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Abstract: Flavonoids are the largest group of polyphenols, represented by many compounds that
exhibit high anticancer properties. Quercetin (Q) and its main derivatives (rutin, quercitrin, iso-
quercitrin, isorhamnetin, tamarixetin, rhamnetin, and hyperoside) in the class of flavonols have
been documented to exert anticancer activity. Q has been shown to be useful in the treatment of
non-small cell lung cancer (NSCLC), as demonstrated by in vitro/in vivo studies, due to its antitumor,
anti-inflammatory, anti-proliferative, anti-angiogenesis, and apoptotic properties. Some flavonoids
(flavone, anthocyanins, and proanthocyanidins) have been demonstrated to be effective in nicotine-
induced NSCLC treatment. However, the molecular mechanisms of quercetin derivatives (QDs)
in nicotine-induced NSCLC treatment remain unclear. Thus, this review aims to summarize the
available literature on the therapeutic effects of QDs in nicotine-induced NSCLC.

Keywords: flavonoids; flavonols; quercetin derivatives; non-small cell lung cancer; nicotine; molecular
mechanisms

1. Introduction

Lung cancer (LC) is considered the largest contributor to cancer deaths worldwide [1].
LC consists of small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC),
which are the main histological types associated with smoking. SCLC represents about
15% of all LC cases, while NSCLC accounts for a large fraction of cases (85%), and includes
three subtypes: adenocarcinoma, large cell carcinoma, and squamous cell carcinoma [2,3].

Cigarette smoke contains a large number of carcinogenic compounds, including ni-
trosamines (nitrosonornicotine, NNN; and 4-methylnitrosamino-1-3-pyridyl-1-butanone,
NNK), which are implicated in increasing the risk of NSCLC [4]. Nicotine is not regarded
as a carcinogenic compound in tobacco and cigarette smoke, but it has the potential to
facilitate tumorigenesis [5,6]. Nicotine and NNK increase the NSCLC risk by upregulating a
network of signaling pathways facilitating proliferation, metastasis, and angiogenesis, and
inhibiting apoptosis through activation of the nicotinic acetylcholine receptor (α7nAChRs)
and beta-adrenergic receptor (β-AdrR) [6–8].

The mechanisms by which nicotine mediates cellular processes in NSCLC have been
previously described [8,9]. Figure 1 shows the mechanisms of nicotine in NSCLC development.

There is still no clear evidence confirming that dietary supplements for use in treating
NSCLC are safe and effective [10,11]. The efficacy of dietary antioxidant intake in the
treatment of NSCLC is also uncertain. Human and animal studies have demonstrated
a beneficial effect of dietary vitamins (C, D, E, and carotenoids) and minerals (zinc and
copper) intake in regards to NSCLC in smokers, while iron and retinol showed a detrimen-
tal effect [12]. Several randomized controlled trials (RCTs) of monoclonal antibody-based
immunotherapy in combination with chemotherapeutic agents have shown promising
therapeutic outcomes in patients with NSCLC [13]. Furthermore, there is little evidence to
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suggest that natural flavonoid compounds (e.g., flavone, anthocyanins, and proanthocyani-
dins) in medicinal plants could be effective in nicotine-induced NSCLC treatment [14,15].
Thus, there is a need for further investigations on the treatment of nicotine-induced NSCLC
using other natural flavonoids.
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Quercetin (Q) and its glycoside isoquercitrin (IQ) and rutin (RU) are natural flavo-
nols found mostly in fruits, and are considered as positive allosteric modulators 
(PAMs)/selective agonists of human α7nAChR, which makes them potential therapeutic 
agents in nicotine-induced NSCLC [16,17]. Several binding sites for Q are located at the 
active site of α7nAChR. Q has five hydroxyl (OH) groups at the C 3, 5, 7, 3′, and 4′ posi-
tions, with two OH groups on the A and B rings and one OH group on the C ring [17]. Q 
acts as a potential inhibitory agent for receptor tyrosine kinase (RTK) through suppres-
sion of epidermal growth factor receptor (EGFR), which is involved in LC, by promoting 
interactions between the A and C rings of Q with the phosphate and binding regions in 
the adenosine 5′-triphosphate (ATP) binding site of EGFR, thereby producing hydrogen, 
π-π, and hydrophobic bonds with the phenol/aspartate of the Asp-Phe-Gly (DFG) motif 
in its catalytic/activation loop [18].  

A recent review of human and animal studies showed that Q has therapeutic po-
tential against NSCLC cells. Treatment with Q demonstrated inhibition of cell migra-
tion/invasion of A549 and HCC827 cells via suppression of Snail-independent A disin-
tegrin and metalloprotease 9 (ADAM9) and activation of the threonine kinase (Akt) sig-
naling pathway [19]. Q also induces apoptosis and cell cycle arrest via c-JUN 
NH2-terminal kinase/nuclear transcription factor-kappa B/Akt (JNK/NF-kB/Akt) signal 
pathway inhibition and upregulating the expression of Bcl-2-associated X protein (Bax), 
cleaved caspase-3, cyclin B1, p21/53 proteins, and downregulating the B-cell lymphoma-2 
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Quercetin (Q) and its glycoside isoquercitrin (IQ) and rutin (RU) are natural flavonols
found mostly in fruits, and are considered as positive allosteric modulators (PAMs)/selective
agonists of human α7nAChR, which makes them potential therapeutic agents in nicotine-
induced NSCLC [16,17]. Several binding sites for Q are located at the active site of
α7nAChR. Q has five hydroxyl (OH) groups at the C 3, 5, 7, 3′, and 4′ positions, with
two OH groups on the A and B rings and one OH group on the C ring [17]. Q acts as
a potential inhibitory agent for receptor tyrosine kinase (RTK) through suppression of
epidermal growth factor receptor (EGFR), which is involved in LC, by promoting inter-
actions between the A and C rings of Q with the phosphate and binding regions in the
adenosine 5′-triphosphate (ATP) binding site of EGFR, thereby producing hydrogen, π-π,
and hydrophobic bonds with the phenol/aspartate of the Asp-Phe-Gly (DFG) motif in its
catalytic/activation loop [18].

A recent review of human and animal studies showed that Q has therapeutic potential
against NSCLC cells. Treatment with Q demonstrated inhibition of cell migration/invasion
of A549 and HCC827 cells via suppression of Snail-independent A disintegrin and metallo-
protease 9 (ADAM9) and activation of the threonine kinase (Akt) signaling pathway [19].
Q also induces apoptosis and cell cycle arrest via c-JUN NH2-terminal kinase/nuclear
transcription factor-kappa B/Akt (JNK/NF-kB/Akt) signal pathway inhibition and up-
regulating the expression of Bcl-2-associated X protein (Bax), cleaved caspase-3, cyclin
B1, p21/53 proteins, and downregulating the B-cell lymphoma-2 (Bcl-2) cascade medi-
ated by EGFR in NSCLC cells [19–22]. Although Q is considered a potential therapeutic
target against NSCLC, it has low bioavailability in humans due to its instability and
poor water solubility and permeability [23]. Many drug delivery approaches have been
recommended to enhance Q bioavailability, including nanoparticles, micelles, inclusion
complexes, and liposomes [24]. Liposomal Q has been found to induce cell apoptosis
and suppress tumor growth both in vitro and in vivo [25]. A study has shown that Q
increases green tea polyphenols (GTPs) bioavailability and decreases their methylation
in A549 cells. That study reported a high anti-proliferative effect of Q in combination
with GTPs and epigallocatechin gallate through multidrug resistance proteins (MRPs) and
catechol-O-methyltransferase (COMT) inactivation [26].
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Given that Q has proven to be effective for NSCLC treatment, targeting its derivatives
might help in understanding the α7nAChRs-mediated signaling pathways as potential
targets for NSCLC treatment. Because there have been no reviews on the mechanisms of
quercetin derivatives (QDs) for nicotine-induced NSCLC treatment to date, this review aims
to highlight the therapeutic effects of QDs (rutin, quercitrin, isoquercitrin, isorhamnetin,
tamarixetin, rhamnetin, rhamanzin, and hyperoside) via various mechanisms of action.
Each derivative has a unique chemical structure [27–30] that may exhibit a high inhibitory
effect against nicotine-induced NSCLC. The chemical structures of these QDs are presented
in Figure 2.
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2. Methods

A literature search of studies published in the English language was conducted from
their inception up to September 2023 through the PubMed/MEDLINE database. The
search used the following keywords: “QDs/metabolites” OR “rutin” OR “quercitrin” OR
“isoquercitrin” OR “isorhamnetin” OR “tamarixetin” OR “rhamnetin” OR “hyperoside”
AND “lung cancer” OR “NSCLC” AND “molecular mechanism” AND “nicotine.” All
studies with a primary focus on QDs were included, and the search was not limited to a
particular study design. Studies focusing on Q as a potential target for the treatment of
NSCLC were not considered. The search identified 155 studies for possible inclusion. As a
result, 25 studies met the search criteria.

3. Quercetin Derivatives in Nicotine-Induced NSCLC Therapy
3.1. Rutin

RU (3,3′,4′,5,7-pentahydroxyflavone-3-rhamnoglucoside), also known as Q-3-O-rutinoside,
is a flavonol compound found in various fruits and vegetables. It is less bioavailable and
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soluble than Q in humans [31]. RU is also absorbed more slowly than Q in the small
intestine of rats [32].

RU could be useful in the treatment of NSCLC mediated by α7nAChR. RU and Q
act on α7nAChR-dependent ion currents. Q induces the enhancement of ACh-induced
inward peak currents (IACh) on cells expressing human α7nAChR and increases the ex-
tracellular Ca2+ level-mediated potentiation of IAch via interactions with Ca2+-binding
sites for α7nAChR in Xenopus oocytes (a system for the expression of plasma membrane
transport proteins) [33]. Q exhibits differential regulation of α7nAChR channel activity
with respect to RU in such a way that Q increases IACh, while RU decreases IACh in Xenopus
oocytes expressing human α7AChR, and such effects exist in a voltage-insensitive and
non-competitive manner. Q-mediated IACh suppression can be improved when Q is co-
administered with RU, suggesting that RU may have a significant role in the regulation of
α7nAChR [34].

RU was found to inhibit β-amyloid (Aβ) peptide-induced neuronal cytotoxicity, nitric
oxide (NO), and the production of reactive oxygen species (ROS) and proinflammatory
cytokines by reducing interleukin (IL)-1β and tumor necrosis factor (TNFα) production
in microglia [35]. Plasma levels of Aβ were found to be significantly increased in patients
with multiple cancers, including LC [36].

An in vitro study has shown that α-L-rhamnosidase (α-R) cleaves terminal α-rhamnose
in flavonoid rutinosides/glycosides (hesperidin, naringin, diosmin, and troxerutin), which
increases the anti-proliferative and anti-oxidant activities of RU against various cancer
cell lines, including NSCLC (H460) cells [37]. In contrast, β-glucosidase (β-G) has been
shown to exert high potency against LC tumor growth. β-G converts rutin to rutinose
disaccharide and Q through its ability to remove sugar moieties such as glucose linked
to flavonoids in positions 3 and 7 of the C ring [38]. β-G has been described as the key
glycoprotein-processing enzyme that inhibits the expression of p53 in NSCLC cells [39].
Knockout of β-G was found to inhibit cell migration/metastasis and induce apoptosis
and/or autophagy in NSCLC cells through the suppression of RTK signaling pathways [40].

α-R may convert RU into IQ with high bioactivity and bioavailability by combining
with β-G [41]. Thus, α-R coupled with β-G provides high bioactive effects, which inhibit
the proliferation and induction of apoptosis in NSCLC cells. Recent molecular docking
studies showed that the OH groups of RU (C7-OH) form stable H-bond interactions with
several amino acid residues, including serine, aspartic acid, phenylalanine, glutamine,
glutamic acid, and arginine [42]. Therefore, these OH groups may create interactions with
amino acid residues in the binding pocket of α7nAChR, displaying complex modulation of
the receptor.

A few studies investigating the therapeutic efficacy of RU in nicotine-induced NSCLC
showed that the mechanisms underlying its effects have not been explored. Transfor-
mation of rutin to quercetin-3-β-D-glucoside (Q3G) using α-R and β-G from a crude
enzyme extract of Aspergillus niger (A. niger) has been shown to inhibit NSCLC cell prolifer-
ation [43]. A study has demonstrated that RU-loaded liquid crystalline nanoparticles exert
anti-proliferative/anti-migratory and apoptotic effects on NSCLC cells [44]. RU reduces
superoxide anion/intracellular ROS production and suppresses the proliferation and mi-
gration/adhesion of NSCLC cells, although it showed cytotoxic effects at concentrations
higher than 500 µM (IC50 = 559.83 µM) [45]. RU from Artemesia judaica L. (A. judaica L.)
ethanolic extract showed apoptotic potential against NSCLC cells and arrested the cell cycle
at the G2/M phase. A cytotoxic activity of A. judaica L. extract was reported against A549
cells (IC50 = 14.2 µg/mL). This may be due to the presence of several extracts of different
polarities [46]. RU has shown antioxidant effects on NSCLC cells by decreasing NNK-
induced intracellular ROS and inhibiting the DNA damage induced by β-carotene [47].
Thus, RU may have therapeutic potential in nicotine-induced NSCLC cells by inhibiting
proliferation, migration, and adhesion, and promoting apoptosis. RU also has a beneficial
effect as a potential antioxidant in inhibiting NNK-induced DNA damage in NSCLC cells.
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3.2. Isorhamnetin

Isorhamnetin (IS) (3′-methoxy-3,4′,5,7-tetrahydroxyflavone), a flavonol compound
found in the leaves of medicinal plants such as Hippophae rhamnoides L. (H. rhamnoides L.)
and Ginkgo biloba L. (G. biloba L.) has a wide range of therapeutic effects against several
diseases, such as cerebrovascular diseases and atherosclerosis, It has also shown anti-tumor
effects against various common cancers, including LC [48]. A few in vivo studies so far
have shown a high IS bioavailability. Phytic acid improves the oral absorption of flavone
compounds of H. rhamnoides L, including IS [49]. The bioavailability of IS increased when it
was coingested with G. biloba L. extract solid dispersions and phospholipid complexes [50].

The therapeutic effects of IS against nicotine-induced NSCLC may be related to the
inhibition of α7nAChR and its downstream signaling pathways. However, whether IS has
potential α7-PAM activity remains unknown. IS is structurally similar to Q, which has an
OH group at C-3. IS has four OH groups at the C-3,5,7,4′ positions, with one OH group on
the B and C rings and two OH groups on the A ring [27,28]. IS also has one methoxy group
in the C-5′ position on the B ring [27,28]. Thus, IS may be an effective anti-NSCLC agent by
binding to the molecules involved in the α7nAChR-mediated signaling pathways.

Another possible explanation for the anti-tumor activities of IS against nicotine-
induced NSCLC might be due to the enzymatic de-glycosylation of IS by α-R and β-G [51],
which could lead to improved efficacy of IS for the treatment of NSCLC. IS may interact
with the active site of both α-R and β-G, resulting in the inhibition of signaling pathway
regulation of cellular processes implicated in nicotine-induced NSCLC.

IS may have anti-proliferative and apoptotic/autophagic effects against nicotine-
induced NSCLC via regulation of α7nAChR and its downstream signaling pathways. IS
inhibits proliferation/colony formation ability and promotes the apoptosis/autophagy
of NSCLC cells in a time and dose-dependent manner via the mitochondria-dependent
apoptosis pathway [52]. Treatment with IS demonstrated significant inhibition of migration
and invasion via inactivation of the oncogenic kinase signaling pathway [53].

3.3. Hyperoside

Hyperoside (HP), also termed Q 3-O-β-D-galactopyranoside, a naturally occurring
flavonol that is widely present in plants such as Polygonum aviculare, Crataegus pinnatifida,
and Hypericum monogynum, exerts a wide range of anticancer effects [29,54]. The therapeutic
effect of HP on nicotine-induced NSCLC is still unclear, but it may be attributed to its
aglycone Q, which has a great binding affinity for human α7nAChR [29]. HP may have
high affinity and potential for binding to the active site of α7nAChR. The anti-NSCLC
activity of HP may depend on its having eight OH groups on the A, B, and C-rings of
their structure, with two OH groups on the B ring (positions 3′ and 4′), two OH groups on
the A ring (positions 5 and 7), and four OH groups in the glycosides linked to the C ring
(positions 2′′, 3′′, 4′′, and 5′′) [27,29]. In vivo, low HP bioavailability may be due to its poor
oral absorption [55,56].

A few studies suggest that HP treatment exhibits a range of effects against nicotine-
induced NSCLC, including anti-proliferative, anti-migration, anti-invasion, anti-inflammatory,
and apoptotic/autophagic activities. HP has been reported to suppress proliferation and
promote apoptosis of T790M-positive NSCLC cells by increasing forkhead box protein O1
(FoxO1) expression in colon cancer-associated transcript 1 (CCAT1)-knockdown NSCLC
cells [57]. HP inhibits the expression of genes associated with tumor migration and invasion
in NSCLC cells by suppressing signaling pathways involving tumor metastatic genes [58].
HP decreases viability and induces apoptosis of NSCLC cells by upregulating pro-apoptotic-
related gene expression through activation of apoptotic pathways [59]. HP activates apopto-
sis and autophagy in proliferating NSCLC cells by increasing apoptotic/autophagic-related
gene expression via a range of signaling pathways associated with tumorigenesis [60]. HP
regulates genes involved in apoptosis while downregulating genes involved in prolifer-
ation, migration, invasion, and inflammation of NSCLC cells via inhibiting the NF-kB
signaling pathway [61]. HP inhibits proliferation, increases apoptosis, and causes arrested



Int. J. Mol. Sci. 2023, 24, 15208 6 of 14

growth of NSCLC cells at the G1/S phase by decreasing the protein expression of cyclin-
dependent kinase (CCND1) and coding sequence (CDK 4 & 6) through its interaction with
the microRNA-let7a-5p [62]. HP significantly inhibited proliferation, migration, invasion,
and angiogenesis; induced apoptosis; and arrested the cell cycle at the S phase in NSCLC
cells, mediated through upregulating pro-apoptotic and downregulating anti-apoptotic
protein levels [63]. HP reduces the inflammation of NSCLC cells by decreasing Mycoplasma
pneumoniae pneumonia (MPP)-induced pro-inflammatory cytokines production through
NF-κB signaling pathway inactivation [64]. HP reduces hypoxia-induced viability and
proliferation of NSCLC cells, as demonstrated by upregulating the expression of heme
oxygenase-1 (HO-1) through activating AMP-activated protein kinase (AMPK) [65].

3.4. Rhamnetin and Rhamnazin

Rhamnetin (RT) and rhamnazin (RZ) are methylated QDs distributed widely in fruits
and vegetables that exert antibacterial, anti-inflammatory, antioxidant, and anticancer
properties [27,66]. Previous evidence has demonstrated that the methoxy groups produce
steric hindrance and reduce the free radical scavenging ability of flavonoids. However,
the OH groups endow flavonols with high radical scavenging capability [67]. RT and RZ
are structurally similar to IS but differ from other flavonols by having methoxy groups on
the A and B rings [27,28]. RT (7′-O-methoxy Q) contains a methyl group at the 7′ position
on the A ring, while RZ (3′,7′-dimethylquercetin) has two methyl groups at the 3 and 7′

positions on the A and B rings [27,30]. RT and RZ have an OH group at C-3, which plays a
significant role in anti-tumor activity against nicotine-induced NSCLC. RT possesses four
OH groups at C-5, 3, 3′, and 4′, with one OH group on the A and C rings and two OH
groups on the B ring. RZ has three OH groups in its structure at the 5 position on the A
ring, the 3 position on the C ring, and the 4′ position on the B ring [27,30].

RT has been shown to displace a selective α7nAChR ligand, methyllycaconitine [3H]-
MLA, or an αβ2 selective ligand, [3H]-cytisine, with the lowest cytotoxicity activity (IC50) of
nicotine, resulting in inhibited NO and TNFα release [68]. RT also exerts α7nAChRs agonist
activity in vivo, as demonstrated by reduced excitotoxicity following ethanol exposure
and neuroinflammation by decreasing lipopolysaccharide (LPS)-induced TNFα and NO
production [69].

RZ may have a significant role in anti-angiogenic effects in NSCLC cells, as demon-
strated by a xenograft mouse model. RZ suppresses in vivo angiogenesis mediated by
NSCLC cells by inhibiting vascular endothelial growth factor A (VEGFA) and vascular
endothelial growth factor receptor 2 (VEGFR2) phosphorylation through anti-programmed
cell death 1/programmed cell death ligand 1(PD-1/PD-L1) signaling pathway inactivation.
Treatment with RZ (20 µM) and anti-CD3 antibody (1 µg/mL) exhibits cytotoxic effects
on NSCLC cells, promotes T cell proliferation, and increases the production of cytotoxic
mediators [70].

3.5. Quercitrin

Quercitrin (QU), also known as Q-3-O-rhamnoside, is a Q derivative that is structurally
similar to HP. QU has seven OH groups on the A, B, and C rings, with two OH groups
on the A ring (positions 5 and 7), two OH groups on the B ring (positions 3′ and 4′) and
three OH groups in the glycosides linked to the C ring. QU differs from QDs by having
one methyl group in the glycosides linked to the C ring, which makes its anti-NSCLC
ability lower than the other derivatives [27,30]. Thus, Qu would be expected to have
lower levels of effectiveness as an anti-NSCLC agent than other QDs in binding to the
α7nAChR-mediated signaling pathways.

A few studies have demonstrated that QU exerts anti-proliferative, anti-migration/invasion,
and apoptotic effects on NSCLC cells. QU inhibits proliferation and induces apoptosis in
NSCLC cells via increasing caspase-3 enzyme activity and the nucleosomal enrichment
factor, and inducing the loss of mitochondrial membrane potential. QU exerts cytotoxic
effects on NSCLC cells in a dose-dependent manner (50 µmol), which may be due to
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inducing lactate dehydrogenase (LDH) release to baseline levels of toxicity [71]. NSCLC
cell migration and invasion has been shown to be reduced by QU treatment at different
concentrations by inhibiting the transcript levels of Gap Junction Protein Beta 2 (GJB2) in
these cells [72].

3.6. Tamarixetin

Tamarixetin (TA), also called 4′-O-methoxy Q, is a derivative that has four OH groups
on C 3, 5, 7, and 3′ [30], among which the OH group at C-3 may improve the anti-tumor
activity against NSCLC [67]. However, TA has a methyl group at the 4′ position on the
B ring [30]. Only one study showed that TA and IS inhibit the proliferation of NSCLC
cells. This inhibition was accompanied by increased apoptosis-related gene expression.
Cytotoxicity analysis has indicated cytotoxic activity of TA and IS with an IC50 value
between 15–26 µM in NSCLC cells. This may be due to the combination of different
flavonoids, which increases the cytotoxic potencies of these methylquercetins [73].

Table 1 summarizes the in vitro and in vivo studies that have evaluated QDs in
nicotine-induced NSCLC treatment.

Table 1. The role of QDs in nicotine-induced NSCLC therapy.

Study Design QDs Cell
Line Dosage Activity Target Molecular

Genes
Target

Mechanisms Ref.

In vitro RU A549 0, 50, 100, 150, 200,
250 µM Anti-proliferative NA NA [43]

In vitro RU A549 2.5, 5, 10, 20 µM Anti-proliferative,
anti-migration, apoptosis MMP-9 ↓ NA [44]

In vitro RU A549 31.25, 62.5, 125, 250,
500, 1000 µM

Anti-proliferative,
anti-migration,
anti-adhesion

ROS ↓ NA [45]

In vitro/vivo RU A549

0.1, 1, 10, 100 µg/mL
(in vitro)

100 mg/kg BW/day
of A. judaica L.

(in vivo)

Apoptosis, G2/M phase
cell cycle arrest

Caspase-3/8/9, P53
Bax ↑

Bcl-2 ↓
NA [46]

In vitro/vivo IS A549
0–16 µM (in vitro)

0.5 mg/kg BW/day
(in vivo)

Anti-proliferative,
apoptosis, autophagy

Caspase-3/9,
cytochrome C, Bax, P53,
c-PARP, Beclin1, LC3-II

↑

Mitochondria-
dependent caspase

↑
[52]

In vitro IS A549 2.5, 5, 10 µM
Anti-migration,
anti-adhesion,
anti-invasion

E-cadherin ↑
MMP2/9, snail,

vimentin, N-cadherin ↓
Akt/ERK1/2 ↓ [53]

In vitro/vivo HP H1975
0–150 µM (in vitro)
25 mg/kg BW/day

(in vivo)

Anti-proliferative,
apoptosis FoxO1 ↑ CCAT1 ↓ [57]

In vitro HP A549 1, 2, 5 µM Anti-migration,
anti-invasion MMP-2/9 TIMP-2 ↓ PI3K/Akt, p38

MAPK ↓ [58]

In vitro HP A549 10, 50, 100 µM Apoptosis, anti-viability

Caspase- 3/9,
cytochrome c,

apoptosis-inducing
factor ↑

p38 MAPK, JNK ↑ [59]

In vitro HP A549 0.5, 1, 2 mmol/L Apoptosis, autophagy Caspase- 3, c-PARP,
LC3-II ↑

Akt, mTOR,
p70S6K. 4E-BP1 ↓

ERK1/2 ↑
[60]

In vivo HP A549 15, 20, 25 mg/kg
BW/for a month

Anti-proliferative,
anti-migration,
anti-invasion,

anti-inflammatory,
apoptosis

Caspase- 3, Bax ↑
MMP-2/9, Bcl-2, IL-6,
IL-18, IL-1β, TNF-α ↓

NF-kB ↓ [61]

In vitro HP A549 0, 10, 20, 50, 100, 200,
400 µg/mL

Anti-proliferative,
apoptosis, G1/S phase

cell cycle arrest
CCND1, CDK-4/6 ↓ NA [62]
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Table 1. Cont.

Study Design QDs Cell
Line Dosage Activity Target Molecular

Genes
Target

Mechanisms Ref.

In vitro/vivo HP A549,
H1975

0, 20, 40, 60, 80, 100
µg/mL (in vitro)
20, 40, 80 µg/mL

(in vivo)

Anti-proliferative,
anti-migration, anti-

invasion, anti-angiogenic,
apoptosis, S phase cell

cycle arrest

Caspase- 3/9, c-PARP,
Bax, Bad, Bak, Cyto-c,

Apaf-1, p53 ↑
MMP-2/7, c-Myc,

Cyclin-D1, CDK1, Akt,
Bcl-2, Bcl-xl ↓

NF-kB ↓ [63]

In vitro HP A549 0, 25, 50, 100, 200, 400,
1000 µg/ml Anti-inflammatory IL-8, TNF-α, CCR4,

CCL5, p-NF-κB-p65 ↓ NF-kB ↓ [64]

In vitro HP A549 10, 50, 100 µg/ml Anti-proliferative,
anti-viability

HO-1, ROS ↑
GSH ↓ AMPK ↑ [65]

In vivo RZ H1975 200 mg/kg BW/day anti-angiogenic VEGFA, VEGFR2 ↓ PD-1/PD-L1 ↓ [70]

In vitro QU A549,
H358 5, 10, 25, 50 µM Anti-proliferative,

apoptosis

Caspase-3, loss of
mitochondrial

membrane potential ↑

Phosphatidylinositol
signaling system,

leukocyte
transendothelial
migration, cell

adhesion ↓

[71]

In vitro QU H1299,
H1650 2, 5, 10 µM Anti-migration,

anti-invasion GJB2 ↓ NA [72]

In vitro TA,
IS

A549,
HCC-44 15–26 µM Anti-proliferative,

apoptosis Caspase- 3/9 ↑

Intrinsic and
extrinsic apoptotic
pathway- caspase

cascades ↑

[73]

(↓) decrease, (↑) increase; NA = not available.

4. Quercetin Derivatives in Combination with Chemotherapeutics/Radiotherapy in
Nicotine-Induced NSCLC Therapy

A few studies have proved that RU and IS inhibit proliferation and enhance cisplatin/
carboplatin-induced apoptosis in NSCLC cells. Treatment with RU extracted from Urtica
dioica L. in combination with cisplatin suppresses proliferation of NSCLC by promoting
endoplasmic reticulum (ER) stress-induced apoptosis through DNA damage-inducible
gene 153 (GADD153) activation. RU is safe on NSCLC cells, capable of antagonizing
cisplatin cytotoxicity at different doses (25, 50, 75, and 100 µg/mL) [74]. RU in combination
with cisplatin showed potent apoptotic effects in NSCLC cells by increasing the expression
of TNF-α and glycogen synthase kinase (GSK)-3β [75]. A study reported carboplatin
and a cisplatin/IS combination as being effective in inhibiting proliferation and inducing
apoptosis in NSCLC cells via mitochondrial apoptotic pathway activation [76]. IS in
combination with cisplatin results in a significant inhibition of proliferation and induction
of apoptosis/cell cycle arrest in NSCLC cells. This was demonstrated via activation of
apoptotic genes and suppression of oncogenes genes [77].

Studies demonstrated that IS and RT inhibit proliferation and induce NSCLC cell apop-
tosis during irradiation (IR). NSCLC cells treated with IS and IR results in the inhibition of
proliferation and the induction of apoptosis by increasing/decreasing apoptosis-related
protein expression via inactivation of IR-induced-NF-κB and activation of IR-induced-
interleukin (IL)-13 signaling pathways. The results also demonstrated the IS/IR combina-
tion had no cytotoxic effects on NSCLC cells [78]. RT and cirsiliol-IR combination treatment
exhibits anti-proliferative and apoptotic effects on NSCLC cells by reducing epithelial–
mesenchymal transition (EMT)-related molecules and increasing tumor-suppressive miR-
NAs [79].

Table 2 summarizes the in vitro and in vivo studies that have assessed QDs in combi-
nation with cisplatin/carboplatin and IR in nicotine-induced NSCLC treatment.
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Table 2. The role of QDs in combination with radiotherapy/chemotherapy in nicotine-induced
NSCLC therapy.

Study
Design QDs Cell Line Dosage Activity Target Molecular

Genes
Target

Mechanisms Ref.

In vitro RU A549, H1299,
H460, H322

10–100 µg/mL
(Urtica dioica L.)

Anti-
proliferative,

apoptosis

Caspase- 3/8,
c-PARP ↑ GADD153 ↑ [74]

In vitro RU A549

1 × 10−8 (low
group), 2 × 10−8

(medium group) or
4 × 10−8 mol/L

(high group)

Apoptosis TNF-α, GSK-3β ↑ NA [75]

In vitro IS A549 0, 2.5, 5, 25, 50,
100 µM

Anti-
proliferative,

apoptosis, G2/M
phase cell cycle

arrest

Caspase-3/9, PARP ↑
Mitochondria-

mediated
caspase ↑

[76]

In vitro/vivo IS A549

20, 40, 80 µg/mL
(in vitro)

50 mg/kg/day
(in vivo)

Anti-
proliferative,

apoptosis, S and
G0/G1 phase cell

cycle arrest

Caspase-3, Bax, P53 ↑
Bcl-2, cyclinD1,

PCNA ↓
NA [77]

In vitro IS A549, H460 5, 10, 20, 40, 60,
80 µM

Anti-
proliferative,

apoptosis

Bax ↑
Bcl2, p-IκBα,

p-NF-κBp65 ↓

NF-κB ↓
IL-13 ↑ [78]

In vivo RT H1299, H460 200 µg/mL /kg
body weight

Anti-
proliferative,

apoptosis

miR-34a, p53,
E-cadherin ↑

NF-kB, p65, Hes-1,
Hey-1, vimentin,

fibronectin ↓

NF-κB,
Notch-1 ↓ [79]

(↓) decrease, (↑) increase; NA = not available.

5. Limitations

Most of these studies were conducted on in vitro models, and studies on humans
are lacking. Using different dosage regimens of QDs in vitro and in vivo may lead to
problems in design-ideal treatment strategies for nicotine-induced NSCLC. Treatment with
different concentrations may affect the cellular and molecular mechanisms underlying the
therapeutic potential of QDs in nicotine-induced NSCLC. The potential mechanisms to
explain RU therapeutic effects against nicotine-induced NSCLC are unclear and have not
been investigated yet. Although RU, RZ, QU, and TA are considered cytotoxic to NSCLC
cells at specific concentrations, they do not harm these cells and could be ideal compounds
for nicotine-induced NSCLC treatment through several mechanisms or used as adjuvant
agents in combination with chemotherapeutic drugs or IR.

6. Conclusions

Q has major derivatives that exist in fruits and vegetables and are in the class of
flavonols with anticancer properties. However, the mechanisms by which QDs exert
therapeutic effects against nicotine-induced NSCLC are not fully understood. QDs may
have the ability to alter the activity of α7nAChRs-mediated signaling pathways involved
in cellular processes driving the development of NSCLC. Treatment with all QDs exhibits a
range of therapeutic effects in nicotine-induced NSCLC, including anti-proliferative, anti-
migration, anti-invasive, anti-viability, apoptotic, and autophagic activities. HP showed
anti-inflammatory and anti-angiogenesis effects, while RZ demonstrated anti-angiogenesis
activity in nicotine-induced NSCLC.
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RU, IS, and RT exert anti-proliferative and apoptotic effects in combination with
chemotherapeutic agents and/or IR as a treatment for nicotine-induced NSCLC cells. RU
and IS reduce cisplatin/carboplatin cytotoxicity by inhibiting proliferation and inducing
apoptosis of NSCLC cells through different cellular signaling pathways. IS and RT increase
apoptosis in nicotine-induced NSCLC cells, which was further enhanced by IR treatment.

7. Future Directions

QDs serve as promising treatment agents in targeting nicotine-induced NSCLC. Thus,
clinical applications of these derivatives in NSCLC trials are needed. The studies presented
suggest the toxic effect of some QDs is accompanied by no harm to nicotine-induced
NSCLC cells. Future studies in humans are warranted to examine whether the toxicity
of QDs would decrease the effectiveness of these therapeutic agents for nicotine-induced
NSCLC. Further studies are needed to investigate the effects of QDs in combination with
chemotherapeutic agents and IR in nicotine-induced NSCLC treatment. Further studies
are also needed to explore the accurate dosage of QDs in treatment. Future directions
for exploring potential mechanisms underlying the therapeutic effects of QDs in nicotine-
induced NSCLC, particularly in smokers, are warranted.
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Abbreviations

Aβ β-amyloid
ADAM9 A disintegrin and a metalloprotease 9
Akt Threonine kinase
AMPK AMP-activated protein kinase
ATP Adenosine 5′-Triphosphate
β-AdrR Beta-adrenergic receptor
Bax Bcl-2-associated X protein
Bcl-2 B-cell lymphoma-2
β-G β-glucosidase
CCAT1 Colon cancer-associated transcript 1
CCL5 Chemokine C-C motif ligand 5
CCND1 Cyclin-dependent kinase
CCR4 Chemokine receptor 4
CDK Coding sequence
COMT Catechol-O-methyltransferase
E2F E2F transcription factors 1
4E-BP1 4E-binding protein 1
EGFR Epidermal growth factor receptor
EMT Epithelial-mesenchymal transition
ER Endoplasmic reticulum
ERK Extracellular signal-regulated kinase
FoxO1 Forkhead box protein O1
GADD153 DNA damage-inducible gene 153
GJB2 Gap Junction Protein Beta 2
GSH Glutathione
GSK Glycogen synthase kinase
GTPs Green tea polyphenols
HO-1 Heme oxygenase-1
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HP Hperoside
IL Interleukin
IQ Isoquercitrin
IR Irradiation
IS Isorhamnetin
JNK c-JUN NH2-terminal kinase
LC Lung cancer
LC3-II LC3-phospholipid conjugate
LDH Lactate dehydrogenase
LPS Lipopolysaccharide
MAPK Mitogen-activated protein kinase
MLA Methyllycaconitine
MMP Metalloproteinase
MRPs Multidrug resistance proteins
mTOR Mammalian target of rapamycin
nAChR Nicotinic acetylcholine receptor
NF-kB Nuclear transcription factor-kappaB
NNK 4-methylnitrosamino-1-3-pyridyl-1-butanone
NNN Nitrosonornicotine
NO Nitric oxide
NSCLC Non-small cell lung cancer
OH Hydroxyl
P38 Protein 38
PAM Positive allosteric modulator
PARP Poly ADP ribose polymerase
PCNA Proliferating cell nuclear antigen
PD-1 Anti-programmed cell death 1
PD-L1 Programmed cell death ligand 1
PI3K Phosphatidylinositol-3 kinase
Q Quercetin
QDs Quercetin derivatives
Q3G Quercetin-3-β-D-glucoside
QU Quercitrin
α-R α-L-rhamnosidases
RAF-1 Retinoblastoma tumor suppressor protein-proto-oncogene
RCTs Randomized controlled trials
ROS Reactive oxygen species
RT Rhamnetin
RTK Receptor tyrosine kinase
RU Rutin
RZ Rhamnazin
SCLC Small cell lung cancer
TA Tamarixetin
TNF Tumor necrosis factor
VEGFA Vascular endothelial growth factor A
VEGFR2 Vascular endothelial growth factor receptor 2
YAP Yes-associated protein
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