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Abstract: Acute kidney injury (AKI) is often caused by ischemia-reperfusion injury (IRI). IRI signifi-
cantly affects kidney metabolism, which elicits pro-inflammatory responses and kidney injury. The
ischemia/reperfusion of the kidney is associated with transient high mitochondrial-derived reactive
oxygen species (ROS) production rates. Excessive mitochondrial-derived ROS damages cellular com-
ponents and, together with other pathogenic mechanisms, elicits a range of acute injury mechanisms
that impair kidney function. Mitochondrial-derived ROS production also stimulates epithelial cell
secretion of extracellular vesicles (EVs) containing RNAs, lipids, and proteins, suggesting that EVs
are involved in AKI pathogenesis. This literature review focuses on how EV secretion is stimulated
during ischemia/reperfusion and how cell-specific EVs and their molecular cargo may modify the IRI
process. Moreover, critical pitfalls in the analysis of kidney epithelial-derived EVs are described. In
particular, we will focus on how the release of kidney epithelial EVs is affected during tissue analyses
and how this may confound data on cell-to-cell signaling. By increasing awareness of methodological
pitfalls in renal EV research, the risk of false negatives can be mitigated. This will improve future EV
data interpretation regarding EVs contribution to AKI pathogenesis and their potential as biomarkers
or treatments for AKI.
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1. Introduction

Acute kidney injury (AKI) is a syndrome characterized by an abrupt decrease in kidney
function associated with high mortality, impaired organ functions, and the development
of chronic kidney disease [1]. The poor patient outcome and a high prevalence of up
to 50% in critically ill patients [2] make AKI a global health burden. AKI is clinically
classified into pre-renal, post-renal, and intrinsic causes [3], and a significant mechanistic
contributor to AKI is ischemia-reperfusion [4,5]. Kidney ischemia, which can happen,
e.g., during cardiac surgery or kidney transplantation, severely compromises the kidney’s
metabolism, and the reperfusion elicits a robust pro-inflammatory response associated with
increased oxidative stress that damages the kidney [6]. Recent studies suggest that the
ischemia/reperfusion injury is mitigated by targeted intervention that prevents excessive
mitochondrial production of reactive oxygen species (ROS) [7,8]; however, the cellular and
molecular mechanisms are unresolved.

Mitochondrial-derived ROS significantly contribute to the cellular secretion of extra-
cellular vesicles (EVs) [9,10]—nanosized vesicles containing proteins, RNA, microRNA
(miRNA), and lipids released into body fluids such as blood and urine. EVs comprise a
complex heterogeneous vesicle population released from most cell types by several dif-
ferent mechanisms, but technical and experimental challenges make it difficult to define
a causal relationship between EVs and AKI progression. Nonetheless, new experimental
models and approaches developed within recent years have enabled a deeper insight
into EV biology. We will review the current understanding of how ischemia/reperfusion
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stimulates EV secretion, how EVs contribute to AKI, and highlight some pitfalls associated
with kidney EV research uncovered using reporter models.

2. Acute Kidney Injury

The kidneys receive up to 25% of the cardiac output, but the oxygen tension in the kid-
ney is generally low [11]. Transient failures of the systematic blood or intra-renal circulation
thus increase the risk for detrimental imbalances between oxygen and nutrient delivery
to the tubular epithelial cells. Indeed, short-term ischemia and subsequent reperfusion
initiate kidney injury. If the damage is mild, repair processes can restore the kidney to
normal morphology and function. However, in severe cases, AKI develops into a chronic
kidney disease with progressive fibrosis and loss of organ function [12]. The availability of
human IRI samples is limited, and most of our knowledge is derived from animal models
where transient clamping of the renal pedicles induces IRI. This may confound our IRI
knowledge. In contrast to most patients developing AKI, where age and co-morbidities
may affect the pathogenesis [13], the IRI models often use healthy young animals. Ad-
ditionally, experimental kidney injury is usually induced in male animals to circumvent
hormonal fluctuations in female mice, which is IRI-protective [14,15]. Nonetheless, there
is a significant overlap in the gene transcriptional responses in post-ischemic human and
mouse kidneys, indicating a similar acute response to renal IRI [16].

Ischemia-Reperfusion Induces Acute Kidney Injury

The first acute response is characterized by ischemic activation of oxygen-sensitive
transcription factors such as hypoxia-induced factor (HIF) and the NF-kB signaling path-
way [17,18]. HIF-1α is enzymatically hydroxylated to undergo proteasomal degradation
during normoxic conditions, but during hypoxia, this process is inhibited. The hypoxia-
induced stabilization of HIF-1α causes its translocation into the cell nucleus, where it binds
HIF-1β [19]. The heterodimeric complex binds the genomic hypoxia-responsive elements.
It increases transcription of several genes involved in angiogenesis and tissue survival [20]
that have protective effects for tissue repair [21]. In addition to HIF signaling, a key regula-
tor of innate and adaptive immune responses, NF-kB is also activated. Renal IRI induces
widespread NF-kB activation in renal tubular epithelial and interstitial cells, and genetic
inhibition of NF-kB in renal proximal, distal, and collecting duct epithelial cells of mice
improved renal function after IRI by attenuating neutrophil and monocyte/macrophage
infiltration, which reduced tubular apoptosis and protected renal function [22]. In addi-
tion to HIF’s and NF-kB’s impact on the pathogenesis of AKI, ischemia acutely affects
mitochondrial function.

Mitochondria are the primary consumers of molecular oxygen through oxidative phos-
phorylation. The mitochondrial oxidative phosphorylation creates ATP by reducing oxygen
to water, and the electrons for this come from the mitochondrial electron transport chain
(ETC). The ETC is localized in the inner mitochondrial membrane and consists of a series of
protein complexes and electron carriers that efficiently shuttle electrons from the oxidation
of metabolic substrates, e.g., the citric acid cycle, to oxygen. Despite efficient electron
transport, a fraction of the electrons prematurely leak from the ETC [23] and contribute
to ROS creation. ROS is a term used for the highly unstable and reactive singlet oxygen
(1O2), superoxide anion radicals (O2

·−), hydroxyl radicals (·OH), and hydrogen peroxide
(H2O2). While ROS has essential physiological functions, excessive ROS causes oxidative
modifications on carbohydrates, lipids, proteins, and DNA, with harmful consequences for
cell function and integrity [24], and mitochondrial ROS production is increased during IRI.

The low oxygen availability during kidney ischemia hampers electron flow through the
ETC and causes citric acid cycle intermediate accumulation (Figure 1). Succinate levels, in
particular, increase significantly during ischemia. The high succinate levels are problematic
when the oxygen supply is reestablished by reperfusion in that this reverses the ETC’s
electron transport and stimulates excessive mitochondria-derived ROS production [7,8].
Succinate is oxidized to fumarate by succinate dehydrogenase (SDH, Complex II in the
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ETC), and pharmacological SDH inhibition reduces infarct size in cardiac IRI [8]. Recently,
mitochondrial pyruvate dehydrogenase kinase 4 (PDK4) expression was shown to be
induced by IRI and genetic and pharmacological PDK4 inhibition before IR, reducing
succinate accumulation and kidney damage [7]. Interestingly, the protective effects of PDK4
inhibition were blunted by co-treatment with cell-permeant dimethyl succinate [7]. These
observations suggest that the ischemic succinate accumulation is a critical driver for the
excessive ROS production during reperfusion that causes kidney injury.
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Figure 1. Ischemia/reperfusion causes increased mitochondrial-derived ROS (red stars) production
in kidney epithelial cells due to accumulation of specific citric acid cycle (TCA) intermediates, such as
succinate. Increased ROS oxidizes proteins, lipids, and DNA and potentially stimulates EV secretion
(Created with BioRender.com).

The time course for human kidney IR injury is challenging to establish. Still, tran-
scriptomic studies of human kidney biopsies obtained before ischemia and hours and
months after reperfusion also support the critical role of mitochondria [16,25]. While the
acute transcriptional program for kidney ischemia and reperfusion was similar between
patients, the patients took one of two transcriptional trajectories in the following months:
one leading to recovery and one associated with sustained injury [16]. The major difference
among the trajectories was that the sustained kidney injury trajectory was associated with
mitochondrial dysfunction. Thus, several lines of evidence point to the crucial role of
mitochondria in the acute ischemia/reperfusion phase that initiates kidney injury.

The acute ischemia/reperfusion is followed by a rapid inflammatory response initiated
by the secretion of pro-inflammatory cytokines (TNF-α, IL-1, IL-6, etc.) and chemokines
(MCP, IL-8, etc.) from the kidney’s endothelial and parenchymal cells [26]. The cytokines
TNF-α and IL-1 upregulate adhesion molecules like P selectin, intracellular adhesion
Molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) acutely after IR [27].
The increased expression of adhesion molecules and endothelial cell swelling disrupts the
glycocalyx and endothelial monolayer, enhancing inflammatory cell attachment and migra-
tion into the injured tissue [28]. These molecular events contribute to the pro-inflammatory
response in early AKI after IRI [29–31] and enable monocytes/macrophages infiltration
within hours [32].
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Mouse monocytes are divided into three subsets based on their surface expression of
Ly6C. While Ly6Clow monocytes mature into M2 macrophages displaying anti-inflammatory
properties that contribute to tissue repair, Ly6Chigh, and Ly6Cint are pro-inflammatory
monocytes expressing high levels of C-C motif chemokine receptor 2 (CCR2) and C-X3-C
motif chemokine receptor 1 (CX3CR1) [33]. Mice deficient in the chemokine receptors
CCR2 [34] or CX3CR1 [34,35] are protected from AKI since the egress from bone marrow
and subsequent kidney infiltration of inflammatory Ly6Chigh monocytes are inhibited.
Ly6Chigh monocyte infiltration into the kidney after IR is also reduced in mice deficient
in the complement component receptors C3a or C5a [36]. The similar AKI protection
between the different knockout mice indicates that complement factors and chemokine
signals converge on Ly6Chigh monocytes and coordinate their function. Although it has
not been directly determined how EVs contribute to kidney IRI pathogenesis, several
lines of evidence indicate that EV release could be stimulated by ischemia/reperfusion,
and be involved in an immediate response, and, for example, provide guidance cues to
pro-inflammatory monocytes.

3. Extracellular Vesicles in Acute Kidney Injury

The kidney’s tubular epithelial cells are critical for several functions, and EVs secreted
from their apical and basolateral membrane compartments contribute to the circulating
plasma and urine pools of EVs [37,38]. Although the fraction of plasma and urine EVs
(uEVs) derived from the kidney has not been directly determined, bulk RNA sequencing
of EV-associated RNAs has enabled an estimation of the cell-specific EV abundances in
different biofluids [39–44]. For example, the exoRbase database has used the abundance
of kidney tubular epithelial-specific markers to estimate that ~1 in every 10,000 plasma
EVs is kidney epithelial-derived [39,42]. With (62 ± 17) × 1012 plasma EVs in humans, this
yields ~109 kidney tubular-derived EVs or ~1 µg kidney-derived EVs per L plasma [9].
Similar approaches tourine EVs have shown that bladder [43] and proximal tubule cells [44]
contribute most to the uEV pool. While this approach has not been verified for accuracy, the
urine data are consistent with proteomic analyses showing that most proteins identified in
uEVs are expressed in the urogenital system [45]. Moreover, Blijdorp et al. directly compare
the uEV proteome of urine sampled normally or through a nephrostomy drain [46]. This
elegant approach showed that of the 2814 identified proteins, only twelve were not detected
in the nephrostomy drain samples [46], suggesting that most uEVs are present in the urine
after the exit of the kidney.

It has been technically challenging to determine whether plasma EVs enter the urine.
While early reports showed urine excretion of blood-administered EVs in anesthetized mice
and rats [47,48], newer methods to study endogenous EVs under physiological conditions
in mice do not fully support this conclusion. We have created an EV reporter mouse in
which EVs derived from Cre recombinase-expressing cells are labeled with the truncated
EV marker CD9 fused to an enhanced green fluorescent protein (EGFP) [49]. The extra-
vesicular EGFP enables affinity enrichment of cell-specific EVs obtained under physiological
conditions from different biological fluids, such as plasma and urine. Using the EV reporter
mouse crossed with Cre expression in all cell types (CMV-Cre), cardiomyocytes (αMHC-
MerCreMer), or kidney epithelium (Pax8-Cre), we demonstrated that cardiomyocyte-
derived EVs were readily detectable in plasma samples but not in urine. On the other
hand, kidney epithelial-derived EVs are abundantly present in urine but not in plasma [49].
This observation does not exclude that some plasma EVs may enter the urine; however, it
suggests that the glomerular filtration barrier establishes a charge- and size-selective filter,
hampering free EV filtration. Thus, the kidney epithelium is the major contributor to the
uEV proteome.
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3.1. EV Secretion during Ischemia/Reperfusion

All kidney tubular segments contribute to the uEV pool, and EVs primarily enter
the urine by apical secretion [38], but it is still unknown how the uEV secretion rate is
controlled in health and disease.

Hypoxia increases EV release in vitro [50–52], but the mechanisms are not entirely
understood. The HIF-1 dependence appears to involve Rab GTPases. The Rab GTPases are
essential for membrane budding and fusion with the plasma membrane. HIF-1a activation
increased Rab27a mRNA expression in B cells [53], and in breast cancer cells exposed to
24 h hypoxia, and HIF-1 induces small Rab GTPase RAB22A expression and augments EV
release [54]. Furthermore, it has been suggested that increased levels of Rab27a can promote
membrane fusion, while decreased Rab7 can stimulate the fusion of MVBs with lysosomes,
leading to the degradation of EVs under hypoxic conditions [55]. However, expression of
oxygen-insensitive HIF-1α or pharmacological intervention with HIF-1α stabilizer during
normoxia is insufficient to increase EV release [10,51]. Like most EV research, the relation
between hypoxia and EV release is mainly investigated in vitro, and future research is
needed to understand HIF regulation of EV secretion. Additionally, hypoxia triggers HIF-
independent signaling pathways such as STAT3 [56], NF-kB [57], and mTOR [58]. mTOR
activation, however, decreases EV secretion by affecting the subcellular distribution of the
endolysmal system [59]. Nonetheless, recent findings indicate that mitochondrial-derived
ROS is important for stimulation of EV secretion [10,60] (Figure 1).

In cultured kidney epithelial cells, we have demonstrated the pharmacological in-
terventions that increase the electron flow through the mitochondrial ETC and augment
EV secretion by a ROS-dependent mechanism [10]. Additionally, the estimated cell type-
specific EV secretion rates of human blood cells are strongly correlated with their respiratory
capacity, as determined by the activity of the protein complexes in the ETC [9]. These data
suggest that the mitochondrial ETC’s activity and ROS production could be potent stimula-
tors for EV secretion, but whether this form of EV stimulation contributes to basolateral
and apical EV secretion from kidney epithelial cells is not known.

Interestingly, the uEV and creatinine concentrations are closely correlated in urine
samples from healthy humans [46,61]. As stated above, EVs are not freely glomerularly
filtered and are derived mainly from cells lining the urogenital system [45]. In contrast
to plasma EVs, creatinine is freely filtered at the glomerulus, and creatinine is used to
estimate the glomerular filtration rate (GFR). The correlation between urine creatinine and
uEVs thus implies that kidney epithelial EV secretion is linked with the glomerular filtered
load. Increased GFR causes enhanced tubule salt transport, which is energy-demanding
and increases oxygen consumption. However, whether the kidney epithelial cells’ mi-
tochondrial ETC activity and ROS production cause the correlation between creatinine
and uEV concentration remains to be determined. Nonetheless, mitochondrial-derived
ROS production is augmented during ischemia and early reperfusion [7,8]; thus, acutely,
the cellular EV secretion may be augmented by ischemia/reperfusion as a cell protective
mechanism or as a form of intercellular communication that contributes to the development
of AKI.

3.2. What Are the Functions of the Secreted EVs?

It is still unknown what the exact functions of the secreted EVs are and whether
EVs have harmful or protective roles, e.g., by functioning as cellular waste managers or
intercellular signaling entities (Figure 2). A critical parameter for the EVs role as intercellular
signaling pathways, irrespective of whether they are taken up by recipient cells or act as
receptor ligands, is their biodistribution. The circulatory time for endogenous EVs is
not known. Still, a systematic review of pharmacokinetic studies of labeled EV in rats
and mice suggests a mean plasma residence time of 30–50 min [62]. In humans, indirect
measures of plasma half-life corroborate this finding [63,64], suggesting that secreted EVs
“survive” several passages through the circulatory system. The EV circulatory half-life is
significantly increased by chemical chlodronate liposome treatment in mice, suggesting
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that macrophages are the dominant recipient cell type [65]. This could potentially mean
that EVs have important modulatory functions in the immune system.
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recipient cells through transfer of pro- and anti-oxidants, as mediators of monocyte recruitment, and
as an important injury handling mechanism by release of damaged cellular content (Created with
BioRender.com).

In the AKI inflammatory process, EVs may provide guidance cues to inflammatory
cells and play an important role in the rapid infiltration of monocytes into the kidney
after IRI. This EV signaling mechanism has, for example, been demonstrated in primary
human lymphatic endothelial cells after exposure to the inflammatory cytokine TNF-α [66].
Here, the endothelial cells release inflammatory EVs that can induce the formation of
dynamic exploratory cell protrusions via membrane-bound CX3CL1 in a chemokinetic
G protein-coupled receptor signaling-dependent manner in recipient human dendritic
cells [66]. Similar mechanisms could be activated in monocytes due to their expression of
CX3CR1 and provide guidance cues together with inflammatory effector molecules such as
C3a and C5a in the kidney after IRI. Thus, EVs may be important signaling molecules for
the development of AKI by affecting the infiltration of monocytes.

In vivo, the demonstration of EV cell-to-cell communication in the kidney is limited.
Still, in vitro renal tubular epithelial cell-derived EVs can transfer EVs from proximal tubu-
lar cells to distal tubular and collecting ducts cells [67], between cultured murine kidney
collecting ducts (mCCDc11) cells [68], and between human bone marrow mesenchymal
stem cells and cultured tubular epithelial cells, where they stimulate proliferation [69].
Although the EV concentration used in in vitro studies tends to be higher than the phys-
iological concentration, a more physiologically relevant setup using a Boyden chamber
supports intercellular EV transfer between proximal tubular cells and fibroblasts [70]. The
EVs secreted from hypoxic proximal tubular cells induced fibroblast proliferation, TGF-β1
expression, α-smooth muscle actin (α-SMA expression), F-actin expression, and type I
collagen (α1-chain) production [70], which supports the idea of EVs involved in cell–cell
communication. Nonetheless, physiological in vivo transfer between cells in the kidney
has still not been shown.

Another function of the secreted EVs could be cellular waste management. Consistent
with this, inhibition of cellular EV secretion impairs health [71]. Using a paired analysis of
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human kidneys and uEVs, we found no correlation between segment-specific markers in
kidney tissue and uEVs [72]. The variability in uEV protein abundances was significantly
higher than the kidney abundances [72]. The reason for this is likely multifactorial; however,
one interpretation of this observation is that protein abundance in kidney tissue is under
homeostatic control, and the uEV serves as a cell-protective mechanism.

The secreted EVs may play an important regulative role in the relationship between
oxidative stress and AKI development. On the one hand, EVs contain antioxidants [73–75]
that may confer cell protection to recipient cells. On the other hand, EVs can transfer
pro-oxidants, aggravating the injury response [76]. Additionally, EVs can affect the rigidity
of the cell membrane, resulting in decreased ROS-producing abilities of recipient cells, such
as observed for neutrophils and monocytes [77,78]. Thus, EVs may indirectly regulate
the cellular response to AKI by affecting ROS production in immune cells. Several roles
of kidney-derived EVs have been suggested for the development of AKI; however, there
is a lack of tools that can be used to directly intervene with EV secretion to gain more
mechanistic insight into the role of EVs.

4. Pitfalls in Kidney EV Research—EV Loss during Tissue Preparation

Unwrapping the biological roles of kidney-derived EVs is challenging since EVs are
released from most cell types. This hampers our ability to dissect cell-specific EV release
and its target cells in vivo. EVs are commonly tracked with organic vital dyes, such as
PKH2 and PKH26, providing excellent spatial resolution [79–81]. The staining procedure
can be performed on parental cells or directly on isolated EVs, followed by washing
procedures to remove unbound dye. However, this can lead to unspecific binding and
the formation of micelles with similar size and density as EVs, owing to their lipophilic
nature [82]. Lipid-anchored fluorophores also label lipoproteins, abundantly present in
plasma [83]. To overcome this, we and other researchers have used genetic labeling of EV
proteins fused with a fluorescent protein such as red fluorescent protein (RFP), GFP, or
GFP pH-sensitive derivates like pHluorin [49,84–86]. Genetic labeling overcomes some
limitations of the artificial fluorescence EV signal associated with classical EV labeling
using fluorescent dyes. It allows cell-specific EV labeling, but the fluorescent intra- or
extravesicular tags may modify EV function and biodistribution by affecting normal cell–
cell signaling functions of EV proteins. Nonetheless, the use of our EV reporter mouse has
also revealed an additional pitfall.

As we previously reported [49], kidney epithelial-derived CD9truc-EGFP EV signals
are significantly affected by the preparation of frozen kidney sections before fluorescent
microscopy, leaving only minimal signal accumulated in the glomerulus with no genetic
EGFP expression [49]. This was specific for the kidney epithelium in that CD9truc-EGFP
was abundantly expressed in frozen sections of hearts from cardiomyocyte-specific Cre
mice [49]. Preparing tissue sections for cryosectioning involves buffers with high osmolarity,
which may cause severe cell shrinkage in epithelial cells due to their high water permeability.
Consistent with this notion, the CD9truc-EGFP loss was mitigated in paraffin-embedded
kidney sections [49]. Others have also observed the release of EVs during tissue preparation,
and the human vitreous humor-derived EV signal was lost during formalin fixation due
to temperature-sensitive crosslink reversal. Nonetheless, the EV signal was retained by
fixation with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) [87] and suggests
that we need more knowledge on optimal fixation of EVs to quantify tissue abundance and
cell-specificity of EVs reliably. This is a critical methodological pitfall to keep in mind in
that significant transfer of kidney-derived EVs may occur during tissue preparation, which
can confound our interpretation of EV biology.

5. Conclusions and Perspectives

The exact role of EVs in AKI pathogenesis is still unknown, but evidence from several
in vitro and in vivo models indicates EVs could play many roles. Although several stimuli
may affect EV release during AKI, the release of EVs may be potently stimulated by
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ischemia/reperfusion. These EVs could have essential functions, such as the recruitment of
pro-inflammatory monocytes, the transfer of antioxidants, or ROS, and waste management.
Moreover, EVs are a heterogeneous population of vesicles, and some EV subpopulations
may mediate cell-protective mechanisms while others are harmful. The development of
new experimental tools to study the different EV populations in vivo will be important to
elucidate which EVs are harmful, and which are protective.

The potential mechanistic involvement of EVs in AKI pathogenesis, combined with
the molecular cargo and information on their cell of origin, also qualifies EVs as promising
candidates for biomarkers and therapeutic approaches concerning AKI. Despite their low
abundance, kidney epithelial cell-derived EVs can be isolated from plasma, and the uEVs
are primarily derived from cells lining the urogenital systems. Thus, kidney-derived EVs
and uEVs have great potential as non-invasive biomarkers to monitor AKI. EVs are also
interesting for potential AKI treatments, and the possibility to engineer the EVs hold great
promise for effective EV treatment in the future.

Thus, future improvements in EV research will lead to a more accurate understanding
of AKI pathogenesis and provide a stronger foundation for AKI biomarkers and treatments
for more efficient kidney protection.
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