Comparatively, as compared with that in the A. apis + 
inhibitor-NC group, the expression level of abct in the guts of 4-, 5-, and 6-day-old larvae 
in the A. apis + inhibitor-miR-34 group was significantly downregulated (p < 0.001) (Figure 
8C). 

Figure 7. Determination of relative expression level of hsp in the A. apis-infected A. mellifera larval
guts after ame-miR-34 overexpression and knockdown. (A) Target binding relationship between hsp
and ame-miR-34; (B,C) RT-qPCR detection of hsp in the 4-, 5-, and 6-day-old larval guts. Data were
presented as mean SD and subjected to Student’s t-test, ***: p < 0.001.

As shown in Figure 8A, there was a potential targeting relationship between ame-
miR-34 and the abct gene. The expression level of abct was upregulated (p > 0.05) in
the 4-day-old larval gut in the A. apis + mimic-miR-34 group in comparison with that in
the A. apis + mimic-NC group, while it was significantly upregulated (p < 0.05) in the
guts of 5- and 6-day-old larvae (Figure 8B). Comparatively, as compared with that in the
A. apis + inhibitor-NC group, the expression level of abct in the guts of 4-, 5-, and 6-day-old
larvae in the A. apis + inhibitor-miR-34 group was significantly downregulated (p < 0.001)
(Figure 8C).
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3. Discussion

Though 259 A. mellifera miRNAs have currently been recorded in the miRBase database
(https://www.mirbase.org/textsearch.shtml?q=apis&submit=submit, accessed on 13 April
2022), the functions of the majority of miRNAs remained to be unknown, especially those
miRNAs in bee larvae. Here, molecular validation, bioinformatic analysis, and functional
investigation of ame-miR-34, a DEmiRNA previously identified in A. mellifera larval guts
responding to A. apis invasion, were for the first time conducted. The results of stem-loop
RT-PCR and Sanger sequencing verified the existence and expression of ame-miR-34 in
A. mellifera larval guts (Figure 1), offering a solid basis for the continuous study of the
regulatory function of ame-miR-34 and the associated molecular mechanism. In addition, it
was observed that the expression level of ame-miR-34 was significantly downregulated in
the A. apis-infected 4-, 5-, and 6-day-old larval guts in comparison with that in the uninfected
larval guts (Figure 2B), indicative of the participation of ame-miR-34 in the host response
and the inhibition of ame-miR-34 caused by A. apis invasion. This implied that a certain
pathway was employed by A. apis to suppress ame-miR-34 derived from A. mellifera larvae.
However, additional work is needed to decipher the underlying mechanism. Previously,
Zhu et al. [24] fed A. mellifera larvae with mimics highly expressing miR-162a in plant pollen
mixed into diets and artificially raised them under laboratory conditions, the results showed
that miR-162a could target amTOR genes of larvae, inhibit the development of larvae
ovaries, delay the individual growth, and fine-tunes honey bee larva caste development.

https://www.mirbase.org/textsearch.shtml?q=apis&submit=submit
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Recently, our group confirmed that effective overexpression and knockdown of ame-miR-
13b [25], ame-miR-79 [26], and ame-miR-bantam [27] in the larval guts of A. mellifera
could be achieved by feeding corresponding mimics and inhibitors. In this work, ame-
miR-34 was significantly upregulated in the 4-, 5-, and 6-day-old larval guts after feeding
mimic-miR-34 (Figure 3A), while significant downregulation was detected in the 4-, 5-, and
6-day-old larval guts after feeding inhibitor-miR-34 (Figure 3B); additionally, in the guts
of A. apis-infected 4-, 5-, and 6-day-old larvae, ame-miR-34 was found to be significantly
upregulated and downregulated after feeding mimic and inhibitor (Figure 4), respectively.
In summary, the results suggested that ame-miR-34 overexpression and knockdown were
successfully achieved in the guts of A. mellifera larvae without and with A. apis infection,
further confirming the feasibility and reliability of overexpression and knockdown of
miRNAs in honey bee larval guts by feeding corresponding mimics and inhibitors. These
studies together provided valuable references for associated functional study with bee
larval miRNAs.

Studies have shown that miRNAs were engaged in the regulation of insect physiology
including body weight [28–30]. Fang et al. [30] found that injection of miR-982490 agomir
into 5th instar Grapholita molesta larvae resulted in increased trehalose and triglyceride
levels in hemolymph, and decreased pupation success and pupa weight. In this current
work, in comparison with that in the inhibitor-NC group, the weight of 5-day-old larvae in
the inhibitor-miR-34 group was significantly decreased (p < 0.01); comparatively, (Figure 5).
The results were suggestive of the involvement of ame-miR-34 in the modulation of the
body weights of A. mellifera larvae, which opens the door for further investigating the
underlying ame-miR-34-modulated mechanism. To the best of our knowledge, this is the
first report on the role of miRNAs in regulating the bee larval body weight.

In the present study, ame-miR-34 was predicted to target 121 genes (Figure 6A),
which were annotated to 28 GO items relevant to molecular function (Figure 6B), cellular
component, and biological process, as well as 108 KEGG pathways (Figure 6C), including
a series of development and immune-associated pathways, such as the Wnt signaling
pathway and endocytosis. The results demonstrated that ame-miR-34 potentially played
diverse regulatory roles in the larval guts of A. mellifera. Two pivotal genes, the hsp
and abct, were selected for further investigation. In animals and plants such as Bacillus
subtilis [31], Caenorhabditis elegans [32], A. mellifera [33], and Arabidopsis [34], a number of
studies have shown that the hsp gene is a critical regulator in maintaining cell homeostasis
and protecting cells from various environmental stresses [35–37]. Dokladny et al. [38] found
that the heat shock response and autophagy coordinate and undergo sequential activation
and downregulation, which together maintain protein balance in cells. In Drosophila, hsp
is engaged in the regulation of the nervous system, reproductive system, and muscles.
Here, after overexpression of ame-miR-34, the target gene hsp was significantly upregulated
in the guts of A. apis-infected 4-, 5-, and 6-day-old larval guts, while it was significantly
downregulated after ame-miR-34 knockdown (Figure 7). These results demonstrated that
ame-miR-34 was a potential positive regulator of the hsp gene. It was speculated that
ame-miR-34 participated in the host response to A. apis infection via positive regulation of
the expression of hsp.

In eukaryotes, ABC transporters can transfer compounds from the cytoplasm to the
extracellular space or into organelle compartments (e.g., endoplasmic reticulum, mito-
chondria, peroxisome), thus playing crucial roles in cell transport and host resistance [39].
After inhibiting the expression of MRP1 (multidrug-resistance like protein 1), a member of
the ABC transporter family in Drosophila, Liu et al. [40] detected the expression level of
MRP1 in Drosophila gut, fat body, and Malpighian tubules, and found that the MRP1 ex-
pression was successfully inhibited only in Malpighian tubules and the downregulation
of MRP1 in Malpighian tubules led to abnormal lipid accumulation and disruption of
Drosophila feeding behavior and increased expression of Hr96 (homolog of human pregnane X
receptor). Wang et al. [41] documented that overexpression of NlMdr49-like, a member of
the ABC transporter family in Nilaparvata lugens, promoted the resistance of N. lugens to
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imidacloprid, whereas NlMdr49-like knockdown resulted in a reduction in imidacloprid
resistance. In this current work, as a putative target of ame-miR-34, the expression level of
abct was upregulated in the 4-day-old larval gut and significantly upregulated in the 5- and
6-day-old larval guts infected by A. apis after overexpression of ame-miR-34; comparatively,
the expression level of abct was significantly downregulated in the guts of A. apis-infected
larvae after ame-miR-34 knockdown (Figure 8). This indicated that ame-miR-34 positively
dominated the expression of abct. Notably, though the upregulation of ame-miR-34 was
detected in the 4-day-old larval gut, there was no significant difference in the expression
level of ame-miR-34 between A. apis + mimic-miR-34 group and A. apis + mimic-NC group,
implying that other unknown factors may affect the regulation of the expression of abct at
this day-old. However, we inferred that ame-miR-34 regulated the host response to A. apis
infection through positive modulation of abct expression. More studies are required to
elucidate the mechanism underlying the host response to A. apis challenge mediated by the
ame-miR-34-hsp/abct axis. Previously, functional studies on several genes in A. mellifera,
such as tyr1 (tyramine receptor 1) [42] and AmTsf (transferrin) [43], were conducted by RNAi
method. Recently, on basis of bioinformatics and RNAi method, we deciphered the molecu-
lar characteristics and biological function of nkd (naked cuticle) gene in the A. mellfera larval
response to A. apis invasion [44]. In the near future, dsRNA- or siRNA-based RNAi of hsp
and abct will be conducted to dissect their functions [44,45].

4. Materials and Methods
4.1. Honey Bee and Microsporidian Spore

A. mellifera colonies were reared in the apiary of the College of Animal Sciences
(College of Bee Science), Fujian Agriculture and Forestry University. A. apis spores were
previously isolated and kept at the Honey Bee Protection Laboratory, Fujian Agriculture
and Forestry University [46,47].

4.2. Stem-Loop RT-PCR and Sanger Sequencing of ame-miR-34

In our previous study, based on sRNA-seq and bioinformatics, ame-miR-34 was found
to be differentially expressed in A. apis-inoculated A. mellifera larval guts compared with
uninoculated larval guts. Specific stem-loop primers and forward primers (F) as well as
universal reverse primers (R) of ame-miR-34 (5′-TGGCAGTGTTGTTAGCTGGTTTG-3′)
were designed using DNAMAN software (Table 1) and then synthesized by Sangon Biotech
Co., Ltd. (Shanghai, China). Using an RNA extraction kit (Promega, Madison, WI, USA),
total RNA was extracted from 4-, 5-, and 6-day-old guts of A. apis-inoculated larvae as well
as uninoculated larvae and then divided into two portions. Next, reverse transcription
was performed with stem-loop primers, and the resulting cDNA was used as a template
for PCR and RT-qPCR of ame-miR-34. Following the method described by Zhu et al. [48],
PCR amplification was conducted and the amplification product was then detected by 1.8%
agarose gel electrophoresis. The expected fragment was extracted, ligated to the pESI-T
vector (Yeasen, Shanghai, China), and transformed into E. coli DH5α competent cells. After
microbial PCR, 1 mL of bacterial solution with a positive signal was sent to Sangon Biotech
Co., Ltd. (Shanghai, China) for single-end Sanger sequencing.

Table 1. Detailed information about primers for RT-qPCR.

Name Sequence (5′–3′) Purpose

ame-miR-34-F TGGCAGTGTTGTTA

Reverse transcription
of ame-miR-34ame-miR-34-Loop CTCAACTGGTGTCGTGGAGTCGG-

CAATTCAGTTGAGCAACCAGC

ame-miR-34-R CTCAACTGGTGTCGTGGA
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Table 1. Cont.

Name Sequence (5′–3′) Purpose

AmU6-F GTTAGGCTTTGACGATTTCG Internal reference for
qPCR of ame-miR-34AmU6-R GGCATTTCTCCACCAGGTA

actin-F ATGCCAACACTGTCCTTTCTGG Internal reference for
qPCR of target genesactin-R GACCCACCAATCCATACGGA

hsp-F TCCTGTGTTGGTGTATTCCAGCATG

qPCR detection
hsp-R GCAACTTGGTTCTTGGCAGCATC

abct-F ACGACGACTATACCTGGCAGTGG

abct-R CAGTTGAGACGAGACAGCATCCG

4.3. Experimental Inoculation and Gut Sample Preparation

According to the established protocol by our group [47,49], A. apis spores were pre-
pared and used for the inoculation of A. mellifera larvae. Briefly, (1) the previously isolated
A. apis was cultured at 25 ◦C on potato dextrose agar (PDA) medium, and spores were
harvested and purified following the method developed by Jensen et al. [50]; (2) the marked
empty comb was placed in the three strong colonies without symptoms of chalkbrood
disease, which were used as experimental colonies; (3) based on the size standard described
by Brødsgaard et al. [51], 2-day-old larvae were carefully transferred to six-well culture
plates, each well was preset with 800 µL of artificial diet, 40 larvae per well, and the
plates were then placed in a constant temperature and humidity incubator (35 ± 0.5 ◦C,
RH 90%); (4) 3-day-old larvae were carefully transferred to 48-well culture plates using
transferring spoon; each 3-day-old larva in the treatment group was fed a diet containing
4 × 105 spores/mL, while each 3-day-old larva in the control group was fed a diet without
spores; the larvae that consumed all diet were used for further experiment, whereas those
that did not consume all diet were discarded; 45 µL of diet was readded into each well
every 12 h until 6-day-old; (5) 21 guts of 4-, 5-, and 6-day-old larvae in A. apis-inoculated
groups and 21 guts of 4-, 5-, and 6-day-old larvae in uninoculated group were, respectively
dissected according to the method reported by Guo et al. [52], immediately frozen in liquid
nitrogen, and stored at −80 ◦C.

4.4. RT-qPCR Detection of ame-miR-34

Following the instructions of the Hifair® qPCR SYBR Green Master Mix (Low Rox Plus)
kit (Yeasen, Shanghai, China), RT-qPCR of ame-miR-34 was conducted on a QuantStudio
3 fluorescent quantitative PCR system (ABI Company, Tampa, FL, USA). AmU6 (GenBank
ID: LOC725641) was used as the internal reference. The reaction system (20 µL) included
10 µL of Hifair® qPCR SYBR Green Master Mix (Low Rox Plus) (Yeasen, Shanghai, China),
1 µL of forward and reverse primers (2.5 µmol/L), 1 µL of cDNA template, and 7 µL of
DEPC water. The reaction conditions were set as follows: predenaturation at 95 ◦C for 5 min,
denaturation at 95 ◦C for 10 s, and annealing and extension at 60 ◦C for 30 s for 45 cycles;
the melting curve program was the default setting of the system. The experiment was
performed three times using three independent biological samples. The relative expression
level of ame-miR-34 was calculated using the 2−∆∆Ct method [53].

4.5. Overexpression and Knockdown of ame-miR-34 in Normal Larval Guts

According to the method described by Wang et al. [54], ame-miR-34 mimic (mimic-miR-34)
and inhibitor (inhibitor-miR-34) as well as corresponding negative controls (mimic-NC and
inhibitor-NC) were designed using Dharmacon (Lafayette, Colorado, USA) software and
synthesized by GenePharma (Shanghai, China) (Table 2). A. mellifera larvae were reared
following the methods developed by Peng et al. [55] with minor modifications. In brief,
(1) the queen in an A. mellifera colony was confined to the empty comb using the queen
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spawning controller, and after 15 h of natural oviposition, the queen was taken out and
the comb was quickly transferred to the laboratory; (2) 2-day-old larvae were carefully
transferred to six-well culture plates (each well was preset with 800 µL of artificial diet),
40 larvae per well, and the plates were then placed in a constant temperature and humidity
incubator (35 ± 0.5 ◦C, RH 90%) for 24 h; (3) 3-day-old larvae were then transferred to
a 48-well culture plate, and each well was preset with 45 µL of artificial diet containing
mimic-miR-34, mimic-NC, inhibitor-miR-34, or inhibitor-NC, with the final concentration
of 20 pmol/g; there were four groups in total, including mimic-miR-34 group, mimic-NC
group, inhibitor-miR-34, and inhibitor-NC group; (4) 45 µL of diet was readded into each
well every 12 h until 6-day-old; (5) five larvae in each group were used for measurement of
body weight, while three larvae were subjected to preparation of gut tissues according to
our previously established method [52], followed by RNA isolation and RT-qPCR detection.
There were three biological replicates for this experiment.

Table 2. Detailed information about mimics and inhibitors used in this work.

Name Sequence (5′–3′) Purpose

mimic-miR-34-sense UGGCAGUGUUGUUAGCUGGUUG
ame-miR-34 overexpression

mimic-miR-34-antisense ACCAGCUAACAACACUGCCAUU

inhibitor-miR-34 CAACCAGCUAACAACACUGCCA ame-miR-34 knockdown

mimic-NC-sense UUCUCCGAACGUGUCACGUTT
Negative control for ame-miR-34 overexpression

mimic-NC-antisense ACGUGACACGUUCGGAGAATT

inhibitor-NC CAGUACUUUUGUGUAGUACAA Negative control for ame-miR-34 knockdown

4.6. Measurement of Body Weight

Based on the method described by Borsuk et al. [56], 4-, 5-, and 6-day-old larvae (n = 5)
in each group were rinsed with PBS buffer three times to remove diet residue on the body
surface, followed by absorption of the fluid on the larval body surface with clean filter
paper. Next, the larvae were weighed using FA2004 electronic scales (Shanghai Shunyu
Hengping, Shanghai, China). There were three biological replicates for this experiment.

4.7. RNA Isolation, cDNA Synthesis, and RT-qPCR Detection

Total RNA from 4-, 5-, and 6-day-old larval guts was respectively extracted using
an RNA extraction kit (Promega, Madison, WI, USA), and then equally divided into two
portions. One portion was subjected to reverse transcription with stem-loop primers, and
the resulting cDNA was used as templates for RT-qPCR detection of ame-miR-34; the other
portion was reverse transcribed using Oligo DT primers, and the resulting cDNA was
used as templates for RT-qPCR of ame-miR-34-targeted genes and the internal reference
genes actin (GenBank ID: NM001185145) and AmU6 (GenBank ID: LOC725641). RT-qPCR
was performed to determine the effects of overexpression and knockdown of ame-miR-34
following the method described in Section 4.4. The experiment was performed three times
using three independent biological samples. The relative expression of ame-miR-34 was
calculated using the 2−∆∆Ct method [53].

4.8. Overexpression and Knockdown of ame-miR-34 in A. apis-Inoculated Larval Guts

Following the method mentioned in Section 4.3, 2-day-old larvae were carefully trans-
ferred to 6-well culture plates (each well was preset with 800 µL of artificial diet), 40 larvae
per well, and the plates were then placed in a constant temperature and humidity incuba-
tor (35 ± 0.5 ◦C, RH 90%) for 24 h; 3-day-old larvae were transferred to 48-well culture
plates, each larva was fed 5 µL of A. apis spores at a final concentration of 4 × 105/mL at
10:00 a.m. and then fed 45 µL of a diet containing mimic-miR-34, mimic-NC, inhibitor-
miR-34 or inhibitor-NC (20 pmol/g). These four groups were named (1) A. apis + mimic-
miR-34 group, (2) A. apis+ mimic-NC group, (3) A. apis + inhibitor-miR-34 group, and
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(4) A. apis+ inhibitor-NC group. Every 12 h thereafter, 45 µL of diet was added to each
well. The larval guts in each of the above-mentioned groups were respectively dissected
following the protocol mentioned in Section 4.5, followed by RNA isolation and RT-qPCR
detection of the effects of ame-miR-34 overexpression and knockdown. There were three
biological replicates for this experiment.

4.9. Target Prediction and Analysis of ame-miR-34

According to our previously described method [57], a combination of three soft-
ware programs was employed to predict target genes of ame-miR-34, including RNAhy-
brid + svm_light, miRanda, and TargetScan (parameters were set as default). The intersec-
tion of the prediction results was considered the reliable set of targets. Subsequently, the
target genes were mapped to the GO (https://www.omicshare.com/tools/Home/Soft/
gogsea, accessed on 13 April 2022) and KEGG (https://www.omicshare.com/tools/Home/
Soft/pathwaygsea, accessed on 13 April 2022) databases of A. mellifera by the BLAST tool
with default parameters to obtain corresponding functional term and pathway annota-
tions. Furthermore, on basis of the target prediction results, potential binding relationships
between ame-miR-34 and target genes were visualized using Adobe Illustrator software
(Adobe, Mountain View, CA, USA).

4.10. RT-qPCR Determination of ame-miR-34-Targeted Genes

Following the prediction result in Section 4.5 and associated documentation with
honey bees [54,58], two target genes of ame-miR-34 were selected for RT-qPCR determina-
tion, including the heat shock protein-encoding gene hsp (GenBank ID: NM001160050.1)
and the ABC transporter gene abct (GenBank ID: XM026439743). The cDNA obtained in
Section 4.2 was used as templates for RT-qPCR. The actin gene (GenBank ID: NM001185145)
was used as the internal reference. The reaction system and conditions were set as de-
scribed in Section 4.4. This experiment was conducted three times with three independent
biological samples. Relative expression levels of hsp and abct were calculated using the
2−∆∆Ct method [53].

4.11. Statistical Data Analysis

The qPCR data were subjected to Student’s t-test, and p < 0.05 was considered statisti-
cally significant. The average body weight of larvae in each group was calculated and then
analyzed by one-way ANOVA and Tukey’s post hoc test, letter mark method, followed by
plotting using GraphPad Prism 8 software, p < 0.05 was considered statistically significant.

5. Conclusions

Taken together, the expression of ame-miR-34 in the larval gut of A. mellifera was
inhibited during the A. apis infection process, and effective overexpression and knockdown
of ame-miR-34 in the larval gut was achieved by feeding corresponding mimic and inhibitor;
furthermore, ame-miR-34 participated in modulating larval body weight and potentially
exerted regulatory functions in the host response to A. apis invasion through positive
regulation of the expression of hsp and abct (Figure 9). Findings in the present study offer
a valuable reference for the functional investigation of bee larval miRNAs, reveal the
regulatory role of ame-miR-34 in A. mellifera larval weight and immune response, and
provide a promising molecular target for the treatment of chalkbrood disease.

https://www.omicshare.com/tools/Home/Soft/gogsea
https://www.omicshare.com/tools/Home/Soft/gogsea
https://www.omicshare.com/tools/Home/Soft/pathwaygsea
https://www.omicshare.com/tools/Home/Soft/pathwaygsea
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