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Abstract: The gut microbiome is intimately intertwined with the host immune system, having effects
on the systemic immune system. Dysbiosis of the gut microbiome has been linked not only to
gastrointestinal disorders but also conditions of the skin, lungs, and brain. Commensal bacteria can
affect the immune status of the host through a stimulation of the innate immune system, training
of the adaptive immune system, and competitive exclusion of pathogens. Commensal bacteria
improve immune response through the production of immunomodulating compounds such as
microbe-associated molecular patterns (MAMPs), short-chain fatty acids (SCFAs), and secondary
bile acids. The microbiome, especially when in dysbiosis, is plastic and can be manipulated through
the introduction of beneficial bacteria or the adjustment of nutrients to stimulate the expansion of
beneficial taxa. The complex nature of the gastrointestinal tract (GIT) ecosystem complicates the use
of these methods, as similar treatments have various results in individuals with different residential
microbiomes and differential health statuses. A more complete understanding of the interaction
between commensal species, host genetics, and the host immune system is needed for effective
microbiome interventions to be developed and implemented in a clinical setting.

Keywords: gut microbiome; colonization resistance; microbiome host crosstalk; SCFA; bacteriocins;
immunoactive; microbiome intervention; fecal transfer; probiotic; prebiotic; postbiotic

1. Introduction

The human body is host to many diverse microbes, with the largest community inhab-
iting the gastrointestinal tract (GIT). There has recently been an increased interest in how
these communities interact with the human host and affect its overall health. These micro-
bial communities consist of viruses, archaea, eukaryotes (fungi, protists, arthropods, etc.),
and bacteria. The bacterial members of this community are the most well studied and will
be the focus of this review. Strains of commensal bacteria have often coevolved alongside a
specific taxonomic group of hosts, sometimes being specific to a single species [1,2]. An ex-
treme example are the “infant type” Bifidobacterium spp., which have co-evolved alongside
humans and specialize in utilizing carbohydrates found in human breastmilk, allowing
extensive colonization only during nursing [3,4]. The microbiome is also specific to each
area of the host GIT with the community changing along its length [5,6]. Many studies to
date have focused on the fecal microbiome because it is the most accessible for sampling.
The bacterial community present in the feces is most like that in the colon; however, it is not
a good representative of the bacterial communities in more proximal areas of the GIT [7]. It
is generally accepted that the fetus is sterile within the womb and colonization of the GIT
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begins during birth [8,9], although some have argued that microbiome colonization begins
in utero [10]. The GIT microbiome changes rapidly during early life and stabilizes as we age.
The neonatal intestine is aerobic and initial colonization is by facultative anaerobes belong-
ing to the phyla Actinomycetota and Bacillota (formerly Actinobacter and Firmicutes); as
the intestine matures and becomes anaerobic, Pseudomonadota and Bacteroidota (formerly
Proteobacteria and Bacteriodetes) become more prevalent [4,11]. This succession pattern to
a healthy adult microbiome has long term implications for host health, and disruptions
of the GIT community early in life can affect vaccine response and increase the chances of
autoimmune, neurological, lung, and gastrointestinal disorders later in life [11–17].

The advent of “omic” studies has made identifying and studying the large number
of unculturable bacteria within the human GIT possible. Metagenomic studies allow
us to identify the bacteria within the community with more accuracy than the use of
marker genes (16S rRNA being the most commonly used). With the improvements in
sequencing and data analysis, it has become clear that marker genes often underestimate
the diversity of the community [18]. The use of metagenomic sequencing also allows
for the prediction of the metabolic pathways present, giving insight into the metabolic
potential of the community [19]. Large scale collaborations have created datasets of human
genome information paired with microbiome information. Differences in sampling, sample
preparation, sequencing technology, and species identification are challenges that must
be addressed when utilizing data from multiple studies [20]. Despite these challenges,
researchers have been able to identify a link between Bifidobacterium species and specific
genotypes related to the LCT gene [21–23]. A link between ABO blood groups and multiple
bacteria taxa has also been identified [21,22]. Identifying genetic variation with links to the
microbiome is challenging. There are usually confounding social, diet, and environmental
factors, which also affect the microbiome. Further studies with consistent methods in
diverse populations are needed to untangle these factors [20]. With this burst of available
information, researchers have been able to identify specific changes in the GIT microbiome
of people suffering from many diseases and disorders, as well as possible genetic links to
disease susceptibility.

The gut microbiome is also susceptible to perturbation by a number of environmental
factors. Exposure to environmental pollutants from air, water, or food contamination
affects the gut microbiome [24–26]. Air pollution can cause damage and inflammation
in the lungs. This activation of the innate immune system can have systemic affects
and cause changes to the intestinal microbiome [25,27,28]. A study in Dutch individuals
also showed a link between smoking—past and present, as well as secondhand smoke—
and the gut microbiome [29]. The contamination of water with heavy metals and other
oxidizers disrupts the redox balance within the intestinal environment. This can directly
affect bacteria sensitive to oxidative stress, such as Faecalibacterium, or cause damage to
intestinal tissues, resulting in a disruptive immune response [24,26]. Bisphenol A (BPA)
is a common contaminant known to affect the human endocrine system. Exposure to this
chemical has been linked to decreases in Bifidobacteria and Akkermansia levels [25]. The
factors affecting the microbiome can be thought of as originating from the host or the host’s
environment, as highlighted in Figure 1.

Healthy adults with an intact microbiome are unlikely to be colonized by a num-
ber of pathogens; however, the disruption of the microbiome allows for colonization by
these pathogens. Clostridioides difficile pathogenesis often occurs after prolonged antibiotic
treatment has disrupted the microbiome; however, it is present in most healthy adults
with no adverse effects. The reconstitution of the microbiome has become an approved
medical intervention for prolonged C. difficile cases [30,31]. Vibrio cholera is able to colonize
infant mice with undeveloped immune systems, causing a disease state, but adult mice
cannot be colonized without first disrupting the GIT microbiome [32,33]. Similarly, it has
been proposed that cholera is only able to colonize and cause disease in humans when the
microbiome is disrupted, often by malnutrition or diarrhea of an unrelated source [34,35].
Listeria monocytogens is an agent of food borne illnesses that is also better able to infect
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mice when the microbiome is disturbed; resistance has been linked to products of the
microbiome such as SCFAs and antimicrobials [36]. The microbiome also provides pro-
tection against Salmonella colonization, recently reviewed in Rogers et al. [37]. A healthy
microbiome provides protection against intestinal pathogens through direct competition
as well as the priming and training of the host immune system. A more in-depth discus-
sion of how the microbiome restricts pathogen growth, the bacterial products involved,
which commensal bacteria produce them, and interventions to harness this protection are
discussed below. With this review, we hope to present a comprehensive look at how the
gut microbiome affects human health and present possible modes of action for potential
therapeutic approaches.
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Figure 1. A visualization of factors influencing the microbiome. The human host affects the micro-
biome through their current health status as well as immune training from previous infections or
vaccinations. Both systemic and gut inflammation can perturb the microbiome, and a number of host
genetic factors have been linked to the gut microbiome composition. Environmental factors such
as diet, water quality, pollution, and exposure to pathogens also have consequences within the gut
microbiome. Created with BioRender.com (accessed on 23 October 2023).

2. Mechanisms by Which the Microbiome Provides Colonization Resistance

Studies in gnotobiotic models have shown that in the absence of commensal bacteria,
the host immune system fails to develop properly, with little innate immune response and
a poor response of the adaptive immune system when exposed to bacteria. Commensal
organisms are needed to train the host immune system and improve their resistance to
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pathogens [16,17,38]. This immune training has implications throughout the host body
and is not localized to the GIT. The microbiome improves pathogen resistance through
nutrient and oxygen sequestering, the production of antimicrobial compounds, occupying
attachment sites, the stimulation of mucus production, the tightening of tight junctions,
the regulation of inflammation, and the training of innate and adaptive immunity [39–44].
Colonization resistance is often the result of immunoactive compounds produced by the
bacterial community. These include microbe-associated molecular patterns (MAMPs), ex-
tracellular vesicles (EVs), microbe-derived anti-inflammatory compounds, the degradation
of harmful compounds, and beneficial microbial metabolic products that stimulate the
immune system, increasing its effectiveness against pathogens [38,43,45,46].

The microbiome provides colonization resistance through environmental engineering,
the production of antibacterial compounds, and direct competition for electron acceptors,
nutrients, and physical space within the intestine [37,47]. Some commensal bacteria pro-
duce antimicrobial compounds. These compounds reduce the competition from other
species and allow the commensal to establish itself within the intestine [48,49]. These
compounds are discussed in more detail in the Section 3. Production of organic acids
lowers the pH of the intestinal lumen and changes the redox potential of the environment,
which can interfere with virulence factors [37]. Of particular interest are short-chain fatty
acids (SCFAs) [37,50]. Increased oxidative stress in the intestinal lumen has been linked
to changes in the microbiome that lead to dysbiosis and proliferation of pathogens [51,52].
Conversely, oxygen sequestering by commensal bacteria can limit the growth of pathogens.
This is the proposed mode of action for the colonization resistance provided by resident
Enterobacterales against virulent Salmonella sp. [37]. The residential bacteria utilize the
available nutrients, and an established microbiome is resistant to the introduction of new
species [37,53,54]. This is true for pathogens but also the introduction of beneficial bac-
teria, and it is a challenge for microbiome interventions involving probiotics. Finally,
commensal bacteria can occupy attachment sites that are required for pathogen virulence.
Segmented filamentous bacteria (SFB) attach to intestinal epithelial cells in a similar manner
to Salmonella, effectively blocking Salmonella from attaching to the intestinal epithelium
and preventing disease [2,55,56]. Similarly, non-infectious E. coli can occupy attachment
sites used by virulent E. coli strains [53]. Commensal bacteria that are closely related to
pathogens are often able to occupy the ecological niche preferred by the pathogen and,
once established, are effective in excluding them from the intestine [37,53,54]. The innate
immune system in the GIT is constitutively active, as it is always stimulated by commen-
sal bacteria. A healthy gut has effective barrier function and appropriate inflammation
responses. An overly sensitive inflammation response can lead to a loss in barrier function,
referred to as a “leaky gut”, allowing metabolites, proteins, and even bacteria to cross the
epithelium, causing sepsis. This can lead to poor health outcomes throughout the body,
and has been linked to intestinal, metabolic, lung, skin, and neurological disorders [57–59].
However, changes to the microbiome associated with these conditions are not consistent,
and it is unclear if the microbiome changes that are observed are a cause or effect of the
condition in humans, although fecal transplantation can transfer these disorders to recipient
mice [59–61].

The adaptive immune system is also very active within the GIT. Antigens in the lumen
are constantly sampled, especially in the specialized areas of the Peyer’s Patches, which
are located along the small intestine, most densely in the ileum. The development of
Peyer’s Patches is reduced in germ-free mice [62]. They are areas with a thinner mucus
coating, no villi, and specialized M-cells that allow dendrites to extend into the lumen
and sample antigens, including food, viruses, and bacteria. Located below the Peyer’s
Patch is an area of lymph tissue where antigen-presenting cells can interact with naïve
B-cells, triggering the subsequent production of sIgA in the lamina propria [63]. Sampling
through the Peyer’s Patch is a source of undiversified IgA in the intestine [64], although
luminal sampling near goblet cells has also been observed [65,66]. The differentiation of
T-cells is also directly affected by the microbiome. CD4+ naïve T-cells differentiate into
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regulatory T-cells (Treg) or Th17 cells in the presence of TGF-β, with Th17 cells requiring
the additional presence of IL-6. Beneficial commensal bacteria lower the production of IL-6,
promoting the differentiation into Treg cells, which produce IL-10 and reduce inflammation
levels [67,68]. Antigen sampling within the gut is likely to stimulate immunotolerance
because of regulatory cytokine ratios present in the healthy intestine. This propensity for
tolerance is extended to other areas of the body, as the immune cells trained in the GIT
migrate to other parts of the body [69]. Peyer’s Patches are also the most prominent areas
for T-cell dependent class switching, while T-cell independent class switching takes place
within the laminal propria [17,63]. Immune training through luminal sampling in the GIT
trains the adaptive immune system and affects the systemic immune response.

3. Beneficial Bacterial Products

Beneficial bacterial products are diverse in nature, and some are structural compounds
of the microbial cell (LPS, peptidoglycan, unmethylated DNA, etc.), while others are prod-
ucts of microbial metabolism (microbial anti-inflammatory molecule, SCFA, bacteriocins,
etc.). These bacterial products are involved in crosstalk with the host. In many experiments
and clinical trials, the exact compounds responsible for the benefit to the host is not clear,
and the mechanism of action is often expounded by in vitro experiments involving cell
lines or in animal models.

The innate immune system is stimulated by MAMPs such as peptidoglycans, un-
methylated CpG DNA, LPS, etc. These patterns are recognized by pattern recognition
receptors (PRRs) that can be attached to the cell membrane within the periplasm or secreted
outside the cell. Membrane-bound PRRs include Toll-like receptors (TLRs), C-type lectin
receptors (CLRs), and Nod-like receptors (NLRs), which are found on a variety of cells
within the GIT and throughout the body [44]. Peroxisome proliferator-activated receptors
(PPARs) are nuclear receptors that regulate inflammatory and metabolic processes and
are found in cells throughout the body [70]. The innate immune system, including the
epithelium barrier, is the first line of defense against pathogens and, until recently, was
believed to have little or no specificity and no immune memory, providing a rapid and
consistent response to all potential pathogens [43,71–74]. Recent work has shown that the
innate immune system does respond differently to repeated challenges. Vaccination with
live attenuated Bacillus Calmette-Guerin provides non-specific protection against multiple
pathogens [40,71], possibly from changes to glucose metabolism by immune cells [72] and
the reprogramming of stem cells within the germinal centers of the bone [73]. By increasing
innate immune cell production and cytokine production, the innate immune system may
have more immune memory than previously thought. While MAMPs are non-specific,
the presence of non-pathogenic commensals can provide some cross protection against
similar pathogens.

Extracellular vesicles (EVs) are spherical membranous vesicles that can contain molecules
such as proteins and nucleic acids [45,70,74] as well as the MAMPs associated with cell wall
components. EVs are produced by both prokaryotic and eukaryotic cells and are utilized
for intercellular communication [75]. EVs produced by Faecalibacterium prausnitzii [70,74],
Akkermansia muciniphila [76], and Bacteroides thetaiotaomicron [45] have all been shown to
interact with TLR and PPARs, affecting cytokine production. B. thetaiotaomicron were shown
to interact with TLR1,2,3, and 7 to help immune cell survival, reducing inflammatory
signals [45]. EVs from A. muciniphila induced the phosphorylation of AMPK, a tight
junction protein activator. This was supported by reduced intestinal permeability in mice
colonized by A. muciniphila [76]. The production of IL-10 was increased by F. prausnitzii and
A. muciniphila EVs through reduction in the NF-kB inhibitor, NFKBIL1 [74,76]. Commensal
EVs also reduce the expression of inflammatory cytokines such as IL-1, IL-2, IL-6, IL-12,
and IFN-γ [70,77].
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SCFAs are the product of the bacterial fermentation of indigestible fiber in the large in-
testine. The most common SCFAs are acetate, propionate, and butyrate [47,78,79], although
less abundant SCFAs can also influence the immune system [80]. SCFAs interact with G
protein-coupled receptors (GPR) 41 and 43; these receptors are found in intestinal epithelial
cells but also peripheral organs and blood cells, affecting inflammation throughout the
body [81,82]. Butyrate has been reported to reduce inflammation throughout the body,
reducing the production of IL-1β, IL-2, IL-12, IFN-γ, and TNF-α, while upregulating the
production of IL-10 [47,83]. Butyrate also promotes the differentiation of Treg cells, which
increases tolerogenic responses [67,84]. Butyrate can be directly used by colonocytes as an
energy source, promoting a healthy intestinal epithelium. Healthy colonocytes promote
barrier function by increasing mucus production, promoting healthy tight junctions and the
increased production of antimicrobial proteins in Paneth cells [47,80–82]. SCFAs also lower
the pH of the intestinal environment, inhibiting the growth of many pathogens [37,85].
Propionate was shown to limit the growth of Salmonella enterica serovar Typhimurium
in vitro through changes to the intercellular pH [86]. Butyrate is able to reduce the growth
of multiple C. difficile strains [87] and L. monocytogens [50] in culture, showing an inhibition
of this pathogen unrelated to host immune response [78].

4. Beneficial Bacteria

The benefit of fermented foods such as yogurt, cheese, kefir, and natto to gut health
has been known for centuries [88]. Many probiotics that are currently on the market are
species that were historically used in food production, particularly lactic acid-producing
bacteria (LAB). LAB include bacteria belonging to the genera Lactobacillus, Lactococcus,
and Bifidobacterium and are commonly found in fermented milk products. LAB are well
studied, and their probiotic benefits and mechanisms of action have been recently reviewed
in detail by Tiwari and Tiwari (2022) [48]. LAB produce bacteriocins, bacteriocin-like
molecules, hydrogen peroxide, and carbon dioxide, which restrict the growth of the major
pathogens Listeria [49], Clostridium, and Salmonella [89]. LAB also interact with the immune
system, influencing immunotolerance and generally promoting Treg differentiation as well
as reducing inflammation responses within the intestine [48,78,89,90]. The use of LAB in
food production has allowed for a large-scale production of probiotics for commercial sale
with relatively little regulatory opposition.

A healthy GIT microbiome is hard to define because of the high variation seen across
populations [91–93]. Generally, a high alpha diversity is indicative of a healthy microbial
community. A loss of diversity and a low evenness score are commonly seen in the
microbiomes of people suffering from dysbiosis and many medical conditions [16,92,94].
The most abundant bacterial phyla in the mammalian GIT are Bacillota and Bacteroidota;
these two phyla constitute ~80% of a healthy microbiome. These abundances are often
compared and referred to as the older nomenclature of Firmicutes:Bacteroidetes or the F:B
ratio. A large F:B ratio is often an indication of a healthy gut microbiome, while a low
F:B ratio often indicates dysbiosis [95,96]; however, an increased F:B ratio has been linked
to obesity [96–98]. The age of the host is a major factor when using this ratio and must
be taken into consideration [16,94,99,100]. Some Bacillota are oxygen tolerant and more
abundant in the GIT of neonatal and young hosts, with the oxygen sensitive Bacteroidota
being a secondary colonizer [6,14,101].

The majority of bacteria within the phylum Bacillota are gram-positive, spore-forming
bacteria with various levels of oxygen tolerance. This phylum was identified as beneficial
to gut health early in the study of the GIT microbiome. Bacillota are often involved with
the fermentation of fiber in the colon. The main products of interest in this fermentation
are SCFAs. These products of bacterial fermentation can be used as an energy source by
colonocytes, and they can enter the bloodstream and react with cell receptors located in
distant organs [75,83,85,102,103]. The diversity found within the phyla Bacillota likely
plays a role in the inconsistent results when this high-level classification is considered.
While total Bacillota present is often correlated to SCFA production/levels [96], this is
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not always the case. Strategies such as this rely on the accurate identification and prior
knowledge of fermentation abilities, both of which may be lacking, resulting in inaccuracies.
To complicate matters further, there are a number of pathogenic species within the Bacillota,
the most common of which are Clostridiodes difficile and species belonging to the genus
Staphylococcus. While high-level generalizations are appealing, it is an oversimplification of
the complex nature of the gut ecosystem, and identification to a more specific classification.
A visualization of many of these concepts can be seen in Figure 2. Below, we discuss specific
groups that are thought to be beneficial to host health and immune function.
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Figure 2. A healthy commensal bacteria population versus one in dysbiosis. (A) In the healthy gut
microbiome, beneficial Bacillota metabolize bile acids and utilize carbohydrates freed by mucus de-
graders to produce SCFAs, promoting mucus production and healthy tight junctions in the epithelium.
LABs produce organic acids and bacteriocins that control pathogen populations. (B) In dysbiosis, the
presence of unmodified bile acids stimulates toxin production via pathogens. Without competition
from beneficial species, pathogens are able to utilize carbohydrates released by mucus degraders to
expand their population, damaging the epithelium. Created with BioRender.com (accessed on 23
October 2023).

The genus Faecalibacterium contains commensal bacteria that are also known to
ferment indigestible fiber into SCFAs [75]. Faecalibacterium are obligate anaerobes and
are unable to colonize the human GIT early in life but become common after 2–3 years,
becoming ~5% of the microbiome in adults [104]. F. prausnitzii produces a protein that
reduces inflammatory signals in mammalian cells [105]. This has been shown to be ben-
eficial in Crohn’s disease and IBS [105,106]. Increased oxidative stress is associated with
gut inflammation, and Faecalibacterium has been suggested as a potential marker species
because of its relatively high abundance and oxygen sensitivity [107,108]. An increase in
oxidative stress during inflammation has been suggested as one cause of dysbiosis [109].
Many SCFA producers are sensitive to oxygenation stress, while opportunistic pathogens
tend to have a higher oxidative stress tolerance. Members of the phylum Verrucomicro-
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biota, such as Akkermansia muciniphila, also produce SCFAs but have a higher oxygen
tolerance [83,110]. This phylum is most abundant early in life but is present in most adult
microbiomes [94,101]. Akkermansia spp. and other members of the Verrucomicrobiota
digest the mucus lining the GIT as a nutrient source, releasing metabolites and freeing
carbohydrates that can be further degraded by other members of the community [83].
A. muciniphila and Bifidobacterium sp. have been considered for use as a probiotic because
of their ability to promote the growth of other beneficial bacteria [85,111], Figure 2A. It can
be considered an environmental engineer as it can colonize intestines with oxidative stress,
reduce the oxygen levels through reduced inflammation and metabolism, and produce
nutrients for the more oxygen sensitive SCFA producing bacteria allowing them to colonize
further improving gut health [76,83,112]. Species from the genus Blautia, particularly Blau-
tia obeum, have been shown to provide protection from a Vibrio cholera infection [113]. The
presence of bile acids induces the production of toxin-coregulated pilus (TCP) and type
VI secretion system (T6SS) proteins in V. cholera. Blautia species reduce primary bile acids
into secondary bile acids, downregulating these virulence factors [114,115], as shown in
Figure 2B. However, bile acids are toxic to L. monocytogenes, and the degradation of these
products may lead to a higher susceptibility to listeria infection [36]. Commensal bacteria
can also mimic quorum-sensing signals essential for virulence in cholera colonization. The
most well documented is the production of autoinducer 2 (AI2) by B. obeum, which blocks
production of TCP, reducing virulence within the intestine [33,34].

Segmented filamentous bacteria (SFB) have both a unique structure and life cycle,
discussed in some detail in Hedblom et al., 2018 [2]. These bacteria attach directly to the
intestinal epithelium, most often in the ileum, causing changes to the host cell and resulting
in a pedestal-like structure at the site of attachment and a loss of microvilli in the immediate
area. The preference of attachment site varies by species and includes enterocytes, M-cells,
goblet cells, and junctions between cells in the ileum. SFB are often host specific [56],
possibly through the recognition of differences within the flagellar proteins [116]. The
attachment method of SFB is similar to Salmonella sp., blocking attachment sites from
the pathogen [2]. Despite this similarity in attachment methods, SFB do not incite an
inflammatory response; however, they do elicit an immune response.

SFB have been shown to induce immunological changes in mice, and the abundance of
SFB correlates with vaccine response in a number of studies. The relationship between SFB
and immune response has been extensively investigated in mice. Ivanov and colleagues
(2009) showed that the presence of SFB induces Th17 cell differentiation through Toll
Like Receptor 5 (TLR5) signaling [117]. SFB also induce the production of serum amyloid
A (SAA), IL-17, and IL-22, which stimulate TH17 cell differentiation [55,117,118]. This
increased antimicrobial defense was sufficient to protect against Citrobacter rodentium [117].
TH17 cells can be subdivided into those that clear pathogens from mucosal surfaces and
those that promote immunotolerance [119,120]; the relative abundance of these cells is
dependent on cytokine concentrations with pathogenic TH17 cells being induced by IL-23
exposure [68]. The overproduction of TH17 cells has been implicated in autoimmune
conditions, including those centered in the GIT such as Crohn’s disease, irritable bowel
syndrome (IBS), and others [118,119]. However, the negative effects of TH17 upregulation
can be mitigated by the upregulation of anti-inflammatory cytokines by butyrate production
in the GIT [47], depicted in Figure 3.
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5. Therapeutic Interventions to Improve the GIT Microbiome

As we discussed, commensal microbes and their effects of “colonization resistance”
contribute to preventing host diseases. Therefore, commensal bacteria as a therapeutic
intervention have garnered attention in the medical world with the rise of antibiotic resistant
bacteria and the push to reduce antibiotic use. A better understanding of the mechanism of
action of the microbiome in immune response and pathogen resistance does suggest that
there is potential for both the treatment and prevention of microbiome-related disorders.
However, the complex ecology of the GIT means that individuals will have unique reactions
to microbiome intervention. Bacterial products will elicit different responses dependent
on the bacterial community present, the preexisting inflammation levels, and the immune
state and genetics of the host. Because of these factors, microbiome interventions may have
to be personalized to each patient, requiring pretreatment investigations into the microbial
community present to identify proper treatment options. However, there is less concern
about this when the microbiome has been previously decimated by antibiotics, radiation,
or chemotherapy.

Therapeutic interventions can broadly fall into four categories: (1) the introduction of
bacterial communities via fecal transplantation (FT) or the introduction of a predetermined
bacterial consortia, (2) probiotics, (3) postbiotics, and (4) prebiotics. Categories 1 and 2
involve the introduction of live organisms, which can be a major concern. It is difficult
to receive government approval for the development of new probiotics due to concerns
regarding safety and quality control. This difficulty has led to the search for non-living
alternatives, such as prebiotics, which stimulate the expansion of existing beneficial species,
or postbiotics, which are non-living bacterial products. Potential uses and concerns with
each of these categories will be discussed in the sections below and are visualized in
Figure 4.
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5.1. Fecal Transplantation and Bacterial Consortiums

FT has been effective in treating chronic Clostridioides difficile infections when antibiotics
have been ineffective [30,31]. FT can be conducted through oral administration, enema,
or placed directly into the small intestine via colonoscopy or transendoscopic enteral
tubing [121]. When administering FT through the oral route, it is important to protect the
bacterial community from the acidic environment of the stomach, while the enema route
places the community within the colon and does not immediately seed bacteria into the
small intestine. An advantage of FT is that a functional community with intact interspecies
relationships is transplanted [121,122]. Identifying appropriate donors is challenging, and
the microbiome changes throughout the host’s lifetime, meaning previously successful
donors may no longer be suitable [123]. The largest downfall of FT is that opportunistic
pathogens are present in all fecal samples, even from healthy donors. The current state
of FT as a clinical treatment has been reviewed in Gupta et al., 2022 [31]; Biazzo and
Deidda, 2022 [121]; and Mahmoudi and Hossainpour, 2022 [122]. The adult immune
system is trained and primed by the host’s native GIT microbiome. Some studies have
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suggested that FT is most successful when the donor has a similar genetic background and
diet to the recipient [124]. As host genetics and diet are two major factors affecting the
microbiome, selecting donors based on these factors will increase the similarity between
the donor microbiome and the recipient’s natural microbiome, increasing the likelihood of
successful recolonization [124]. In the case of patients undergoing treatments for a condition
unrelated to the GIT that is likely to disrupt the microbiome (i.e., prolonged antibiotic
use, chemotherapy, etc.), it is possible to store fecal samples pretreatment, recolonizing the
patient with their own native microflora [125]. There is also the possibility of the creation
of autoprobiotics, where beneficial bacteria from fecal samples are cultured to probiotic
levels and then reintroduced to the host to boost beneficial bacteria levels [126].

An alternative to FT is the production of bacterial consortia. This eliminates the need
to find healthy donors, and potential pathogens can be excluded while still introducing
beneficial bacteria with healthy interactions, which is a major concern in immunocompro-
mised patients [126–128]. The development and maintenance of these consortia is a major
hurdle in their production and has similar constraints to probiotics, as discussed below.
Many gut bacteria are difficult to culture, as they require stable temperatures, anaerobic or
microaerobic conditions, and molecular cross feeding to flourish.

5.2. Probiotics

The health benefits of fermented foods have been known for centuries, and probiotics
are often delivered through fermented foods such as yogurt, cheese, natto, etc. [88,127,129].
The ideal probiotic is easily cultured, stored, and delivered to the patients. It must also be
possible to deliver the living bacteria to the proper area of the intestine for it to colonize,
which means surviving passage through the stomach into the intestines. The effective-
ness of the probiotic is also dependent on its ability to colonize despite competition by
resident bacteria. The genera Lactobacillus and Bifidobacter have many advantages as probi-
otics [126,130]. They are found in many fermented foods and known to be safe for human
consumption. They are also acid resistant, and a small population can survive past the
stomach to colonize the intestine. Finally, they are LAB and provide all the previously
discussed benefits [89,131,132].

Species from the genus Bacillus, such as B. subtilus and B. ceres, are currently sold as
probiotics for both livestock and humans [133–136]. These bacteria are capable of sporula-
tion and have been shown to survive passage through the stomach in livestock [137,138].
In livestock, bacilli probiotics improve immune function, increase barrier function within
the intestines, and reduce oxidation stress within the intestine [133,139,140]. The ability of
Bacillus sp. to colonize the intestine long term is under debate, and the levels within the
feces are significantly reduced once oral ingestion is stopped [141].

5.3. Postbiotics

Postbiotics can include purified bacterial products or whole killed bacteria. Postbiotics
avoid the concerns of administering live organisms to patients, but the benefits are tem-
porary and are lost when treatment is concluded [90,142,143]. Often inactivated bacteria
are administered with the culture medium, providing any beneficial compounds produced
alongside the MAMPs present in the killed bacterial cells, having similar effects on the
host immune response [144]. Purified EVs have also been shown to have similar effects
as live cell cultures on Caco-2 cells in a culture [45,70]. Bacteriocins have been purified
from a number of species and used in food preservation and livestock studies [145–147].
However, some compounds can be altered via passage through the stomach or absorbed in
the small intestine before reaching the colon, reducing effectiveness, and the compounds
may need protective preprocessing. For example, SCFAs can be esterified to ensure delivery
to the colon where their effects are most beneficial [47]. Further work is needed to identify
purification methods and the effects of postbiotics on human health.
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5.4. Prebiotics

Prebiotics are compounds that cannot be digested by the host but are accessible to the
microbiome. Often the goal of prebiotics is to stimulate the production of beneficial prod-
ucts, but they may also be chosen to simply expand the population of beneficial bacteria.
The most common prebiotics are indigestible fibers. These compounds are undigested by
the host and reach the lower intestine intact, where they can be fermented by commensal
bacteria, often producing SCFAs as a result [51,85,148]. Pascale et al., 2022 [148] recently
reviewed the use of pectins as a prebiotic. They found that pectins promoted SCFA pro-
duction, particularly acetate. The conversion of acetate to propionate and butyrate varied,
likely influenced by the resident microbiome community [75]. Fructooligosaccharides are
another common prebiotic. Costa et al., 2022, discuss the effects of this prebiotic on inflam-
mation and gut immune response [51]. The increased intake of non-digestible starches
increased the SCFA production of test subjects on a controlled diet [85]. As previously
discussed, SCFAs are directly beneficial to the host; by promoting the growth of beneficial
SCFA-producing bacteria, the growth of potential pathogens is also restricted through
competitive exclusion and colonization resistance.

One challenge of prebiotics is that they can only promote the growth of bacteria
that are present in the microbiome. This can be addressed by administering probiotics
alongside prebiotics, often referred to as synbiotics. By providing the nutrients preferred
by the probiotic, they are given an advantage over other bacteria within the GIT. The
administration of a commercial synbiotic alongside Bifidobacterium longum significantly
reduced mucosal inflammation compared to the probiotic alone [149]. Similar results were
observed when a fiber synbiotic was combined with a five species Bacillus spp. bacterial
consortium [150]. Identifying appropriate prebiotic and probiotic combinations could
improve the efficacy of such treatments in a clinical setting.

In some cases, the restriction of bacterial nutrients is a more beneficial course of
action. This requires dietary changes rather than the addition of a prebiotic. Diets low in
fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP)
have been suggested to treat inflammatory bowel disorders. The microbial community is
changed by removing the resources. It is the act of restricting the nutrient that causes the
change [151]. However, the efficacy of this treatment is debated [152], and the suitability of
this treatment may rely on the pre-existing microbial community [153].

6. Future Direction

While microbiome interventions are a promising area of study, there is still much to be
learned in how they interact with the resident microbiome and the host. Introduction of a
new species to a complex ecosystem can be challenging, as they are often unable to establish
themselves within the preexisting community. It is also difficult to predict the effects this
will have on the ecosystem and, consequentially, the host. A more complete knowledge of
the interactions between species within the GIT, such as cross feeding and the production
of antimicrobial compounds, will improve our ability to accurately predict the effects of
microbiome interventions. Similarly, a better understanding of which species can utilize
prebiotic compounds will help avoid the unintended proliferation of potential pathogens.

Microbial interventions have shown the most consistent results when the resident
population has been disrupted, most often by medical interventions such as antibiotic
use or chemotherapy. In these cases, the GIT is more easily colonized by the desired
bacteria, and there are less unpredicted consequences due to interactions with the resident
bacteria. But, even in disorder, the established microbiome is highly variable, and the
circumstances of each individual patient must be taken into consideration when planning
microbiome interventions. Ideally, each patient would have a fecal sample sequenced
to identify the established microbiome and a customized plan created; however, this is
unrealistic. Microbial interventions could be semi tailored through the identification of pre-
existing conditions and a general understanding of the patient’s diet, allowing assumptions
of the resident microbiome to be made.
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7. Conclusions

The GIT microbiome influences the host immune system and can have serious effects
on the systemic immune response and the overall health of the host. Recent work has high-
lighted the connection between the microbiome and intestinal, metabolic, cardiovascular,
respiratory, and neurological conditions. While the GIT microbiome is a complex ecosystem,
we can influence the composition of the community using fecal transplants, probiotics,
prebiotics, and postbiotics. However, the same treatment may have opposing effects in
different individuals because of the variable nature of the resident bacteria, the immune
status of the host, and the nutrients available to the microbiome. Therefore, it is important
that further research is conducted to improve our understanding of the interspecies relation-
ships and the consequences of microbiome interventions under different conditions. The
development of protocols for the creation of disorder-specific or personalized treatments
will improve the efficacy of microbiome interventions.
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