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Abstract: Glaucoma is one of the most common causes of treatable visual impairment in the devel-
oped world, affecting approximately 64 million people worldwide, some of whom will be bilaterally
blind from irreversible optic nerve damage. The optic nerve head is a key site of damage in glaucoma
where there is fibrosis of the connective tissue in the lamina cribrosa (LC) extracellular matrix. As a
ubiquitous second messenger, calcium (Ca2+) can interact with various cellular proteins to regulate
multiple physiological processes and contribute to a wide range of diseases, including cancer, fibrosis,
and glaucoma. Our research has shown evidence of oxidative stress, mitochondrial dysfunction,
an elevated expression of Ca2+ entry channels, Ca2+-dependent pumps and exchangers, and an
abnormal rise in cytosolic Ca2+ in human glaucomatous LC fibroblast cells. We have evidence
that this increase is dependent on Ca2+ entry channels located in the plasma membrane, and its
release is from internal stores in the endoplasmic reticulum (ER), as well as from the mitochondria.
Here, we summarize some of the molecular Ca2+-dependent mechanisms related to this abnormal
Ca2+-signalling in human glaucoma LC cells, with a view toward identifying potential therapeutic
targets for ongoing optic neuropathy.
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1. Introduction
1.1. Glaucoma, Optic Nerve Fibrosis, Lamina Cribrosa Fibroblasts, and Calcium

Glaucoma is the one of most common causes of treatable visual impairment in the
developed world [1], affecting approximately 64.3 million people worldwide, and these
numbers were estimated to increase to 76.0 million in 2020 and 111.8 million by 2040 [2].
Optic disc cupping is a characteristic clinical feature of the glaucomatous optic nerve head
(ONH), and it occurs due to a loss of neural tissue (axons of the retinal ganglion cells
[RGC]) and remodeling of the connective tissue (CT) in the ONH, leading to progressive
and irreversible visual field loss. It manifests clinically as an increase in the cup-to-disc
ratio, a deepening of the cup, and a greater visibility of the lamina cribrosa (LC). Although
there may be other factors in the retina and brain that contribute to RGC axonal damage
and loss, the preponderance of evidence suggests that the laminar region of the ONH is the
principal site of damage.

The LC’s topography in glaucoma includes shearing and a collapse of its beams,
resulting in a thinning and backward bowing of the LC. Histologically, there are significant
changes in the extra-cellular matrix (ECM) in human and monkey glaucoma optic nerve
head specimens [3], with increased deposition of collagen, elastin, and proteoglycan and
increased expression of the major pro-fibrotic growth factor transforming growth factor
beta (TGFβ) [4].

The lamina cribrosa cells of the ONH were first characterized by the Hernandez group
in 1988 [5]. Furthermore, Lambert et al. continued to study LC characterization by testing
whether human LC cells and tissue express neurotrophin and tyrosine kinase receptor [6].
In a further study, the lamina cribrosa cells were identified and localized in the beams of
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the LC [7]. Figure 1 illustrates an example of phase contrast microscopy images of cultured
LC cells from non-glaucomatous and glaucomatous human donors.
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Figure 1. Examples of phase contrast microscopy images of cultured LC cells from (A) non-
glaucomatous and (B) glaucomatous human donors. We note that the glaucomatous LC cell is
larger than the non-glaucomatous LC cell.

These LC cells stain positively for α-smooth muscle actin (α-SMA), fibronectin, colla-
gen1A1, and vitronectin, and they appear to occur in humans (and likely in other primates)
but have not been identified in rodents such as mice or rats. These latter animals undergo a
gliosis at the optic nerve head (and not the typical 3-D fibrotic ECM remodelling, as seen in
human glaucoma) [8].

The cells that play a role in this CT remodeling include ONH astrocytes and LC cells.
Hernandez has shown a significant number of alterations in LC astrocytes, including an
increase in the synthesis of ECM macromolecules, cell adhesion molecules and growth
factors, and cytokines [9].

Fibrosis is attributed to excessive ECM accumulation which ultimately damages the
connective tissues [10]. External stimuli such as oxidative stress, mechanical stretch, growth
factors, and increased substrate stiffness cause fibroblasts to change their phenotype and
differentiate into myofibroblasts to drive fibrosis [11,12]. The main features of myofibroblast
differentiation are the disproportionate increases in the expression of structural ECM
proteins, matricellular proteins, smooth muscle α-actin (αSMA), and transforming growth
factor beta (TGF-β) [13]. Moreover, TGF-β plays a critical role in fibrosis [14], is an effective
inducer of myofibroblasts, and stimulates the expression of important genes in fibrosis
through several downstream pathways, especially Smad signalling [15,16].

It has been found that the CT of the LC and the trabecular meshwork (TM) show
substantial ECM fibrosis in glaucoma [17,18]. Our previous work has focused on decoding
the fibrotic signature of LC cells in response to glaucomatous change. We have shown that
human glaucomatous LC cells [19] have many characteristics of myofibroblasts, including
the expression of α-SMA and fibrotic genes (e.g., collagen 1A1, periostin, and fibronectin)
in response to TGFβ stimulation [20], cyclic stretch [21], and hypoxia [22]. Furthermore,
we found that LC cells grown on stiff substrates show the enhanced expression of αSMA,
F-Actin, and vinculin [23]. In Table 1, we summarize our laboratory results on ECM gene
expression, abnormal Ca2+ signalling, and mitochondrial dysfunction in glaucoma LC cells.
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Table 1. Summary of dysfunctional intracellular Ca2+ concentration, Ca2+ entry and exit ion channels,
Ca2+-related ECM genes and proteins, disturbed Ca2+-signalling pathways, and dysfunctional cell
proliferation and autophagy in glaucomatous LC myofibroblasts obtained by the authors.

Stimulus ↑ in Gene Expression in Glaucoma LC Fibroblasts References

Glaucoma ↑ ECM in glaucoma LC cells [19]

TGFβ ↑ ECM genes [20]

Stretch ↑ ECM genes [21]

Hypoxia ↑ ECM genes and mitochondrial dysfunction [22]

Oxidative Stress ↑ [Ca2+]i; mitochondria dysfunction and ↑ PMCA [24]

Stiffness ↑ αSMA, F-Actin, vinculin [23]

Oxidative stress ↑ [Ca2+]i, and ↑ NFATc3 [25]

Oxidative stress ↑ TRPC1/TRPC6,
↑ cell proliferation, and ↑ ECM [26]

Hypotonic cell-membrane stretch ↑ Maxi-K [27]

Stiffness ↑ cell proliferation and ↑ yes-associated-protein (YAP) [28]

Glaucoma ↑ PKCa, MAPK-p38, p42/44, and IP3R [29]

Glaucoma ↑ mitochondria fission [30]

Glaucoma ↑ glycolysis and ↑ OXPHOS [31]

Mechanical strain ↑ L-type Ca2+ channel [32]

Glaucoma ↑ autophagy [24]

In addition, we previously used oxidative stress to model glaucoma in LC cells,
and we found that both basal- and oxidative-stress-induced levels of cytosolic calcium
(Ca2+) were abnormally elevated in glaucoma LC cells [24]. It is well known that Ca2+

is a key driver/player of fibrosis [33]. In addition, we demonstrated an increase in L-
type Ca2+ channels in glaucoma LC cells [32]. In the same study, we showed that L-type
Ca2+ channel blockade with verapamil reduces the mechanical-strain-induced ECM gene
response in human LC cells. Furthermore, we showed that Ca2+-dependent potassium
channel Maxi-K+ expression and activity are significantly elevated in glaucoma LC cells [27].
More recently, by reducing the oxidative-stress-induced production of ECM genes and
LC cell proliferation trough a signalling pathway mechanism involving nuclear factor of
activated T-cells (NFATc3), we found that the voltage non-dependent, stretch-activated
cation channels, transient receptor potential canonical TRPC1 and TRPC6, are highly
expressed in glaucoma LC cells and are also involved in the aberrantly elevated intracellular
[Ca2+]i levels found in glaucoma LC cells [26].

In order to clarify the molecular mechanisms underpinning fibrosis in glaucoma, we
investigated intracellular Ca2+-related signalling pathways by exploring the protein kinases
expression and activity of PKCα and RAS-RAF-MAPK in human normal and glaucoma LC
myofibroblasts using hypo-osmotic-induced cell membrane stretch to model glaucoma. We
found significant increases in both the expression (in resting conditions) and the activity
(phosphorylation in a hypo-osmotic-induced cellular swelling condition) of the protein
kinases PKCα, p38, and p42/44 in glaucoma LC cells [29]. Taken together, these data may
suggest a possible coordinating effect of these protein kinases and Ca2+ in the development
of fibrosis in glaucoma, and they may also provide the molecular bases for the therapeutic
outcome of targeting the PKCα, p38MAPK, and p42/44 MAPK kinases. Hence, a strategy
to inhibit their signalling pathways may be central for an efficient treatment of fibrosis in
glaucoma. On the other hand, we also explored the bioenergetics of glaucoma LC cells, and
we observed that glaucoma LC cells exhibit dysfunctional mitochondria [30], mitochondrial
fission [30], and an increase in glycolysis, with a decrease in OXPHOS [31].



Int. J. Mol. Sci. 2023, 24, 1287 4 of 17

In a recent study, we found that glaucomatous LC cells proliferate at a higher rate, and
we showed that yes-associated protein (YAP) expression levels were relatively enhanced in
glaucoma LC cells (Table 1). Furthermore, the enhanced cell proliferation in glaucoma LC
cells was reduced following treatment with the known YAP inhibitor verteporfin [28].

1.2. General Concept of Ca2+-Signalling Homeostasis (Figure 2)

Ca2+ enters into a cell and interacts with different Ca2+-binding proteins that function
either as Ca2+ effectors or buffers. Ca2+ ions are key signalling ions for regulating numerous
physiological processes [34,35]. It is, therefore, not surprising that the disruption of Ca2+

homeostasis and its downstream signalling is responsible for many pathological states
including apoptosis, excessive proliferation, angiogenesis, fibrosis, and cancer. The increase
in intracellular Ca2+ concentration ([Ca2+]i) results from either the influx of extracellular
Ca2+ through the plasma membrane Ca2+ entry channels or its release from internal stores
such as the endo/sarcoplasmic reticulum, primarily through 1,4,5-trphosphate receptor
(IP3R) and ryanodine receptors (RyR). In most cells, external stimuli bind to ligand-engaged
G protein-coupled receptors (GPCRs), leading to the subsequent synthesis of IP3 and the
activation of the IP3 receptor at the ER membrane, resulting in the release of Ca2+ from the
ER [36,37]. In resting cells, the cytosolic Ca2+ concentration is maintained at very low levels
(~100 nM) by two ATP-dependent systems: plasma membrane Ca2+ ATPases (PMCAs),
which hydrolyze ATP to provide the needed energy to extrude Ca2+ to the extracellular
space, and sarco-endoplasmic reticulum Ca2+ ATPases (SERCAs) pumps, which provide
sufficient energy to re-uptake the Ca2+ into the ER lumen and the mitochondria [38,39]. The
Na+/Ca2+ exchanger (NCX) also uses the energy contained within the Na+ concentration
gradient (Na+/K+-ATPase pump) to extrude Ca2+ out of the cell [40]. Thus, cells provide
most of their energy to maintain [Ca2+]i at the lower levels so that small increases in plasma
membrane Ca2+ influx or efflux from the internal store can trigger rapid, transient, and
marked increases in [Ca2+]i. It is these increases in [Ca2+]i that are a key signal in gene
transcription regulation.

1.3. Ca2+ Signalling (Figure 2)

Intracellular Ca2+ plays a key role in multiple signal transduction pathways in a wide
variety of cell types by modulating critical cellular functions such as cell death and gene
transcription. For example, the pro-hypertrophic ECM gene expression in cardiac myocytes
is seen in pathological cardiac growth and is characterized by the elevation of cytosolic
Ca2+, acting via numerous signalling cascades, including the protein kinase c α (PKCα)
pathways [41]. Cells throughout the body have a vast array of mechanisms that tightly
regulate intracellular Ca2+ levels to maintain low cytosolic levels relative to higher levels
outside of a cell. These mechanisms include Ca2+ entry and exit pathways and Ca2+ stores,
buffers, and transporters.

The chronic elevation of intracellular Ca2+ levels activates numerous downstream
Ca2+-dependent signalling pathways that can mediate maladaptive ECM remodeling,
resulting in connective tissue fibrosis [42]. This includes the increased expression of PKC
alpha, IP3R, calcineurin, and calmodulin (CaM), which results in the activation of nuclear
transcription factors (NFAT) and many other Ca2+-binding proteins, leading, for example,
to pathological cardiac hypertrophy, pulmonary fibrosis, and other forms of fibrosis [43].

The most studied Ca2+-dependent signalling protein is CaM. A rise in cytosolic Ca2+

levels activates CaM, which can activate several Ca2+-dependent kinases, including Ca2+-
CaM dependent kinase (CamK) [44]. The transcription factor NF-κB is normally kept in the
cytosol by IκB; however, IkB phosphorylation by CamK leads to its degradation, allowing
NF-κB to translocate to the nucleus and promote Ca2+-dependent gene transcription [45]. A
large number of studies have shown that T-type and L-type Ca2+ channel blockers are use-
ful in animal models of fibrosis in several tissues, including the kidneys [46], liver [47–49],
heart [50,51], and skin [52,53]. For example, the calcineurin inhibitor cyclosporin A, an
immuno-suppressive and anti-fibrotic agent, inhibits TGF-β-induced ECM deposition in
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cardiac-activated fibroblasts through the calcineurin–NFAT pathway, thus preventing car-
diac cell hypertrophy [51,54]. Other studies have shown alterations of calcium homeostasis
in models of glaucoma [55–57].
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Figure 2. General concept of Ca2+-signalling homeostasis. Stimuli induce both the entry of external
Ca2+ and the release Ca2+ from the internal stores of the ER/SR via IP3R and RYR. In activated
cells, Ca2+ enters cells through different types of Ca2+ channels, including voltage-operated channels
(VOC), second messenger-operated channels (SMOC), store-operated channels (SOC), and receptor-
operated channels (ROC). We note that VOCs are activated by membrane depolarization and SMOCs
are activated by small messenger molecules, such as InsP3. In resting cells, Ca2+ is removed from
the cell by exchangers and pumps. The NCX and PMCA extrude Ca2+ from the cytosol to the
extracellular milieu, whereas the ER/SR Ca2+ -ATPase (SERCA) pumps pump Ca2+ back into the ER.
Mitochondria also have an active function during the recovery process in that they sequester Ca2+

rapidly through a uniporter, which is then released more slowly back into the cytosol.

We previously reported elevated cytosolic Ca2+ in human glaucoma LC fibroblasts [24].
Moreover, we found that cyclosporin A blocked NFATc3 nuclear translocation, which re-
duced the ECM fibrosis gene expression in glaucoma LC fibroblasts [25]. Similar results (of
elevated intracellular Ca2+) have been shown in TM cells from human glaucoma donors [58].
More recently, we showed that a rise in [Ca2+]i also induced a sequential phosphorylation
of PKCα and the downstream series of phosphorylation of p38MAPK and p42/44 MAPK,
resulting in Ca2+-dependent genes, such as profibrotic ECM genes, and, ultimately, the
proliferation of glaucoma LC cells [29].

2. Ca2+ Entry (Figure 2)

Calcium homeostasis is regulated by a number of Ca2+ channels. Ca2+ entry chan-
nels are integral membrane proteins that allow the passage of Ca2+ ions across the cell
membrane either under their electrochemical gradient (‘passive’ passage) or in response
to specific activating external stimuli (‘active’ passage). Cells use this external source
of signal Ca2+ by stimulating various Ca2+ entry channels. Among these Ca2+ channels,
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voltage-operated channels (VOCs), the best known Ca2+ entry channels, are found in ex-
citable cells and generate the rapid Ca2+ fluxes that control rapid cellular processes such as
muscle contraction or exocytosis at synaptic transmission. T-type Ca2+ currents serve as
pacemakers of rhythmic activity in a diverse array of cell types [59,60]. These channels are
activated by relatively small membrane depolarization [61].

L-type Ca2+ channels play a key role in many cell types where they mediate large
changes in [Ca2+]i in response to changes in membrane potential [34,61,62]. The membrane
depolarization and accumulation of Ca2+ in these channels in turn causes a delayed inac-
tivation of the channels, providing a negative feedback control loop for this Ca2+ influx
pathway [63].

Receptor-operated channels (ROCs) are the other class of Ca2+ permeable channels
that open in response to external signals, such as the NMDA (N-methyl-D-aspartate)
receptors that respond to glutamate. In addition to these channel-opening mechanisms,
there are many other channel types that are sensitive to a diverse array of stimuli, such
as store-operated channels (SOCs), thermo-sensors and stretch-activated channels (SACs),
and Ca2+-release-activated Ca2+ channels (CRACs), which mediate the store-operated
Ca2+ channel entry (SOCE). The SOCE refills the stores after depletion, and they involve
Ca2+ influx via ORAI1 Ca2+ channels after activation by the ER Ca2+ store sensor stromal
interaction molecule 1(STIM1). Many of these channels belong to the large transient receptor
protein (TRP) ion-channel family [64–67], and they are encoded by up to 30 different genes.
TRP channels are a family of voltage independent Ca2+ channels which can respond to
a diverse selection of stimuli, including internal Ca2+ store depletion, cyclic stretch, and
other types of stresses [68]. This family is formed by three major groups: the canonical
TRPC family, the vanilloid TRPV family, and the melastatin TRPM family. Members of the
TRP family are particularly important in controlling slow cellular processes such as cell
differentiation and proliferation.

We found elevated voltage-gated channels (L-type Ca2+ channels) [32] and elevated
voltage-independent ion channels (TRPC1/6) in glaucomatous LC cells compared to normal
non-glaucomatous LC cells [26].

3. Calcium Release from Internal Stores (Figure 3)
Calcium and the Endoplasmic Reticulum

The ER is an essential central cellular organelle in each eukaryotic cell, and it plays
a critical role in Ca2+ handling, protein synthesis, and protein processing [69]. The ER
ensures proper protein synthesis and folding by regulating many post-translational modifi-
cations [70–72]. Several factors, including ATP and Ca2+ signals, regulate protein folding
through disulfide-bond formation [73]. The ER process directs the transit of folded proteins
in membrane vesicles to different intracellular organelles and to the extracellular space of
the cell [74,75]. Ca2+ concentration in the ER is a key regulator of protein folding. With
prolonged stress conditions, damaged cells are eliminated by the activation of programmed
cell death signalling. Therefore, disruptions in Ca2+ concentrations lead to reductions in the
protein folding capacity of the ER, leading to the excessive accumulation and aggregation
of unfolded proteins (UPR) and an increase in protein secretion and/or protein misfold-
ing [69,76,77], resulting in ER stress. Prolonged UPR activation can promote a pro-survival
response to a pro-apoptotic signalling, especially in a pathological condition [78]. We
recently discussed this in the context of LC fibrosis in glaucoma [79].
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Figure 3. Endoplasmic reticulum (ER) stress and unfolded protein response (UPR). The ER’s functions
include proper protein synthesis and folding to maintain cellular homeostasis. The disturbance of
cellular ATP production or Ca2+ concentration affects ER functioning, leading to the excessive
accumulation and aggregation of unfolded proteins and generating ER stress, which further activates
the UPR. The UPR plays key roles in adaptive responses, feedback control, and cell fates. In an
adaptive response, the UPR reduces ER stress and restores ER homeostasis. UPR signalling is
inhibited through a negative feedback mechanism.

4. Calcium and Mitochondria
4.1. Mitochondrial Function Regulation

Mitochondria are involved in numerous cellular biological functions through their
roles in adenosine-triphosphate (ATP) production through the tricarboxylic acid (TCA)
cycle and electron transport chain and through the electrochemical gradients across the mi-
tochondrial membrane to drive the oxidative phosphorylation (OXPHOS) process [80–82].
The metabolic pathways of mitochondria, including glycolysis and respiration, are major
sources of ATP production in living cells. As a result of anaerobic respiration, glycolysis
produces the lactate that is necessary for cell growth and proliferation [83]. It has been
demonstrated that the inhibition of mitochondrial respiration induces a switch to glycolysis,
stimulates cell differentiation, and reduces cell proliferation [84]. Dysregulation of these
regulatory mechanisms has been identified in different fibrotic diseases [85].

Beyond energy production, the mitochondrion has many other functions, including
the generation of redox molecules, reactive oxygen species (ROS) production, intracellular
Ca2+ regulation, cell proliferation, and apoptosis [86–88]. For normal metabolism, cells
must produce ROS. However, excessive ROS production leads to oxidative damage of the
structure and function of mitochondria and also to the excessive release of the Ca2+ from
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mitochondria via the mitochondrial permeability transition pore (mPTP) (Figure 2) [89]. It
has been found that the dysregulation of Ca2+-signalling homeostasis also increases ROS
generation and over-activates mitophagy, resulting in mitochondrial damage and impaired
respiratory function, and it also promotes apoptosis [90,91].

Apoptosis plays a vital role in the elimination of cells, which is important for the
processes of embryogenesis, development, and tissue homeostasis [92]. Ca2+ is a major
player in the regulation of cell death [93], and severe Ca2+ dysregulation can induce ER
stress-mediated apoptosis in response to various pathological conditions [94]. The B-cell
lymphoma 2 (Bcl-2) protein family is a key part of the protein complexes that curb the
response to ER stress, with apoptosis and autophagy as the possible end-results [95]. Bcl-2
has been defined as a rheostat that belongs to a large family of proteins that includes
pro-apoptotic and anti-apoptotic molecules [95]. The pro-apoptotic members of the Bcl-2
family trigger mitochondrial outer membrane permeabilization (MOMP), leading to the
release of cytochrome c and to the assembly of the apoptosome [96].

Mitochondrial Dysfunction Regulation in Glaucoma

Numerous publications have shown mitochondrial dysfunction and altered cell bioen-
ergetics in diverse forms of organ fibrosis, including in cardiac-, pulmonary-, renal-, and
cancer-associated fibroblasts [85].

It is well known that mitochondrial dysfunction plays a key role in the development
of glaucoma, and it has also been investigated as a potential drug target for glaucoma
treatment [97–101]. For example, the rapamycin (mTOR) signalling pathway and nicoti-
namide treatment were used in clinical therapies to observe glaucoma-related mitochondria
dysfunction [102,103]. While mitochondrial function is regulated by several signalling path-
ways, Ca2+ signalling is considered to play a key role in the regulation of mitochondria [104].
Reports have shown that Ca2+ entry channel inhibitors reduce acute axonal degeneration
and improve regeneration after optic nerve damage [105]. A combination of Ca2+ entry
channel inhibitors [106] indicates that ROS generation and downstream Ca2+ signalling are
crucial during the progression of glaucoma.

Under the physiological conditions of cytosolic Ca2+ buffering, mitochondria play a
key role in the “gating” of store-operated channels (SOC). Mitochondria actively coordinate
spatiotemporal cytosolic Ca2+ under both physiological and pathological conditions [107,108].
By retaking the Ca2+ that has been released from the ER, mitochondrial buffering results in
larger store depletion and, hence, the activation of Ca2+-release-activated channels (CRAC).
Studies of mitochondria-dependent Ca2+ handling have revealed the molecular identities
of the Ca2+- control components, including the mitochondrial Ca2+ uniporter (MCU) [109].

We previously examined the mitochondrial function and bioenergetics of glaucoma
LC cells, and we observed evidence of reduced mitochondrial membrane potential in
glaucoma LC cells [24], mitochondrial fission [30], and an increase in glycolysis, with a
decrease in OXPHOS [31].

5. Ca2+ and Oxidative Stress

Oxidative stress can arise from Ca2+ dysregulation through several mechanisms, includ-
ing increasing metabolic rate [110] and the activation of ROS-producing enzymes such as
nitric oxide synthase and nicotinamide adenine dinucleotide phosphate oxidase [97–99,111].
ROS formation can damage proteins, lipids, and nucleic acids. Oxidative stress also creates
a positive feedback loop with Ca2+ dysregulation. ROS depolarize the mitochondrial mem-
brane and impair its energy metabolism, leading to a decrease in the ability of mitochondria
to buffer Ca2+ [112]. In addition, the excessive production of ROS promotes Ca2+ release
from internal stores via RYR and IP3R. Ca2+ ATPase pumps and the Na+-Ca2+ exchangers
are responsible of maintaining the Ca2+ gradient across the plasma membrane [35].

Several anti-oxidative markers are elevated in the aqueous humor of glaucoma pa-
tients, including catalase, glutathione peroxidase, superoxide dismutase, and malondialde-
hyde [113]. In human glaucomatous retinas and optic nerve heads, glial-related oxidative
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stress pathways are upregulated [114]. Numerous studies have shown that oxidative
stress is primarily involved in glaucoma at multiple levels and contributes to pro-fibrotic
remodeling, IOP dysregulation, and impeded RGC axoplasmic transport [115].

We previously examined the level of oxidative stress in LC cells obtained from normal
and glaucomatous human donor eyes, and our data showed evidence of oxidative stress
in primary cultured glaucomatous fibroblast LC cells [24]. We found that glaucoma LC
cells exhibit a significant increase in malondialdehyde (MDA) and reduced antioxidants
such as aldo-keto reductase family 1 member C1 (AKR1C1) and glutamate—cysteine ligase
catalytic subunit (GCLC). The same study showed evidence of mitochondrial dysfunction
and abnormal elevated intracellular Ca2+ levels in glaucoma fibroblast LC cells [24].

Calcium and Cell Proliferation

It is well-known that cell proliferation is dependent on the cell cycle, which consists
of four primary phases: G1, the first phase; S phase, in which nucleic acids occurs; G2,
the second phase; and M phase, or mitosis. The switches between these phases are tightly
controlled, and checkpoints during the cell cycle determine if the cell proceeds to the next
phase [116]. These checkpoints have been shown to be dependent on Ca2+. Variations
in [Ca2+]i are known to play a pivotal role throughout the cell cycle [35]. Several studies
have established that cell proliferation is dependent on extracellular Ca2+ [117,118]. Ca2+

is required early in G1, as cells re-enter the cell cycle, to promote the activation of AP1
(FOS and JUN) transcription factors, c-AMP-responsive element binding (CREB) protein,
and NFAT. Ca2+ plays a key role through these factors in coordinating the expression of
cell cycle regulators such as the D-type cyclins, which are required for the activation of
cyclin-dependent kinase 4 complexes. The initiation of the centrosomal duplication at the
G1/S phase is also dependent on Ca2+ and on calmodulin (CaM), CaM kinase II (CaMK),
and the centrosomal protein CP110. The Ca2+/CaM/CaMK pathways were shown to be
necessary for cell cycle progression [117,118]. Calcineurin, a Ca2+-dependent phosphatase,
is known to activate the nuclear factor of the activated T-cell transcription factor NFAT, and
a demonstrated link with MYC [119] regulating gene transcription of cyclins E provides a
connection between Ca2+-dependent pathways and proliferation.

The Ca2+/calcineurin/NFAT pathway is one of the major routes that can be activated
by the entry of Ca2+ through plasma membrane Ca2+ channels. The use of various Ca2+

channel blockers has supported the idea that Ca2+ influx plays a role in cell proliferation.
These observations suggest that a decrease in Ca2+ channel expression will lead to cell
cycle arrest [120]. However, fibrosis and cancer are characterized by alterations in the
Ca2+ signalling involved in cell proliferation. It has been found that the enhanced TRPC3-
dependent Ca2+ influx led to increased proliferation in ovarian cancer [121].

In human LC cells, we previously found that the Ca2+ entry channels TRPC1/C6
contribute to oxidative stress-induced ECM gene transcription and cell proliferation [26].
The TRPC1/C6 channels may constitute important therapeutic targets for preventing
ECM remodeling and fibrosis progression in glaucoma optic neuropathy [26]. Further-
more, we found that glaucomatous LC cells proliferate at higher rate and we showed that
yes-associated protein (YAP) expression levels were relatively enhanced in glaucoma LC
cells [28] (Table 1). Furthermore, the enhanced cell proliferation in glaucoma LC cells was
reduced following treatment with the known YAP inhibitor verteporfin [28].

6. Calcium and Autophagy

Autophagy is another metabolic pathway that regulates the degradation of unfolded
proteins and cellular components [122]. During the cellular autophagy process, some
soluble proteins and cell organelles (mitochondria and endoplasmic reticulum) which have
been dysfunctional in the cytoplasm are surrounded by autophagosomes. The autophago-
some and lysosome fuse to form an autolysosome. Hypoxia [123], oxidative stress [124],
and ER stress [125] induce cell autophagy. When ER stress is prolonged and unfolded
proteins go beyond the capacity of the proteasome degradation system, autophagy may be
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triggered. The activation of PERK leads to the phosphorylation of the eukaryotic initiation
factor (eIF2), which inhibits protein synthesis [126,127]. The activation of IRE1 and ATF6
promotes the transcription of UPR target genes. ER stress also leads to Ca2+ release from
the ER to the cytosol, leading to the activation of numerous kinases and proteases involved
in autophagy, including CaMKKβ [126], which, in turn, stimulates the disruption of the
Beclin 1 inhibitory complexes (Beclin 1-IP3-R or Beclin 1-Bcl-2). In addition, CaMKKβ is
also an upstream activator of AMPK, which inhibits mTORC1 [126].

It is known that ER stress-induced autophagy depends on Ca2+ homeostasis. Several
studies have shown that imbalanced Ca2+ homeostasis can induce apoptosis in cancer cells.
There is evidence that β-lapachone induces µ-calpain-mediated activity and is indepen-
dent of caspase activity cell death in MCF-7 cells [128]. Other studies have reported the
proapoptotic effect of EGTA and EDTA (Ca2+ ion chelators) in adenocarcinoma cells [129].
Furthermore, it has been found that factors increasing intracellular Ca2+ concentration,
such as vitamin D3, ATP, ionomycin, and thapsigargin (an inhibitor of the ER Ca2+-ATPase
pump), induced autophagic cell death in MCF-7 breast cancer cells [130]. In the Ca2+-
dependent induction of autophagy, Ca2+ released from intracellular stores or fluxed from
extracellular space via distinct Ca2+ channels activate CaMKKβ, which mediates the AMPK-
dependent inhibition of mTORC1 [131]. Studies carried out on thapsigargin have revealed
that the IRE1-JNK pathway is required for autophagy activation.

Studies on human primary cultures of TM cells have also shown that during glaucoma,
the autophagic mechanism in TM cells is dysregulated. TM cells isolated from glaucoma-
tous patients show dysregulation in the autophagic signalling pathway and a reduction
in the autophagic response to oxidative stress [132]. The same study found that glauco-
matous TM cells exhibited an overall reduction in LC3 and an increase in lipofuscin (or
non-degradable lysosomal content) [132]. Other proteins associated with autophagy that
were found to be down regulated during glaucoma are sequestosome-1 (p62) (a scaffold that
targets ubiquitinated proteins for autophagic degradation), scCTSB (a lysosomal protein),
and LC3B-II [131]. Furthermore, the same group, using transcriptome analysis, showed that
autophagy regulated TGFβ/Smad-induced fibrogenesis in trabecular meshwork cells [133].

In human LC cells, we found that glaucoma LC cells exhibit a significant increased
number of peri-nuclear lysosomes and an increase in autophagy in glaucoma LC myofibrob-
lasts [24]. Glaucomatous LC cells contain significantly higher expression levels of cathepsin
K mRNA and Atg5. Enhanced levels of LC3-II were found in both LC fibroblast cells and
optic nerve head sections from glaucoma donors, indicating that intracellular lipofuscin ac-
cumulation may have important effects on autophagy [24]. Taken together, these data show
that autophagic systems are dysfunctional in the TM and LC cells of glaucoma patients.
Thus, targeting these signalling pathways could be beneficial in treating glaucoma.

7. Concluding Remarks

Ca2+ homeostasis is a crucial determinant of cellular function and survival. Intracellu-
lar Ca2+ ions are dynamically regulated by the plasma membrane, endoplasmic reticulum,
and mitochondria. Ca2+ is also a ubiquitous and versatile intracellular second messenger
contributing to several critical signalling pathways that participate in the regulation of
numerous physiological processes [35,40]. In response to different stressors, Ca2+ enters
into a cell and interacts with different Ca2+-binding proteins, of which there are over 200 en-
coded by the human genome that function either as Ca2+ effectors or buffers. Disruption of
cytosolic Ca2+ homeostasis/signalling is responsible for many pathological states including
proliferation, apoptosis, autophagy, angiogenesis, fibrosis, neurodegeneration, and cancer
diseases. This review highlights the multiple abnormalities that we have identified in Ca2+

homeostasis in glaucomatous lamina cribrosa cells associated with increased fibrosis in the
optic nerve head (summarized in Table 1 and Figure 4). Recent genome-wide association
studies have described mutations in a number of calcium genes in glaucoma, requiring
further studies [134,135]. Therapeutic targeting based on these abnormalities may help to
reduce the global burden of visual impairment associated with glaucoma.
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Figure 4. Ca2+ signalling pathways in activated lamina cribrosa fibroblasts in glaucoma. Mechanical
and oxidative stress and growth factors (TGFβ) stimulate Ca2+ ion channels (L-type, TRPC, Maxi-K+)
and intracellular Ca2+ release from internal stores (ER and mitochondria). This stimulates PLC, which,
in turn, activates a variety of signalling pathways, such as RAS/RAF and p38MAPK, as well as PKC
p42/44-MAPK, CamK-calcineurin-NFATc, the SERCA pumps, and the PI3K signalling pathways,
leading to the activation of Ca2+-dependent gene transcription factors (NFATc3 and YAP).
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Abbreviations

AMPK AMP-activated protein kinase
ATF 4 Activating transcription factor 4
ATF 6 Activating transcription factor 6
Atg Autophagy-related gene
Bad Bcl-2-associated death
Bax Bcl-2-associated X protein
Bcl-2 B-cell lymphoma 2
Bip Immunoglobulin binding protein
CaMK Ca2+/calmodulin-dependent kinase
CHOP C/EBP-homologous protein
CRAC Calcium release-activated channel
elF2α Eukaryotic initiation factor
ER Endoplasmic reticulum
IP3-R Inositol triphosphate receptor
IRE1 Inositol-requiring enzyme 1
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JNK c-Jun NH2-terminal kinase
mTOR Mammalian target of rapamycin kinase
mTORC1: Mammalian target of rapamycin complex 1
PERK RNA-dependent protein ER kinase
PI3-K Phosphoinositide 3-kinase
PMCA Plasma membrane calcium ATPase
Raf-1 Ras protooncogene serine/threonine protein kinase
ROS Reactive oxygen species
RyR Ryanodine receptor
SERCA Smooth ER Ca2+-ATPase
SOCE Store-operated calcium channel entry
UPR Unfolded protein response
AMPK AMP activated protein kinase
XBP-1 X-box binding protein 1
[Ca2+] Intracellular Ca2+ concentration
PMCA Plasma membrane Ca2+-ATPase
ECM Extracellular matrix
ERAD ER-associated degradation
GRP78 Glucose-regulated protein 78
IOP Intraocular pressure
ISR Integrated stress response
PKC Protein kinase C
POAG Primary open-angle glaucoma
TM Trabecular meshwork
CREB c-AMP-responsive element binding
mPTP Mitochondrial permeability transition pore
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