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Abstract: Locally advanced rectal cancer (LARC) presents a challenge in identifying molecular
markers linked to the response to neoadjuvant chemoradiotherapy (nCRT). This study aimed to
utilize a sensitive proteomic method, data-independent mass spectrometry (DIA-MS), to extensively
analyze the LARC proteome, seeking individuals with favorable initial responses suitable for a
watch-and-wait approach. This research addresses the unmet need to understand the response to
treatment, potentially guiding personalized strategies for LARC patients. Post-treatment assessment
included MRI scans and proctoscopy. This research involved 97 LARC patients treated with intense
chemoradiotherapy, comprising radiation and chemotherapy. Out of 97 LARC included in this
study, we selected 20 samples with the most different responses to nCRT for proteome profiling
(responders vs. non-responders). This proteomic approach shows extensive proteome coverage in
LARC samples. The analysis identified a significant number of proteins compared to a prior study. A
total of 915 proteins exhibited differential expression between the two groups, with certain signaling
pathways associated with response mechanisms, while top candidates had good predictive potential.
Proteins encoded by genes SMPDL3A, PCTP, LGMN, SYNJ2, NHLRC3, GLB1, and RAB43 showed
high predictive potential of unfavorable treatment outcome, while RPA2, SARNP, PCBP2, SF3B2,
HNRNPF, RBBP4, MAGOHB, DUT, ERG28, and BUB3 were good predictive biomarkers of favorable
treatment outcome. The identified proteins and related biological processes provide promising
insights that could enhance the management and care of LARC patients.

Int. J. Mol. Sci. 2023, 24, 15412. https://doi.org/10.3390/ijms242015412 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms242015412
https://doi.org/10.3390/ijms242015412
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-9179-2856
https://orcid.org/0000-0001-9952-0636
https://orcid.org/0000-0003-1555-1326
https://orcid.org/0000-0003-3284-5713
https://orcid.org/0000-0003-2076-5521
https://orcid.org/0000-0002-4557-3430
https://orcid.org/0000-0002-7604-9295
https://doi.org/10.3390/ijms242015412
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms242015412?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 15412 2 of 23

Keywords: data-independent acquisition mass spectrometry; neoadjuvant chemoradiotherapy; rectal
cancer; proteomics

1. Introduction

Colorectal cancer (CRC) is the third most common type of cancer worldwide, with
almost two million newly diagnosed cases in 2020 [1]. High mortality rates place CRC in
second place after lung cancer [1]. In Serbia, the situation is similar. According to data
from the Institute of Public Health “Milan Jovanovic Batut” of the Republic of Serbia,
CRC holds second place by incidence and mortality rates, with around 5000 new cases
and 3000 deaths annually [2]. In the majority of cases, it is diagnosed in advanced stages
where limited treatment options are available and survival is poor. Our group and others
have invested efforts into profiling the diagnostic, prognostic, and predictive factors for
CRC and anal cancer in an effort to provide better research strategies for treatment and
overall management [3–7]. However, current early detection and screening programs, as
well as treatment options, need further improvement on a global level. Rectum is the
most distal part of the digestive tract, located between the sigmoid colon and anal canal.
Colon and rectal cancers have been traditionally considered as a single disease entity,
and rectal cancer (RC) represents around 35% of diagnosed CRC cases. Rectal cancer has
distinct environmental and genetic risk factors that differentiate it from colon cancer [8]. Its
incidence has been reported to increase in the 18- to 50-year-old age group, especially in
younger adults [9].

Locally advanced rectal cancer (LARC) is the most diagnosed type of RC, which in-
cludes stage II (T3/4N0M0) and III (T1-4 N+ M0), according to the Union for International
Cancer Control (UICC) [10]. The standard treatment for LARC is neoadjuvant chemora-
diotherapy (nCRT) followed by radical surgery (total mesorectal excision). nCRT was
established as the gold standard of LARC treatment after 2004 as a result of two studies,
CAO/ARO/AIO-94 and EORTC 22921, which compared it to previously used adjuvant
radiotherapy with or without chemotherapy. According to the CAO/ARO/AIO-94, neoad-
juvant RT dramatically reduced the rates of local failure, while the 11-year follow-up
update showed that the long-term overall survival rate was about 60% [11]. The EORTC
22921 trial showed that the use of chemotherapy with neoadjuvant radiation reduced local
recurrence rates but had no effect on distant progression-free survival. Additionally, nCRT
contributed to sphincter preservation and improved the patient’s quality of life [12]. How-
ever, only 20–30% of patients experience a complete clinical or pathological response to
nCRT, while some patients will experience poor response or will have distant progression
during nCRT [13,14]. Characterization of mechanisms of response to therapy and the search
for predictive biomarkers to nCRT is an unmet need in LARC.

The watch-and-wait approach was introduced because of the need for close follow-up
of LARC patients with complete clinical response to nCRT and allowed the extension
of periods between neoadjuvant therapy and surgery, thus lowering morbidity related
to surgery [15–18]. No biomarker has yet been validated in this setting. Patients with a
favorable response to nCRT would be candidates for a less invasive surgical approach or
would be enrolled in a watch-and-wait approach in the case of a complete clinical response
(cCR). That would increase their quality of life and contribute to the overall reduction of
treatment costs [18].

In this study, we aimed to perform in-depth proteomics characterization of preopera-
tive LARC biopsy samples by employing data-independent acquisition mass spectrometry
(DIA-MS) to unravel new tissue molecular features that might lead to different responses
to nCRT.
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2. Results
2.1. Study Design and Rationale

Neoadjuvant chemoradiotherapy is a standard treatment for locally advanced rectal
cancer, but understanding the mechanism of response to therapy is still an unmet need.
For that purpose, we examined our cohort of 97 LARC patients whose clinical profile
was well characterized. Ninety-seven patients with LARC treated at the Institute for
Oncology and Radiology of Serbia from 2018 to 2019 were included. Inclusion criteria
comprised histopathologically confirmed LARC (T3-T4N0 or any T stage N+), a distant
margin up to 12 cm from the anal verge, and ECOG performance status ≤ 2. Patients
received long-course chemoradiotherapy with concurrent chemotherapy. Tumor response
was assessed after surgery according to the classification by Mandard, and patients were
divided into responders (TRG 1 and 2—complete and near complete response, respectively)
and non-responders (TRG 3, 4, and 5—moderate, poor, and no response, respectively)
based on pathohistological criteria. Our study involved the analysis of 20 patient samples
exhibiting a range of responses to achieve a comprehensive understanding of the diverse
molecular features potentially associated with response. The observed results will help us
better understand the mechanisms behind the response, enabling the selection of protein
candidates that can serve as predictive biomarkers for favorable or unfavorable responses.
Patients expected to have a favorable response may be considered for a less invasive surgical
approach or enrollment in a watch-and-wait strategy in case of complete clinical response
(cCR). This approach can lead to good local control without the morbidity associated with
radical surgery after neoadjuvant treatment, subsequently improving the quality of life
in this group of patients. Conversely, non-responders may be candidates for intensified
neoadjuvant treatment and earlier surgical intervention without delay following initial
treatment, the introduction of targeted therapy, or other treatment adoptions.

2.2. Proteomic Comparison of Responders and Non-Responders

The use of DIA-MS allowed the identification and quantification of more than
3000 proteins per sample Figure 1, a significant increase when compared to the 1000 proteins
identified by DDA-MS in rectal cancer FFPE samples [19]. In total, 4269 proteins were
identified in 20 rectal cancer FFPE samples (Table S1), while 1923 proteins were identified in
all samples. After 50% filtering and log2 transformation, the Welch t-test was applied. The
number of identified proteins before and after 50% is shown in Figure 1. Statistical analysis
indicated 915 DEPs with significant differences (p < 0.05; S0 = 0.1) between responders and
non-responders. When two groups were compared, DEPs included 700 proteins overex-
pressed in non-responders and 215 overexpressed in responders (Table S2 and Figure 2b).
Using a more stringent statistical setting (p < 0.01; S0 = 0.1), 384 DEPs were found between
responders and non-responders, 81 of which were upregulated in responders compared to
non-responders, and 303 proteins with the opposite trend (Table S3).
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Figure 2. Principal Component Analysis (a) and a volcano plot (b) of differentially abundant proteins
in terms of response to treatment. PCA (a) indicated that responders (blue) compared to non-
responders (red) had significantly different proteomics profiles. Proteomics profiles of responders
vs. non-responders were compared, and results were represented by volcano plot as −log10 (Welch
t-test p-value) plotted against the difference (responders–non-responders). Genes upregulated in
responders were colored blue, and those upregulated in non-responders were colored red. Top 10 with
highest statistical difference are colored in both groups, and top 5 with highest Welch t-test difference.

Principal Component Analysis (PCA) (Figure 2a) shows the separation of the patients
depending on their proteomic profile, indicating that responders had significantly different
proteomics profiles than non-responders. On the PCA plot, we observe two samples that
are outliers from the group of non-respondents (67 and 70) as well as sample 65 from the
group of respondents. A potential reason for this behavior is the fact that these samples
have a lower number of identified proteins compared to others, which may be associated
with the lower quality of the sample and divergent proteomic profile. For comparison, a
volcano plot (−log10(p-value) vs. Welch t-test difference) was created to graphically show
the proteome changes between the two groups of samples (Figure 2b).

Hierarchical clustering analysis was performed on Z-score normalized data with
stricter Welch’s t-test statistics (p < 0.01), while distance for analysis was performed using
Euclidean distance (Figure 3). Hierarchical clustering analysis (Figure 3) revealed details
on protein abundance among two groups of responders and non-responders; clustering
also provided clear grouping results depending on the response, with samples 67 and 70 as
an outlier. This sample had the lowest amount of detected proteins, which can be a possible
reason for aberrant classification.

Furthermore, a hierarchical clustering analysis was performed for the top 10 proteins
from the group of responders and non-responders based on the strength of statistical
significance (Figure 4). Based on the obtained results, we conclude that the tissue proteomic
profile differs significantly between patients and thus enables their clear classification.
Proteins encoded by genes SMPDL3A, PCTP, LGMN, SYNJ2, NHLRC3, GLB1, and RAB43
showed high predictive potential of unfavorable treatment outcome, while RPA2, SARNP,
PCBP2, SF3B2, HNRNPF, RBB4, MAGOHB, DUT, ERG28, and BUB3 were good predictive
biomarker of favorable treatment outcome. Hemoglobin-related proteins (HBB, HBA1, and
HBD) can be possible contaminants originating from FFPE tissue samples. The mentioned
proteins are good candidates with great potential for validation on a larger group of patients,
which would confirm their discriminatory potential.
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10 overexpressed DEPs in both the responder (pink) and non-responder (blue).

2.3. Pathway Enrichment Analysis

Enrichment pathway analysis was performed on proteins that were significantly dif-
ferentially expressed (p < 0.05; S0 = 0.1). Initially, all proteins were chosen regardless
of grouping with the goal of better understanding the signaling pathways involved in
treatment response (Figure 5a). Further enrichment analysis was carried out on two groups
(responders and non-responders) independently in an attempt to explain discrepancies in
treatment response. The findings were analyzed and represented based on their biological
significance to RC biology. To keep the analysis output concise, only the leading terms of
each pathway are shown. Results indicated that some of the leading signaling pathways
that correlate with response to nCRT in patients with LARC include the metabolism of
RNA, MYC targets, neutrophil degranulation, cellular transport, and response to stimuli.
The responder group was characterized by signaling pathways related to cell cycle sig-
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naling (metabolism of RNA, synthesis of DNA, DNA strand elongation, mitochondrial
translation initiation, chromosome maintenance), as well as MYC targets scores, regulation
of expression of SLITs and ROBOs, mTOR1 signaling pathway, and unfolded protein re-
sponse (Figure 5c). The non-responder group was characterized by signaling pathways
related to vesicle-mediated transport, neutrophil degranulation, hemostasis, coagulation,
heme metabolism, post-translational modifications, as well as the metabolism of vitamins,
cofactors, and lipids. Signaling pathways related to epithelial–mesenchymal transition and
hypoxia, which have been associated with an increased risk of metastasis, were also found
to be important in non-responders (Figure 5b).
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statistically enriched terms were first identified by software, and then accumulative hypergeometric
p-values and enrichment factors were computed and used for filtering. The remaining relevant
terms were subsequently hierarchically clustered into a tree based on the similarity of their gene
memberships as measured by Kappa statistics. The obtained results were considered and represented
based on biological relevance with respect to rectal cancer biology. KEGG, Reactome, Corum,
and Hallmark databases were used for pathways enrichment analysis. (a) Bar graph of enriched
signaling pathways of the differentially expressed proteins (915 DEPSs) (colored by p-values). (b) Bar
graph of enriched signaling pathways of the differentially expressed proteins overexpressed in non-
responder group (700 DEPs) (colored by p-values). (c) Bar graph of enriched signaling pathways of the
differentially expressed proteins overexpressed in responder group (215 DEPs) (colored by p-values).

2.4. STRING In Silico Analysis

Data obtained reveal several protein-rich groups with several members having high
levels of interactions in the responder and non-responder group (PPI enrichment p-value:
<1.0 × 10−16), indicating that proteins interact with one another more frequently than would
be predicted by a randomly selected group of proteins from the genome with the same
size and degree distribution [20]. After Cytoscape analysis using MCODE extension, six
clusters were detected. We can conclude that there is a strong interaction between proteins
involved in information RNA processing and genes whose protein products participate in
transcription, especially when it comes to pre-mRNA processing (Figure S1a) and factors
involved in the process of alternative splicing (Figure S1b). A high degree of interaction
is also associated with proteins that participate in the formation of snRNA molecules
(Figure S1b). Another group of proteins that are clearly distinguished based on STRING
analysis are the ribosomal proteins of the RPL family (Figure S1e) and MRPL family
(Figure S1f), as well as PA2G4, which represents the proliferation factor (Figure S1e). All
the mentioned groups of proteins are characterized by a high mutual connection. Another
group of proteins includes factors involved in the DNA replication process as well as factors
for the organization of the proteasomal system (Figure S1c,d). On the other hand, the group
of DEPs overrepresented in the non-responder group is characterized by a much larger
number of proteins that are less closely related to each other. One of the detected clusters
included proteins that control cell death, proliferation, and signal transduction (Figure S2a),
as well as proteins involved in lipid metabolism (Figure S2b). Cluster 3 included proteins
that are related to the mitochondrial electron transport chain (Figure S2c), while cluster 4
included proteins related to retrograde electron transport (Figure S2d), followed by purine
and pyrimidine catabolism (Figure S2d) and the HLA class of proteins included in antigen
processing and presentation (Figure S2e).

2.5. Shortlisting of Potential Biomarkers Based on Transcriptomics Data

The proteomics results obtained were further examined to discover promising predic-
tive biomarkers of response to neoadjuvant chemoradiotherapy in patients with LARC.
The differential expression of proteins identified in our study was confirmed in transcrip-
tomics datasets. The ROC curve was considered to assess the performance of predictive
biomarkers for response to chemoradiotherapy. For this purpose, DEPs obtained after
DIA-MS/MS were analyzed using ROCplotter software (https://www.rocplot.org, ac-
cessed on 1 May 2022), and genes with AUC > 0.7, ROC p-value < 0.05, and Mann–Whitney
p-value < 0.05 were categorized as promising biomarkers. Out of a total of 915 DEPs,
23 genes met all three criteria. The responder group had the following proteins whose
expression was also confirmed at the mRNA level: CRKL, LAP3, THTPA, PES1, PPP2R5E,
IFI30, C17orf75, QDPR, RRM2B, USO1, GLRX ARAF, CTBS, and SNRPD3. Moreover, the
non-responder group had the following proteins, COPB1, MGLL, HAS1, TALDO1, DNAH9,
KDELR3, HLA-DPB1, RBP3 and STAP2, as presented in Tables 1 and 2. ROC curves and
their discriminatory potential for the mentioned genes are shown in Figures 6 and 7. Link-
ing proteomics with transcriptomics data can lead to the discovery of promising rectal
cancer biomarkers that are easy, cost-effective, and fast to detect.

https://www.rocplot.org
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Table 1. Shortlisted DEPs with characteristics of promising biomarkers enriched in the responder group
compared to the non-responder group. Genes with an ROC p-value less than 0.05, an AUC greater than
0.7, and a Mann–Whitney p-value less than 0.05 were characterized as promising biomarkers.

Genes Gene Name Biological Function FOLD
Change

Mann–Whitney
Test p-Value AUC ROC p-Value

CRKL CRK-like
Proto-Oncogene

Activate the RAS and JUN
kinase signaling pathways and

transform fibroblasts in a
RAS-dependent fashion

1.4 0.0063 0.748 8.00 × 10−4

LAP3 Leucine
Aminopeptidase 3

Predicted to enable peptidase
activity; involved

in proteolysis.
1.5 0.0059 0.746 9.30 × 10−4

THTPA Thiamine
Triphosphatase

Encodes an enzyme that
catalyzes the biosynthesis of

thiamine disphophate
(vitamin B1) by hydrolysis of

thiamine triphosphate

1.4 0.0089 0.738 1.20 × 10−3

PES1 Pescadillo Ribosomal
Biogenesis Factor 1

Encodes a nuclear protein that
contains a

breast-cancer-associated gene
1 (BRCA1) C-terminal

interaction domain

1.2 0.0096 0.736 1.40 × 10−3

PPP2R5E
Protein Phosphatase
2 Regulatory Subunit

B’Epsilon

Protein phosphatase 2A is
implicated in the negative

control of cell growth
and division

1.2 0.01 0.73 1.60 × 10−3

IFI30 IFI30 Lysosomal
Thiol Reductase

This enzyme has an important
role in MHC class II-restricted

antigen processing
1.5 0.011 0.728 2.30 × 10−3

C17orf75
Chromosome 17
Open Reading

Frame 75

Involved in intracellular
protein transport and vesicle

tethering to Golgi
1.3 0.015 0.722 3.00 × 10−3

QDPR
Quinoid

Dihydropteridine
Reductase

This gene encodes the enzyme
dihydropteridine reductase,

which catalyzes the
NADH-mediated reduction of
quinonoid dihydrobiopterin

1.3 0.013 0.719 4.10 × 10−3

RRM2B

Ribonucleotide
Reductase

Regulatory TP53
Inducible

Subunit M2B

This heterotetrameric enzyme
catalyzes the conversion of

ribonucleoside diphosphates
to deoxyribonucleoside

diphosphates

1.3 0.016 0.719 3.60 × 10−3

GLRX Glutaredoxin
This enzyme highly

contributes to the antioxidant
defense system

1.7 0.02 0.709 4.70 × 10−3

USO1 USO1 Vesicle
Transport Factor

Peripheral membrane protein
that recycles between the

cytosol and the Golgi
apparatus during interphase

1.2 0.022 0.707 6.60 × 10−3

ARAF

A-Raf
Proto-Oncogene,

Serine/Threonine
Kinase

Involved in negative
regulation of apoptotic

process, regulation of TOR
signaling, and regulation of

cellular protein
metabolic process

1.2 0.024 0.706 6.80 × 10−3
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Table 1. Cont.

Genes Gene Name Biological Function FOLD
Change

Mann–Whitney
Test p-Value AUC ROC p-Value

CTBS Chitobiase

Lysosomal glycosidase is
involved in degradation of

asparagine-linked
oligosaccharides
on glycoproteins

1.3 0.024 0.705 6.70 × 10−3

SNRPD3
Small Nuclear

Ribonucleoprotein
D3 Polypeptide

This gene encodes a core
component of the spliceosome,

which is a nuclear
ribonucleoprotein complex

that functions in
pre-mRNA splicing

1.2 0.027 0.7 8.30 × 10−3

Table 2. Shortlisted DEPs with characteristics of promising biomarkers enriched in the non-responder
group compared to the responder group. Genes with a ROC p-value less than 0.05, an AUC greater
than 0.7, and a Mann–Whitney p-value less than 0.05 were characterized as promising biomarkers.

Genes Gene Name Biological Function FOLD
Change

Mann–Whitney
Test p-Value AUC ROC p-Value

COPB1 COPI Coat Complex
Subunit Beta 1

This gene encodes a protein
subunit of the coatomer

complex to mediate
biosynthetic protein transport
from the ER via the Golgi up
to the trans-Golgi network

1.1 0.0061 0.749 4.00 × 10−4

MGLL Monoglyceride
Lipase

Catalyzes the conversion of
monoacylglycerides to free

fatty acids and glycerol, and
gene expression may play a
role in cancer tumorigenesis

and metastasis

1.3 0.0083 0.74 1.10 × 10−3

HAS1 Hyaluronan
Synthase 1

Essential to hyaluronan
synthesis, it has a structural

role in tissue architectures and
regulates cell adhesion,

migration, and differentiation.

1.9 0.012 0.729 1.80 × 10−3

TALDO1 Transaldolase 1

Transaldolase 1 is a key
enzyme of the nonoxidative
pentose phosphate pathway,

providing ribose-5-phosphate
for nucleic acid synthesis and
NADPH for lipid biosynthesis.

1.2 0.012 0.729 2.30 × 10−3

DNAH9 Dynein Axonemal
Heavy Chain 9

This gene encodes the heavy
chain subunit of axonemal

dynein, a large multi-subunit
molecular motor.

1.4 0.013 0.724 2.90 × 10−3

KDELR3
KDEL Endoplasmic
Reticulum Protein

Retention Receptor 3

This gene encodes a member
of the KDEL endoplasmic

reticulum protein retention
receptor family

1.6 0.015 0.722 4.10 × 10−3
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Table 2. Cont.

Genes Gene Name Biological Function FOLD
Change

Mann–Whitney
Test p-Value AUC ROC p-Value

HLA-DPB1

Major
Histocompatibility
Complex, Class II,

DP Beta 1

It plays a central role in the
immune system by presenting

peptides derived from
extracellular proteins

1.8 0.02 0.709 5.20 × 10−3

RBP3 Retinol-binding
Protein 3

Interphotoreceptor
retinol-binding protein is

found primarily in the
interphotoreceptor matrix of
the retina between the retinal
pigment epithelium and the

photoreceptor cells *

1.8 0.022 0.708 5.30 × 10−3

STAP2
Signal-transducing

Adaptor Family
Member 2

This gene encodes the
substrate of breast tumor

kinase, an Src-type
non-receptor tyrosine kinase

1.2 0.025 0.703 6.90 × 10−3

* According to the Human Protein Atlas, several cases of colorectal cancers displayed moderate cytoplasmic and
membranous staining [21].
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2.6. Search for Drug Targets

In order to search for drug targets among proteins that are differentially overexpressed
in the group of non-responders, GeneCards and DrugBank databases were searched. Some
of the proteins that are differentially overexpressed in the group of non-responders ver-
sus responders are drug targets used in the treatment of some other pathological con-
ditions including QPRT, CLCA4, ATG4B, and PTGS2 (Table 3) [22,23]. The question of
the discriminatory effect of gene expression is raised, as well as whether the use of these
drugs can be used as a part of initial treatment and would lead to a better response to
therapy by treating patients with locally advanced rectal cancer together with standard
neoadjuvant chemoradiotherapy.

Table 3. Drug targets among top proteins that are differentially overexpressed in the group of
non-responders.

Gene
Protein Name

Encoded
by Gene

Drug DRUGBANK
ID Drug Type Usage

Drug
Approval

Status

Welch
t-Test

p Value

QPRT
Quinolinate

Phosphoribo-
syltransferase

Niacin DB00627 B vitamin
Hyperlipidemia,

dyslipidemia,
hypertriglyceridemia

Approved,
investigational,
nutraceutical

4.43 × 10−5

CLCA4
Chloride
Channel

Accessory 4
Talniflumate DB09295

Small molecule,
CaCC blocker,

and Cl−-/
HCO3

−exchange
inhibitor

Cystic fibrosis,
chronic obstructive
pulmonary disease

(COPD), and asthma

Experimental 1.11 × 10−2

ATG4B

Autophagy-
related 4B
Cysteine
Peptidase

Esomeprazole DB00736 Proton pump
inhibitor

Gastroesophageal
reflux disease

(GERD) for gastric
protection to prevent

recurrence of
stomach ulcers or

gastric damage

Approved,
investigational

1.89 × 10−4

ATG4B Nimodipine DB00393 Calcium channel
blocker

Acts primarily on
vascular smooth

muscle cells;
improves the

neurologic outcome
following

subarachnoid
hemorrhage from

ruptured intracranial
aneurysm.

Approved,
investigational

PTGS2
Prostaglandin
Endoperoxide

Synthase 2

Diclofenac,
Acetylsalicylic

acid,
Ibuprofen,

Rofecoxib, Ac-
etaminophen

DB00586,
DB00945,
DB01050,
DB00533,
DB00316

COX inhibitors,
anti-

inflammatory
agents

Therapy for acute
and chronic pain and
inflammation from a

variety of causes

Approved 2.08 × 10−4

3. Discussion

Understanding the molecular features associated with response to neoadjuvant
chemoradiotherapy is an unmet clinical need in LARC. The DIA-MS offers unprecedented
proteome coverage for FFPE samples. DIA-MS enabled the in-depth study of the proteome
from FFPE tissue samples, which represented a major challenge because of damage caused
by the fixation protocol [24]. By exploring the dynamic phenotypic characteristics of tumor
cells before therapy and tumor response to therapy, DIA-MS allows us to characterize
response mechanisms and thus enable patient monitoring and more effective treatment.
FFPE samples are routinely used for DDA-MS analysis, and the use of FFPE samples for
the DIA-MS method is increasing [25]. In contrast to fresh frozen (FF) tissue, FFPE samples
undergo protein cross-linking during standard preservation protocol, and due to that, it
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is challenging to analyze native proteins. Comparing the results obtained when it comes
to FF tissue versus FFPE samples indicates a high correlation between the results, which
makes FFPE samples a good alternative to FF samples [26,27]. On the other side, FFPE
samples are more suitable for retrospective studies and are easily accessed during everyday
clinical routines [25]. Due to technical limitations, results obtained in the previous studies
showed a restricted number of identified proteins, while DIA-MS/MS offered an in-depth
characterization of rectal cancer tissue, enabling molecular characterization and profiling
of the response [19,28,29]. Our study included analysis of discrete and well-characterized
clinical samples of rectal cancer in order to identify the maximum number of different
molecular features potentially associated with response.

In total, 4269 proteins were identified in 20 rectal cancer FFPE samples. Principal Com-
ponent Analysis (PCA) indicated that responders had a significantly different proteomics
profile than non-responders. Statistical analyses comparing the two groups resulted in
the identification of 915 differentially expressed proteins (215 in responders and 700 in
non-responders) (p < 0.05).

The therapy approach used for LARC includes radiotherapy in combination with
5-fluorouracil-based chemotherapy followed by surgery. Radiotherapy primarily exerts
its effects by damaging DNA through the generation of molecular fragments like free
radicals and excited molecules. Cells are most sensitive to radiation during mitosis and
the early G1 phase, while they are most resistant during the S phase of the cell cycle [30].
The abovementioned effects are first reflected in the cell cycle, and the overcoming of toxic
effects can be carried out through the reparation of the resulting damage. 5-fluorouracil is a
standard chemotherapeutic drug (antimetabolite) that is metabolized by the liver. Within
cells, 5-FU undergoes metabolic conversion, resulting in three active metabolites: 5-FdUMP
and 5-FdUTP, which damage DNA, and 5-FUTP, which integrates into RNA, exerting an
antiproliferative effect. Our finding confirmed the significance of DNA metabolism and
related signaling pathways in treatment response. Patients with a poor response exhibit
deregulated pathways related to DNA strand elongation and synthesis.

Based on hierarchical clustering analysis, we conclude that the tissue proteomic profile
differs significantly between patients, which enables their clear classification (Figure 4).
Additionally, some of those proteins have been shown to be included in the development
and progress of many other types of cancers, but none of them were investigated in
terms of rectal cancer therapy resistance. All of the top 10 proteins from both groups
showed high predictive potential. It has been shown that protein legumain (LGMN)
is overexpressed in breast, prostate, and liver cancer and that its role is significant in
cancer development, progression, and invasion [31,32]. This protein was also shown to be
significantly associated with the development of peritoneal metastases. In our study, this
protein was shown to be a promising predictive biomarker of poor response to therapy.
This protein is a member of several pathways shown to be significant in response to
nCRT, including mTOR, coagulation, adaptive immune system, and lipid metabolism.
Pathway mTORC1 was altered in the group of good responders. Apart from LGMN, there
is BUB3, which is shown to be overexpressed in the responder group and included in the
mTOR signaling pathway as well. Analysis of DEPs provided a potential scenario that
included the downregulation of genes related to the mTORC1 pathway in responders or
overexpression of mTORC1-related genes in non-responders. Considering available data,
both scenarios will lead to poor response to treatment. It has been demonstrated that
treatment resistance in a variety of cancer types is correlated with the stimulation of mTOR
signaling pathways [33,34]. Glycolysis, glycoprotein and lipid synthesis, mitochondrial
and lysosome biogenesis, and metabolic balance all depend on mTORC1. Translation
is directly impacted by the regulation of numerous transcriptional factors. It regulates
the production of nucleotides and the metabolism of glucose through proteins in the
metabolic pathway. Additionally, mTORC1 regulates the assembly of the proteasome and
autophagy [35]. Glucose metabolism, apoptosis, cell migration, cytoskeletal reorganization,
and cell proliferation are regulated by mTORC2 [36,37]. According to our results, signaling
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pathways related to protein and lipid synthesis, glycolysis, mitochondrial biogenesis, and
lysosome biogenesis correlate with poor response to nCRT, which is in compliance with
previous findings. An in-depth characterization of mTORC1 signaling pathways is needed
to shed light on the exact biochemical mechanism that leads to good/poor responses
to treatment.

Our results indicated that the immune response might play an important role in
predicting response to therapy. Signaling pathways associated with IL-12 were found to
correlate with a good response to therapy, while signaling pathways related to the adaptive
immune system were related to a poor response. Heeran et al. highlighted the association
of inflammation with obesity status in rectal cancer patients in terms of lowering the level of
inflammatory factors released from TME [38]. Our data correlated adipogenesis with poor
response treatment. As increased adipose tissue synthesis is directly associated with a rise
in body weight, it could also result in reduced therapeutic response. A study by Lee et al.
has shown that obesity represents an independent predictor of cCR, which contradicts our
results [39]. In some studies, no clear correlation was found between obesity and rectal
cancer treatment outcomes [40]. Next to it, Synaptojanin 2 (SYNJ2) was shown to be a good
marker of poor prognosis in lung cancer. This protein is included in signaling pathways
altered in the non-responder group, including vesicle-mediated transport and lipids. When
it comes to predictive markers of a good response, none of the presented proteins were
investigated in terms of predictive potential. It was shown that RB-binding protein 4
(RBBP4) is associated with a poor prognosis of colon cancer, while our results suggest a
favorable effect. This protein is part of two signaling pathways that are alerted in good
response. Slit–Robo signaling plays an important role in angiogenesis. The vertebrate Robo4
gene, which has been associated with regulating angiogenesis and blood artery permeability,
has highly specific endothelial cell expression [41,42]. In our cohort, it was shown that the
regulation of SLITs and ROBOs is highly correlated with a good response to nCRT. Slit/Robo
signaling has both pro- and anti-angiogenic functions; therefore, its effect on angiogenesis
depends on the environment. It has been demonstrated that Slit2 stimulates angiogenesis
through the Robo1 receptor but that it also inhibits endothelial migration through the
Robo4 receptor, which aids in a positive therapeutic response. It was also reported that
Split3 promotes angiogenesis [43]. Apart from SYNJ2, MAGOHB and DNA-directed RNA
polymerase I subunit RPA2 were shown to be overexpressed in responder group. In terms
of good response to treatment and favorable outcomes, inhibition of endothelial migration
and angiogenesis is preferred. Based on the results of research previously conducted by
our group, we found that hematological parameters, including neutrophil-to-monocyte
ratio, initial basophil, eosinophil, and monocyte counts, are significantly different between
the responder and non-responder groups. According to MRI findings, we realized that non-
responders are more often presented with extramural vascular invasion [44]. In support of
all of those observations, our results indicated the importance of epithelial–mesenchymal
transition in patients with a poor response to therapy. Hypoxia has also been linked
with neutrophil degranulation. In hypoxic conditions, degranulation occurs, and released
factors affect tumor progression [45]. According to our results, the neutrophil degranulation
pathway was affected in both the responder and non-responder groups, which highlights
its importance in this process and warrants further functional studies. And some proteins
of this pathway that showed good predictive potential are coded by gene HNRNPF in the
responder group and NHL repeat-containing protein 3 (NHLRC3) and Beta-galactosidase
(GLB1) in the non-responder group.

In rectal cancer patients receiving neoadjuvant CRT, it was shown that high expression
of FGFR2 was associated with an advanced tumor stage, a poor treatment response, and
lower survival [46]. The DIA-MS approach indicated the importance of FGFR2 alternative
splicing in good response to treatment, and the protein encoded by gene HNRNPF was
shown to have good predictive potential, which implies that exploring its variants might
be useful for the prediction of a good outcome.
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The highest correlation with poor response to treatment was shown for signaling
pathways related to vesicle-mediated transport and endocytosis, while proteins encoded
by genes LGMN, GLB1, and SYNJ2 and Ras-related protein Rab-43 (RAB43) are part of
listed signaling pathways and good predictors of poor response. Proteins and other
cargo must be carried through the cell via a cellular transport mechanism in which the
transported materials are conveyed in membrane-bound vesicles. The vesicle lumen or
the vesicle membrane is where transported compounds are contained [47]. By carrying
biomolecules (proteins, lipids, deoxyribonucleic acid, and ribonucleic acid) throughout
the tumor microenvironment, exosomes released from cell membrane play a crucial role
in tumor proliferation, differentiation, metastasis, and resistance to chemotherapy and
radiation [48]. The results obtained in this study indicated a great potential for exploring
intercellular communication in the tumor microenvironment as well as in the tumor when
profiling response to therapy. The synergistic effect of these inter-relations has not yet been
clarified and would also be validated by our group in future functional studies.

Deoxyuridine triphosphatase (DUT) is associated with a shorter DFS in patients with
CRC [49]. This protein is important for DNA strand elongation and unfolded protein
response and is an MYC target. In addition to DUT, SF3B2 and BUB3 were shown to
be overexpressed in responder group. Signaling pathways related to MYC targets have
also been found to be significant for the good response to nCRT in our LARC cohort.
MYC is an oncogene and transcription factor that regulates cell-cycle-related signaling
pathways, supporting their crucial effect in response to treatment [50]. Signaling pathways,
which include chromosome maintenance and telomere extension by telomerase, were
found to be affected in good response. This observation suggested that changes at the
chromosome level can lead to a good response to treatment and increase the efficiency
of RT. Short telomeres can lead to chromosomal instability and the formation of cancer,
while on the other hand, long telomeres, due to their length, can undergo a higher number
of divisions and thus increase the probability of transformation of a normal cell into a
malignant cell, this phenomenon called telomere length paradox [51]. When it comes to
the response to therapy, the correlation between telomere length and cancer treatment is
not fully clarified [52]. Additionally, mTOR, a key regulator of cell growth and division in
healthy conditions, can be inappropriately activated in tumor cells and thus promote tumor
cell growth, metastasis, and invasion of fresh, healthy tissues [53]. Cytokines and growth
factors are released during immunological response against harm that CRT may cause, and
they play a big part in the generation of ROS, including superoxide, hydrogen peroxide,
and nitrogen (II)-oxide [54]. Interleukins (IL-2, IL-12) have been found in preclinical studies
that might help to modulate the antitumor response and radiosensitize cells [55]. IL-12
achieves its antitumor activity by promoting the immune response via the activation of
natural killer cells and cytotoxic T cells and exerting an anti-angiogenic effect [56,57]. In a
study performed by Heeran et al., increased levels of IL-12 were detected in the blood of
LARC patients compared to healthy individuals. This suggests the potential for promoting
an immune response that may lead to improved treatment outcomes [38]. Our study
showed that the protein encoded by the gene HNRNPF has predictive potential for good
treatment outcomes.

The data in the literature from the past several decades identified altered glycosyla-
tion as a sign of malignancy. It was shown that glycosylation acts as a mediator of the
inflammatory response [58]. In gliomas and laryngeal carcinoma, a correlation between
glycosylation and radioresistance has already been demonstrated [59]. According to our
results, glycan degradation and asparagine N-linked glycosylation might play an important
role in the poor response of LARC patients to nCRT, proteins encoded by genes PCTP and
GLB1 shown to have high potential in the prediction of poor response to treatment.

Linking the transcriptomic and proteomic profiles of the cell is an important parameter
for understanding the molecular basis of the response to therapies. The software ROC
plotter (www.rocplot.org, accessed on 3 May 2022) showed a low correlation between
gene expression and the proteome profile of the tested samples. Out of 915 differentially

www.rocplot.org
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expressed proteins, only 23 showed promising discriminatory potential when it comes to
gene expression. It should be kept in mind that the transcriptomics data were obtained
from samples of different demographics and ethnic origins; therefore, further validation
on patient samples within our cohort should be performed. Genes that have shown
a transcriptional discriminatory potential for predicting a good response have also not
been investigated in rectal carcinoma so far. Published results indicate that PPP2R5E,
PES1, RRM2B, GLRX, and CRKL are important in the prognosis and development of
colorectal cancer [60–65]. When it comes to the prediction of poor response, some of the
aforementioned genes showed a poor prognostic potential risk for the development of
CRC. The HLA-DPB1 gene has been shown to be a good predictive marker of response to
nCRT in patients with rectal cancer [66]. These results indicate that there is great potential
in examining the level of expression of the mentioned genes. Exploiting this potential
would lead to rapid, inexpensive, and easy methods for predicting response to therapy
in patients with LARC. The translation of research from protein to gene expression and
confirmation of the obtained candidates would enable a more cost-effective approach and,
thus, a more efficient selection of patients when it comes to predicting the response to
neoadjuvant chemoradiotherapy. Gene expression analysis shows high sensitivity when it
comes to FFPE tissue analysis and would be more likely to be performed during everyday
practice. At the same time, further analysis of the gene expression profile and correlation
with a proteomic profile of the tissue would enable a more detailed investigation of the
mechanism behind response treatment, which is still unclear.

Based on all obtained results, we conclude that there is a statistically significant
difference between the proteomic profiles of LARC patients who respond well and those
who respond poorly to nCRT. As all patients require surgery after nCRT per current
guidelines, profiling of adequate biomarkers of response is a pressing matter. Further
validation of target signaling pathways detected in this study that might have an effect on
the response to nCRT is planned on a prospective cohort of LARC patients at the Institute
for Oncology and Radiology of Serbia to ensure more efficient and cost-effective treatment
of patients while maximizing their quality of life.

4. Materials and Methods
4.1. Patient Cohort Characteristics and Treatment

A total of 97 LARC patients treated at the Institute for Oncology and Radiology of
Serbia in the period of 2018–2019 were included in this study. The inclusion criteria were
histopathologically verified adenocarcinoma of the rectum, with a distant margin up to
12 cm from the anal verge by rigid proctoscopy, ECOG performance status ≤ 2. LARC was
defined as T3–T4N0 or any T stage N+, according to clinical and histological criteria of the
8th edition of the TNM classification of malignant tumors [67]. Pretreatment evaluation
included an abdominal and pelvic MRI scan and a computed tomography (CT) scan or
X-ray of the chest. All patients were treated with long-course chemoradiotherapy (CRT).
Radiotherapy (RT) was delivered with a total dose of 50.4 Gy in 28 fractions (conventionally
fractioned 1.8 Gy/fr), using the technique with 3 or 4 radiation areas (all areas as recom-
mended by the International Committee of Radiation Units and Measurements (ICRU,
50/62 per day) [68,69]. Concomitant chemotherapy was initiated on the first day of RT and
administered during the first and fifth weeks of RT. The chemotherapy regimen included
5-FU (350 mg/m2 daily) and Leucovorin (25 mg/m2 daily). A complete patient medical
database has been prepared from official records.

Patients were assessed for tumor response between the 6th and 8th weeks after CRT
completion with pelvic MRI scan and rigid proctoscopy. The pathohistological response
after surgery was assessed according to tumor regression grading (TRG) categories by
Mandard [70]. According to the TRG status, the patients were divided into two groups:
responders (TRG 1–2) and non-responders (TRG 3–5). Our study included analysis of
extreme candidates in order to achieve the maximum range of different molecular fea-
tures potentially associated with response. Twenty-four formalin-fixed paraffin-embedded
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(FFPE) biopsy samples were taken at the moment of disease diagnosis and were collected
and used for proteomic analysis. After the quality control check, four samples were ex-
cluded from further analysis, and finally, twenty samples were processed (9 responders
and 11 non-responders). Characteristics of the study cohort are shown in Table 4.

Table 4. Clinical data of the study cohort.

Characteristics Responders
N (%)

Non-Responders
N (%) p-Value *

Gender
Male 3 (33.3) 7 (63.6)

4 (36.4)
0.4

Female 6 (66.7)

Age (years)
Mean (SD) 64.0 (6.7) 62.4 (10.3)

1.0
Median (Range) 66.0 (50–72) 64.0 (48–83)

UICC staging
II 0.0 (0) 2.0 (18.2)

0.5
III 9.0 (100) 9.0 (81.8)

Tumor grade

1 7.0 (77.8) 8.0 (72.7)

0.82 2.0 (22.2) 3.0 (27.3)

3 0.0 (0.0) 0.0 (0.0)

Tumor localization Inferior rectum (<5 cm) 5.0 (55.6) 9.0 (81.8)

0.4Mid rectum (5–10 cm) 4.0 (44.4) 2.0 (18.2)

Superior rectum (>10 cm) 0.0 (0) 0.0 (0)

Acute toxicity
without 1.0 (12.5) 2.0 (18.2)

0.7
with 8.0 (87.5) 9.0 (81.8)

Tumor Regression Grade (TRG)

1 8.0 (88.89) /

2 1.0 (11.11) /

3 / 2.0 (18.18)

4 / 7.0 (63.64)

5 / 2.0 (18.18)

Total 9 (100) 11 (100)

* Chi-squared test with Yates correction (two-tailed).

The project was approved by the Ethics Committee of the Institute for Oncology and
Radiology of Serbia (approval No. 2211-01 from 11 June 2020), and all patients signed
informed consent. All experiments have been performed in accordance with the Helsinki
Declaration of 1975, as revised in 2013.

Protein Extraction from FFPE Tissue Samples

From each of the 20 FFPE LARC samples (9 responders and 11 non-responders),
10 sections 15–20 µm thick were cut using a microtome and transferred to 2 mL Eppendorf
tubes. From all sections, 3 were selected that contained the largest amount of tissue.
Samples were deparaffinized using Xylene in two steps of 5 min and 1 min successively.
The samples were centrifuged, and in the next step, the pellet tissue was rehydrated using
several dilutions of ethanol and finally washed with double distilled water. The tissue
pellet was air-dried and dissolved in FASP protein extraction buffer (100 mM Tris-HCl
pH 7.6, SDS 4%, 100 mM 1,4-Dithioerythtriol (DTE)). The tissue was homogenized, while
the disintegration of the cell membrane was achieved by sonication (three cycles of 5 s
with 36% power). The samples were heated at 90 ◦C for 1 h to extract the cellular proteins
into the solution. The supernatant containing extracted proteins was transferred to a new
Eppendorf tube, and an appropriate amount of ammonium bicarbonate (ABC) buffer was
added. The sample was concentrated using a 3 kDa cut-off Amicon filter.
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4.2. Protein Digestion and Preparation for LC-MS/MS Analysis

The total volume of concentrated proteins was added on SDS PAGE (5% stacking
gel, 12% separating gel). Preparative SDS PAGE was performed, and the gel was fixed,
washed, and stained with Coomassie colloidal dye (File S1). Protein bands were cut from
the gel for each sample separately, chopped, and transferred to Eppendorf tubes. The strips
were decolorized with a solution of 40% Acetonitrile and 50 mM NH4HCO3 until parts of
the gel became completely transparent. The samples were reduced with 10 mM DTE in
100 mM NH4HCO3 and alkylated 10 mg/mL Iodoacetamide in 100 mM NH4HCO3 and
then washed with 100 mM NH4HCO3, destain solution, and water, respectively. The
samples were dried in a speed vac until transparent crystals formed. Each sample was
treated with trypsin solution, which enables the cutting of the polypeptides after the amino
acids lysine and arginine. The peptides formed were extracted with NH4HCO3 solution
followed by incubation in a 1:1 solution of 10% formic acid and Acetonitrile. The peptide
solution was purified using PVDF filters (Merck Millipore, Darmstadt, Germany). The
samples were dried in a Speedvac and prepared for further processing.

4.3. LC-MS/MS Analysis

Samples were run in two technical replicates on a liquid chromatography–tandem
mass spectrometry (LC-MS/MS) setup consisting of an Ultimate 3000 RSLC online with
a Thermo Q Exactive HF-X Orbitrap mass spectrometer. Peptide solutions were directly
injected and separated on a 25 cm long analytical C18 column (PepSep, 1.9 µm beads,
75 µm ID) using a gradient of 7% to 36% Buffer B (0.1% formic acid in 80% Acetonitrile) for
70 min, followed by an increase to 95% in 5 min, a second increase to 99% in 0.5 min, and
then kept constant for equilibration for 14.5 min. A full MS was acquired in profile mode
using a Q Exactive HF-X Hybrid Quadropole-Orbitrap mass spectrometer, operating in the
scan range of 375–1400 m/z using 120 K resolving power with an AGC of 3 × 106 and max
IT of 60 ms. Data-independent analysis followed, using 8 Th windows (39 loop counts)
with 15 K resolving power with an AGC of 3 × 105, max IT of 22 ms, and a normalized
collision energy (NCE) of 26. The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE [71,72] partner repository with the
dataset identifier PXD040451.

4.4. MS Data Analysis

Orbitrap raw data were analyzed in DIA-NN 1.8 (Data-Independent Acquisition
by Neural Networks) by searching against the reviewed Human Uniprot database (re-
trieved 4/21) in the library free mode of the software, allowing up to two tryptic missed
cleavages. Human Uniprot Database includes 27,246 proteins and 21,442 genes with
10,241,864 precursors generated. A spectral library was created from the DIA runs and
used to reanalyze them. Parameters regarding peak generation and analysis are defined
in the DIA-NN algorithm. DIA-NN default settings have been used with oxidation of
methionine residues and acetylation of the protein N-termini set as variable modifica-
tions and carbamidomethylation of cysteine residues as fixed modification. N-terminal
methionine excision was also enabled. A maximum number of variable modifications is
set to 3. Both ends are fully tryptic, allowing up to two tryptic missed cleavages. The
match between runs feature was used for all analyses, and the output (precursor) was
filtered at 0.01 FDR. Retention time alignment is performed in DIA-NN. Correction for
the mass accuracy is performed for each sample in DIA-NN automatically. Filtering of
the quality is based on the false discovery rate of 0.01 at peptide and protein levels. Fi-
nally, the protein inference was performed on the level of genes using only proteotypic
peptides. The analysis was set for at least one unique peptide per protein. The generated
results were processed statistically and visualized in the Perseus software v1.6.15.0 (Max
Planck Institute of Biochemistry, Munich, Germany) and GraphPad Prism 8.0.1. With
the help of DIA-MS and DIA-NN processing, we identified 5756 groups of proteins, or
4875 unique proteins, that were used for subsequent analysis. Raw data were filtered based
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on a minimum of 50% valid values in at least one group of responder/non-responder and
log2 transformed. After initial processing, non-human genes were excluded from further
consideration, while missing values were replaced with imputed values that correspond
to the limit of detection (LOD). The modified Student’s t-test, known as Welch’s Test for
Unequal Variances, is used. In general, for samples with unequal variance, the adjusted
degrees of freedom tend to increase the test power. Differentially expressed proteins (DEPs)
were classified as proteins with p < 0.05 (Unequal Welch t-test with S0 cut off 0.1). Proteins
with a Welch t-difference above 0 were classified as overexpressed in responders compared
to non-responders, while proteins with a Welch t-test difference lower than 0 were classified
as overexpressed in non-responders compared to responders. Visualization of the obtained
results was performed using PCA, volcano plot, and hierarchical clustering. PCA was
plotted by https://www.bioinformatics.com.cn/en accessed on 15 September 2023, a free
online platform for data analysis and visualization, while volcano plots were plotted using
https://huygens.science.uva.nl/VolcaNoseR/ accessed on 15 September 2023.

4.5. Pathway Enrichment Analysis

To understand the mechanism of response to treatment, pathway enrichment anal-
ysis was performed on DEPs between responders and non-responders using Metascape
software (MSBio v3.5.20220422). Enrichment analysis parameters were set on a minimum
of three genes overlapping between pathways and the input lists. Kyoto Encyclopedia
of Genes and Genomes (KEGG) and Reactome and Hallmark (MSigDB) ontologies were
used for correlation. Only statistically significant pathways (p-value ≤ 0.05 and minimum
enrichment score above 1.5) were taken into account. The obtained results were considered
and represented based on biological relevance with respect to RC biology. As a result, the
leading term from each group is provided for simplification.

4.6. STRING In Silico Analysis

The STRING analysis network of DEPs overrepresented in responder/non-responder
group was built based on the highest confidence (0.9) evidence from experimental inter-
action data, co-expression data, gene fusions, gene co-occurrence, gene neighborhood,
and predictive and knowledge text mining. For easier data processing of 700 DEPs in
non-responder group, disconnected nodes in the network were not presented. The analysis
was performed using STRING v.11.5 and corresponding images and data downloaded in
the original form with statistical significance set at p < 0.05 [20].

4.7. Shortlisting of Potential Biomarkers

Shortlisting of potential biomarkers was performed using the ROCplotter (www.
rocplot.org, accessed on 3 May 2022), an online tool that uses the transcriptome data of
a large set of rectal cancer patients (N = 284) to find gene expression-based predictive
biomarkers. A single database was created by combining published gene expression data
from accessible datasets with treatment information. Receiver operating characteristic
(ROC) curve analysis was performed to assess the predictive accuracy of each gene [73,74].
The observed cohort included 42 patients treated with 5-fluorouracil and radiotherapy and
was categorized into responders (N = 23) and non-responders (N = 19) according to the
Response Evaluation Criteria in Solid Tumors (RECIST) criteria. Using a score method
devised to assess each probe set for specificity, coverage, and degradation resistance, the
optimal microarray probe set to represent a gene was chosen using the JetSet tool [75]. ROC
curve with p-value < 0.05 was considered to evaluate the prediction ability of genes that
showed a significant difference between the two groups.

5. Conclusions

Data-independent acquisition mass spectrometry (DIA-MS) analysis of FFPE LARC
samples offered unprecedented in-depth proteomics characterization. Proteins encoded
by genes SMPDL3A, PCTP, LGMN, SYNJ2, NHLRC3, GLB1, and RAB43 showed high

https://www.bioinformatics.com.cn/en
https://huygens.science.uva.nl/VolcaNoseR/
www.rocplot.org
www.rocplot.org
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predictive potential of unfavorable treatment outcome, while RPA2, SARNP, PCBP2, SF3B2,
HNRNPF, RBBP4, MAGOHB, DUT, ERG28, and BUB3 were good predictive biomarkers of
favorable treatment outcome. These newly identified molecular features associated with
response to nCRT might prove useful for the construction of predictive panels to improve
the management and care of LARC patients.
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