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Abstract: Profiling bacterial populations in mixed communities is a common task in microbiology.
Sequencing of 16S small subunit ribosomal-RNA (16S rRNA) gene amplicons is a widely accepted
and functional approach but relies on amplification primers and cannot quantify isotope incorpora-
tion. Tandem mass spectrometry proteotyping is an effective alternative for taxonomically profiling
microorganisms. We suggest that targeted proteotyping approaches can complement traditional
population analyses. Therefore, we describe an approach to assess bacterial community composi-
tions at the family level using the taxonomic marker protein GroEL, which is ubiquitously found in
bacteria, except a few obligate intracellular species. We refer to our method as GroEL-proteotyping.
GroEL-proteotyping is based on high-resolution tandem mass spectrometry of GroEL peptides and
identification of GroEL-derived taxa via a Galaxy workflow and a subsequent Python-based analysis
script. Its advantage is that it can be performed with a curated and extendable sample-independent
database and that GroEL can be pre-separated by sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE) to reduce sample complexity, improving GroEL identification while simulta-
neously decreasing the instrument time. GroEL-proteotyping was validated by employing it on a
comprehensive raw dataset obtained through a metaproteome approach from synthetic microbial
communities as well as real human gut samples. Our data show that GroEL-proteotyping enables
fast and straightforward profiling of highly abundant taxa in bacterial communities at reasonable
taxonomic resolution.

Keywords: shotgun proteomics; proteotyping; microbial communities; GroEL; chaperon; taxonomic
profiling; community analysis; community composition; bottom-up proteomics; metaproteomics

1. Introduction

Bacterial communities govern our planet, impacting essential ecosystem services
such as soil fertility [1], carbon dioxide fixation [2], bioremediation [3], and wastewater
treatment [4]. One aspect of understanding the functionality of microbial communities
is the identification of their microbial composition. Commonly, microbial compositions
are described by (high-throughput) sequencing of 16S small subunit ribosomal-RNA (16S
rRNA) gene amplicons. Several 16S rRNA-gene-based fingerprinting techniques, such
as denaturing gradient gel electrophoresis (DGGE) [5] and terminal restriction fragment
length polymorphism (T-RFLP) analyses [6], have been developed to allow the monitoring
of the microbial community dynamics at reasonable costs and speed. However, all these
16S rRNA gene-based methods are PCR-dependent and introduce a primer bias [7]. Addi-
tionally, the variability and multiplicity of the 16S rRNA gene as well as the low taxonomic
resolution of its short-reads can distort bacterial community analyses [8,9]. Analyzing
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several hypervariable regions of the 16S rRNA gene [10] or other taxonomic marker genes,
such as rpoB [11] or groEL [12], can enhance taxonomic resolution.

Metaproteomics is the mass spectrometric analysis of proteins from microbial com-
munities [13]. Given the central role of proteins in metabolic processes, metaproteomics
serves as a tool to investigate the functional dynamics of microbiomes, shedding light on
microbial networks and their interplay with the environment [14–16]. In combination with
isotope labeling, metaproteomics can link microbial populations to physiological activities,
e.g., to the use of a specific carbon source [17] and monitor uptake, incorporation, and
interspecies transfer of isotopically labeled substrates by protein-based stable isotope prob-
ing (protein-SIP) [18]. Metaproteomic datasets are typically extensive and can be used to
derive species-specific taxonomic profiles (proteotyping) within microbiomes based on all
identified proteins [19–21]. In the classical proteotyping approach, a sample-specific protein
database derived from (meta)genome sequencing is used for the accurate identification and
quantification of proteins from mass spectrometric raw data [22,23]. When metagenomics
data are not available, alternatives like RNA sequencing data [24] or universal, broad-
spectrum databases such as NCBInr or UniProtKB/Swiss-Prot can be employed [25–30].
However, the large size of broad-spectrum databases leads to extended computation times
and can hamper protein identification via target-decoy strategies [31]. Iterative cascade
searches can reduce the effect of hampered protein identifications but increase computation
times [32,33].

As an alternative, initial taxonomic profiling can assist in constructing comprehen-
sive sample-specific databases for subsequent functional analyses [34]. Lower-resolution
taxonomic profiles can be obtained by using universal reference databases of taxonomic
marker proteins and by focusing only on a small subset of a comprehensive metaproteomic
dataset. Specifically, highly abundant proteins, such as GroEL, translation initiation factor
2, elongation factors, or ribosomal proteins allowed the profiling of microbial communities
at order level in human gut samples [34] and at domain level in mock assemblies and soil
samples [35]. Utilizing a universal reference database of taxonomic marker proteins offers
the advantage of eliminating the need to generate sample-specific metagenomic databases.
This labor-intensive process requires repetition for each new sample site, albeit at the cost
of potentially limiting the depth of functional insights. Furthermore, taxonomic marker
databases tend to be smaller compared to universal, broad-spectrum databases, resulting
in reduced computation time requirements.

Our research aimed to develop and evaluate a workflow enabling a semiquantitative
characterization of microbial communities with high taxonomic resolution utilizing tandem
mass spectrometric data focusing on GroEL as a taxonomic marker protein for bacteria.
To achieve this objective, we created a sample-independent GroEL database for peptide
identification and developed a Python script that facilitates protein and taxonomy infer-
ence. Our approach was evaluated by applying it to synthetic microbial communities and
metaproteome data obtained from the human gut, ensuring its robustness and applicability
across different microbial ecosystems.

2. Results
2.1. Establishing a GroEL Database and Analyzing Protein and Peptide Sequences

Our download of bacterial GroEL sequences from NCBI in September 2021 resulted in
284,351 GroEL homologous sequences, of which 72,759 were non-redundant. We restricted
the download to sequences of a length of 6–1500 amino acids, resulting in a median length of
542 amino acids in the database. Prediction of trypsin digestion sites in the non-redundant
protein sequences allowing up to two missed cleavages, a length of 6–144 amino acids, and
no ambiguous amino acid codes (B, J, O, U, X, or Z) resulted in 9,091,897 peptides, of which
1,875,469 were non-redundant.

To evaluate the taxonomic relevance of GroEL-derived peptides, we calculated their
taxon-specificity across different taxonomic levels. Additionally, we predicted their de-
tectability by tandem mass spectrometry (MS/MS) using DeepMSPeptide [36]. For this
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purpose, we initially standardized taxon names in our database according to the nomencla-
ture provided by the “List of Prokaryotic names with Standing in Nomenclature” (LPSN).
Taxon names matching the LPSN nomenclature were kept, while taxon names not matching
the LPSN nomenclature were excluded. Subsequently, peptides exclusively attributed to
a single taxon were counted as taxon-specific peptides, with leucine (L) and isoleucine
(I) treated as indistinguishable. Our results show a decline in the count of peptides with
standardized taxon names, the number of taxon-specific peptides, and their predicted
detectability with increasing taxonomic resolution (Table 1).

Table 1. Absolute and relative numbers of peptides with a standardized taxon name according to the
“List of Prokaryotic names with Standing in Nomenclature” (LPSN) and (detectable) taxon-specific
peptides in the GroEL database at different taxonomic levels.

Number of Non-Redundant GroEL Peptides
Taxonomic Level

Phylum Class Order Family Genus

Standardized taxon name a 1,798,737
(95.9%)

1,564,290
(83.4%)

1,410,836
(75.2%)

1,343,631
(71.6%)

1,315,614
(70.1%)

Taxon-specific b 1,732,937
(96.3%)

1,485,993
(95.0%)

1,233,553
(87.4%)

1,205,161
(89.7%)

1,122,799
(85.3%)

Detectable by tandem mass spectrometry c 690,492
(39.8%)

587,287
(39.5%)

484,600
(39.3%)

470,112
(39.0%)

435,776
(38.8%)

a: Relative numbers based on the total number of non-redundant peptide sequences. b: Relative numbers based
on the number of peptides affiliated with an organism with a standardized taxon name. c: Relative numbers
based on the number of taxon-specific peptides. Detectability was predicted using DeepMSPeptide [36].

2.2. Evaluating the Sensitivity and Specificity of GroEL-Proteotyping and Its
Protein-Filtering Routine

To evaluate the performance of our database in detecting GroEL peptides, we analyzed
pure cultures of T. aromatica K172 and P. putida KT2440. In this regard, each microorgan-
ism was separately cultivated, followed by protein extraction and tryptic digestion. The
resulting peptides were analyzed using nano-liquid chromatography coupled to tandem
mass spectrometry (nLC-MS/MS) and evaluated against two databases: (i) a database
representing the full proteome of T. aromatica K172 or P. putida KT2440, respectively, and
(ii) our GroEL database.

When comparing our data against the whole proteome databases, the total number
of identified peptides was higher for P. putida, but the count of identified GroEL peptides
was lower compared to T. aromatica (Table 2). When using the GroEL database instead of
the whole proteome database, we observed a slight decrease in the number of detected
GroEL peptides for both strains. However, the average precursor peak intensity for GroEL
peptides was similar for both organisms. In summary, this initial experiment showed that
in pure cultures, GroEL peptides of T. aromatica K172 exhibited stronger signal intensities
than GroEL peptides of P. putida KT2440. Furthermore, the use of our GroEL database
resulted in a slightly decreased detection of GroEL peptides.

To evaluate the applicability of GroEL peptide mass spectrometry for relative quan-
tification of subpopulations, we experimented with a synthetic mixture of T. aromatica
K172 and P. putida KT2440. Initially, each of the two strains was cultivated separately.
Subsequently, proteins were extracted from them, and crude extracts of T. aromatica K172
and P. putida KT2440 were mixed in predetermined protein ratios, ensuring a total protein
mass of 5 µg. Before nLC-MS/MS analysis, GroEL was separated from other proteins by
SDS-PAGE, decreasing the heterogeneity of the sample, which resulted in a 1.8-fold increase
in the number of detected GroEL peptides. Peptides often can be assigned to multiple
proteins, known as the protein inference problem. Furthermore, large databases tend to
increase the number of false-positive detections. To remove false-positive detections and to
infer proteins and taxonomy unambiguously, we developed a custom Python script that
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filters GroEL protein groups by the Top Rank Count, which only counts peptides once for
the largest GroEL protein group (for the description of this filtering routine, see Section 4).

Table 2. Peptides identified from protein extracts of Thauera aromatica K172 and Pseudomonas putida
KT2440. Peptides were identified using the whole proteome database of T. aromatica K172 contain-
ing 3335 entries or P. putida KT2440 with 5450 entries, respectively, or the GroEL database with
72,759 non-redundant entries. Values represent means of biological triplicates ± standard deviations.

Microorganism
Database: Whole Proteome Database: GroEL

Identified Peptides Identified GroEL
Peptides

Identified GroEL
Peptides

Mean Intensity of GroEL
Peptides (×106)

T. aromatica K172 2441.0 ± 201.5 19.7 ± 1.2 14.7 ± 0.5 540 ± 120

P. putida KT2440 2961.7 ± 152.9 11.7 ± 1.7 8.3 ± 2.1 500 ± 20

Various Top Rank Count thresholds were systematically evaluated to eliminate false-
positive identifications while retaining the ability to detect low-abundant organisms
(Figure 1). The implementation of a Top Rank Count threshold ≥ 5 eliminated all false-
positive identifications at the genus level. Notably, both organisms were consistently
detected at the genus level in all biological replicates at different protein ratios, demonstrat-
ing a relative detection limit of 1% of total protein content for low-abundant organisms.
Unfortunately, quantification based on the number of detected GroEL peptides yielded
relative abundance estimations for the two genera close to 50% across all ratios, failing to
reflect the actual mixing ratios. Quantification based on the sum of the precursor intensities
from detected GroEL peptides provided more accurate estimations. In mixtures containing
1%, 5%, and 10% T. aromatica K172 proteins, we observed Thauera abundance values of
11.9% ± 3.1%, 8.9% ± 1.1%; and 22.4% ± 0.6% respectively.

Taken together, our findings indicate that GroEL-proteotyping allows for the differ-
entiation of two organism mixtures at the genus level, achieving a relative detection limit
of 1% of the total protein content, representing approximately 50 ng protein in the crude
extract. Quantification based on the sum of the precursor intensities proved to be more reli-
able and closer to the actual mixing ratios than GroEL peptide count-based quantification.
However, in all mixtures, we consistently detected a higher relative abundance of Thauera
than originally added.

2.3. GroEL-Proteotyping in Action I: Reanalyzing the Raw Data of Synthetic
Microbial Communities

In the previous experiments, communities of only two bacteria were investigated. To
examine if the filtering and quantification techniques are applicable for characterizing more
complex bacterial consortia, we reanalyzed proteomic raw data files of three synthetic mi-
crobial communities originally assembled by Kleiner et al. [20]. The synthetic communities
comprised crude protein extracts of one archaeon, one eukaryote, five bacteriophages, three
strains of Gram-positive bacteria, and eighteen (Mock A and B) or twenty-two (Mock C)
strains of Gram-negative bacteria mixed in different ratios (Supplementary Tables S1–S3
of Kleiner et al. [20]). The bacterial population contained twelve (Mock A and B) to fif-
teen (Mock C) bacterial families. Since our method is specialized in bacterial community
characterization, we focused only on these bacterial families.

We again investigated different thresholds of the Top Rank Count to eliminate false-
positive identifications while still detecting low-abundance microorganisms (Figure 2).
Filtering according to a Top Rank Count threshold ≥ 5 (as described above) resulted in some
false identifications at the genus level. However, at the family level, this filter effectively
eliminated all incorrect identifications while maintaining an acceptable sensitivity for
detecting low-abundance organisms. Therefore, we used this threshold for subsequent
community analysis at the family level.
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Figure 1. Evaluating sensitivity (A) and specificity (B) of GroEL-proteotyping in detecting organisms
at the genus level in mixed protein extracts. Mixed protein extracts were composed of Thauera
aromatica K172 and Pseudomonas putida KT2440 proteins in different ratios, and different filtering
criteria were applied. Bars represent means of three biological replicates.

In the raw data files of the three synthetic communities assembled by Kleiner et al. [20],
we detected all bacterial families that were present at a relative bacterial protein content
above 2.8%, while no absent family was falsely detected (Figure 3A). However, the detection
of scarce families was inconsistent between the assessments of the different synthetic
communities. Specifically, we detected all bacterial families in all four biological replicates
of Mock B, which has the most balanced actual protein distribution of 4.8–19.1% of the total
protein content for each family (Figure 3A, yellow). In Mock A, all families except the lowest-
abundant family Staphylococcaceae, accounting for 0.7% of the total bacterial protein content,
were detected (Figure 3A, red). On the other hand, in Mock C, which had the highest
number of low-abundant bacterial families (relative bacterial protein content ≤ 2.8%), and
the most uneven actual protein distribution, with families representing 0.2–41.8% of the
total bacterial protein content, we detected all highly abundant bacterial families (relative
bacterial protein content > 2.8%) (Figure 3A, blue). However, the detection of low-abundant
families with relative bacterial protein content ≤ 2.8% was inconsistent: we detected
Chromobacteriaceae (1.3%), Desulfovibrionaceae (1.0%), Rhodobacteraceae (1.0%), Roseobacteraceae
(1.7%), and Thermaceae (1.8%), but not Staphylococcaceae (2.8%), Alteromondaceae (1.0%),
Bacillaceae (0.8%), Nitrosomonadaceae (0.7%), or Nitrospiraceae (0.2%) (Figure 3A, blue).
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Figure 2. Evaluating sensitivity (A) and specificity (B) of GroEL-proteotyping using different Top
Rank Count filtering thresholds in detecting peptides assigned to bacterial families that were present
in three synthetic microbial communities (Mock A–C) assembled by Kleiner et al. [20]. The detected
peptides were assigned to specific GroEL proteins. GroEL proteins with the same set of detected
peptides were merged into GroEL groups, which were then filtered by the Top Rank Count ≥ 5. Bars
represent the means of four biological replicates.

In addition, we compared two quantification methods: (i) analyzing the number of
detected GroEL peptides and (ii) analyzing the sum of the precursor intensities of detected
GroEL peptides (Figure 3B). Both methods performed similarly for Mock A and Mock B,
with the medians centering around zero, indicating high agreement of our analysis and
input (Figure 3B, red and yellow). However, differences between the two quantification
methods became apparent for Mock C. The method based on peptide counts overesti-
mated most families (e.g., Thermaceae) while underestimating others (e.g., Enterobacteriaceae)
(Figure 3B, blue). The deviation of the measured abundance from the actual input was
smaller for the method based on precursor intensities than the method based on peptide
counts. Overall, we show that the characterization of complex synthetic communities by
GroEL-proteotyping is robust at the family level and more consistent when based on the
sum precursor intensities of detected GroEL peptides than when based on peptide counts.
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Figure 3. Profiling the taxonomic composition of bacterial subpopulations in synthetic microbial
communities using GroEL-proteotyping. The metaproteome dataset of synthetic communities was
obtained from Kleiner et al. [20]. The colors represent three different community compositions.
We used the same graphic layout to facilitate comparison. (A) Comparison of actual community
shares (shaded values) with GroEL-based quantification: ‘peptide number’—quantification based on
the number of non-redundant GroEL peptides assigned to that family; ‘intensities’—quantification
based on the sum of the precursor intensities of the detected GroEL peptides. Quantities are rep-
resented as bubble areas. The figure includes information on families that were not added (NA)
or not detected (ND) with our method. Results are means of four replicates. (B) Comparison of
two quantification methods for GroEL peptides to the actual protein abundance of each family.
x − f old deviation f rom the expected value = measured value

expected value − 1. Boxes show the 1st and 3rd quartile,
the median, and the whiskers indicating the 10th and 90th percentile, with filled circles representing
outliers. ND were removed before plotting. A value of 0 is depicted as a dotted line, indicating
equal measurement and input. Negative values indicate underestimation, while positive values
indicate overestimation.
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2.4. GroEL-Proteotyping in Action II: Reanalyzing the Raw Data of Human Gut Microbiomes

To test the applicability of GroEL-proteotyping for characterizing complex bacterial
communities, we reanalyzed a gut metaproteomic dataset previously published by García-
Durán et al. [37] pertaining to six healthy individuals. We focused on the human gut
microbiome because it harbors a diverse bacterial community of up to 1150 species [38].
The original study used a protein database based on the human gut microbial gene catalog
(9,878,647 sequences) [39] and human proteins from UniProt (74,451 sequences) to detect
an average of 11,712 peptides per sample, 56% of which were assigned at the family level.
García-Durán et al. identified 33 different bacterial families, of which 11 showed a relative
family abundance of at least 1% (Supplementary Table S3 of García-Durán et al. [37]).

In our reanalysis, we used our GroEL database to detect peptides and assign them to
GroEL protein groups. We filtered GroEL protein groups by the Top Rank Count with a
threshold ≥ 5 and evaluated the taxonomy at the family level to achieve high specificity.
Our reanalysis closely mirrored the identification of abundant families reported by García-
Durán et al. (Figure 4) [37]. We detected all 11 families with a relative family abundance of
at least 1% (in the original publication). Among the 22 families exhibiting a relative family
abundance below 1%, our analysis successfully identified three families: Streptococcaceae,
Enterobacteriaceae, and Coprobacillaceae (identified as Erysipelotrichaceae by [37]) (Table S1).
We did not detect the remaining 19 families, identified with a relative abundance below
1% in the original publication. We observed only minor differences in the abundance
of highly abundant families (at least 1% in the original publication), depending on the
quantification parameter used (peptide count, peptide spectrum matches (PSMs), or sum
precursor intensities). However, for a few families, we noted a substantial discrepancy
between our quantification based on GroEL and the quantification based on the human gut
microbial gene catalog applied in the original publication. Specifically, GroEL-proteotyping
led to an overestimation of Lachnospiraceae and Clostridiaceae and an underestimation of
Bacteriodaceae, Eubacteriaceae, and Prevotellaceae compared to the original analysis (Figure 4).
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at the family level were excluded. In the original analysis, the relative abundance of a family
was determined by the number of peptide spectrum matches (PSMs) or unique peptides assigned
to that family as a proportion of the total number of PSMs or unique peptides assigned at the family
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level, respectively. In our analysis, the relative abundance of a family was calculated based on the sum
of the precursor intensities or the number of non-redundant GroEL peptides assigned to that family,
relative to the total sum of the precursor intensities or the number of all filtered GroEL peptides.
Families with an abundance below 1% in the original analysis were merged and represented as
‘other families’.

In the second case study, we demonstrate that GroEL-proteotyping can be applied
to real and complex samples, as it yields results comparable to traditional metaproteomic
approaches in detecting highly abundant bacteria. However, we also identify certain
limitations associated with our method. Specifically, there are challenges in accurately
quantifying and reliably detecting low-abundance bacterial families.

3. Discussion

Our findings show that compositions of bacterial communities can be analyzed by
using GroEL as a taxonomic marker protein and a sample-independent database. This
aspect holds substantial advantages, particularly in situations where rapid or continuous
monitoring of community compositions is required. In our work, highly abundant families
were reliably identified in all tested samples. We propose a flexible workflow (Figure 5)
that can be adapted to a variety of sample preparations, nLC-MS/MS set-ups, peptide
search engines, and quantification strategies. This workflow facilitates analysis and can be
automatized, e.g., as a Galaxy workflow. It provides semiquantitative identifications with
both sample-independent or sample-specific databases. While the sample-independent
GroEL database gave satisfactory results on the family level, a sample-specific GroEL
database can improve identifications, as shown with our defined bicultures. We propose
introducing the general concept of ‘targeted proteotyping’ as a distinct subcategory of
proteotyping that can be applied to different taxonomic marker proteins. Adopting the
term ‘GroEL-proteptyping’ would then differentiate this particular method from other
(targeted) proteotyping approaches.

The analysis of our database shows that most tryptic GroEL peptides are highly
taxon-specific, similar to the nucleotide sequence of the groEL gene that has already been
established as a barcode for bacteria [12]. Likewise, our workflow identified bacteria at
the genus level in low-complexity samples, such as bicultures composed of T. aromatica
K172 and P. putida KT2440. In more complex samples, the identification was reliable and
robust at the family level. The classical metaproteomic approach or 16S rRNA gene ampli-
con sequencing allow for characterizing the same sample down to the species level [20].
However, this enhanced resolution is achieved at the expense of necessitating a sample-
specific metagenomic database or introducing primer biases. In contrast, phylopeptidomics,
a peptide-centric approach, achieves species-level characterization of the same sample
but uses a large, sample-independent NCBInr database, resulting in high computation
demands [26]. Previous analyses based on GroEL or other taxonomic marker proteins
without additional filtering procedures could differentiate the mock communities only
at kingdom level [35]. This demonstrates the importance of effective peptide filtering
and protein/taxonomy inference. Here, we achieved a higher taxonomic resolution by
employing a filtering strategy for GroEL protein groups based on the number of peptides
counted for top-scored proteins, which we refer to as ‘Top Rank Count’ (≥5). While this
approach is not entirely novel, as similar filtering techniques have been implemented
by Proteome Discoverer (Thermo Scientific, Waltham, MA, USA) and MassSieve [40], its
integration into our GroEL-proteotyping workflow enabled us to attain superior taxonomic
resolution compared to previous GroEL-based approaches. Although GroEL-proteotyping
currently has a lower taxonomic resolution and provides limited information beyond taxo-
nomic composition, it stands out for its advantages in terms of speed and cost-efficiency
compared to metaproteomics and phylopeptidomics. These benefits arise from a smaller
sample-independent database and reduced sample complexity, allowing shorter instru-
ment run times. GroEL-proteotyping achieves a much lower sensitivity and taxonomic
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resolution than 16S rRNA gene amplicon sequencing, but prospectively allows the quantifi-
cation of isotope incorporation rates into peptides and taxa [41]. The detailed investigation
of isotope incorporation into GroEL is beyond the scope of this publication but part of
ongoing research.
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The workflow is adaptable to various sample preparations, nano-liquid chromatography–tandem
mass spectrometry (nLC-MS/MS) configurations, peptide search engines, and quantification strate-
gies. While pre-separation of GroEL proteins by sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE) can enhance the detection limit, it is not compulsory. The lower part explains
the Top Rank Count approach used to filter hits. See the text for further explanations.
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Taxa quantification was more robust based on the sum of the precursor intensities
compared to the peptide count and a good semiquantitative estimate for the actual protein
input in the complex synthetic communities. In our pure cultures and synthetic bicultures,
we consistently observed a higher signal for GroEL peptides of Thauera compared to those
of Pseudomonas, indicating that the relative GroEL expression differs between microbes,
growth phases, and environmental conditions [42–44]. Thus, metaproteomics or phylopep-
tidomics should be preferred for quantifying biomass contributions precisely [20,26].

Our data indicate that the detection of low-abundant taxa strongly depends on the
sample complexity and protein distribution across taxa. In a complex synthetic community
with an uneven protein distribution, we only reliably detected bacterial families with a
relative protein mass of more than 2.8%. However, pre-separation of GroEL by SDS-PAGE
increased the identification of GroEL peptides 1.8-fold, resulting in a relative detection
limit of 1% in low-complex bicultures. Thus, we hypothesize that using a separable marker
protein allows for reducing sample complexity without losing taxonomic information,
consequently enhancing the detection of low-abundant taxa. Larger protein input, pooling
of gel bands, and longer LC gradients during mass spectrometry may further improve
the detection of low-abundant taxa. A fast and sensitive screening of taxa present in a
sample based on marker proteins could also aid in creating sample-specific databases for
subsequent functional analysis of the whole metaproteomic data as shown before [34].

In our approach, the detection of organisms depends on the presence of its GroEL
sequence in the database. For example, Roseobacteraceae was only detected in complex
synthetic communities after adding the GroEL sequence of Roseobacter sp. AK199 to the
database, demonstrating that incomplete databases bias the identification and quantifica-
tion of taxa. Thus, applying GroEL-proteotyping to environmental samples containing
many non-sequenced organisms is still challenging [45]. However, we successfully applied
GroEL-proteotyping to human gut proteome data. Furthermore, we are confident that the
rapid growth of sequence databases will massively increase database coverage. In addition,
universal primers can amplify a 549–567 bp region of the groEL gene, allowing a targeted,
fast, and sample-specific extension of the database [46].

Our study introduces targeted proteotyping as a concept for proteotyping microbial
communities using taxonomic marker proteins. At present, our targeted proteotyping
approach is limited to bacteria because GroEL is highly abundant in bacteria [35,47–51]
(except very few intracellular Mycoplasma and Ureaplasma strains [52]), while it is only
found in some archaea that most likely acquired it through horizontal gene transfer [53].
Consequently, the current scope of our approach does not encompass the detection of
eukaryotes and archaea. To expand the applicability of our method to also detect eukaryotes
and archaea, the incorporation of additional putative marker proteins such as ribosomal
proteins, chaperonin TCP-1, or thermosome proteins should be considered.

In summary, we introduce GroEL-proteotyping as a rapid and cost-effective method
for protein-based profiling of bacterial communities at the family level. In comparison
to classical protein-based approaches, GroEL-proteotyping bypasses the need for sample-
specific databases, saving time and reducing costs associated with database generation
while achieving higher taxonomic resolution than previous targeted proteotyping ap-
proaches [34,35]. Although the implementation of our method requires access to a protein
mass spectrometer, the actual analysis process, with a 60 min LC gradient, is fast, which
enables the characterization of up to 20 complex samples per day, making our approach
highly efficient in particular for high-throughput analyses. Furthermore, our automatable
bioinformatics workflow enables the taxonomic profiling of bacterial communities within
48 h. This can be particularly advantageous for monitoring defined or highly enriched
mixed communities over time. Moreover, as the field progresses very fast, the applicability
of GroEL-proteotyping will expand with increasing GroEL protein sequence databases, the
development of automated workflows, the combination with stable-isotope probing, and
the optimization of mass-spectrometric techniques such as ion mobility devices [54].
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4. Materials and Methods
4.1. Cultivation, Harvesting, and Protein Extraction

All cultivations were done in 100 mL cotton-plugged Erlenmeyer flasks with 50 mL
of nitrate-free DSMZ 586 medium at 30 ◦C in the dark on a rotary shaker under aerobic
conditions. Thauera aromatica K172 and Pseudomonas putida KT2440 were separately grown
and harvested during the early stationary phase by centrifuging at 16,000× g for 10 min.
Cell pellets were washed with 50 mM ammonium bicarbonate (AMBIC) buffer, pH 7.9.
For the co-cultivation of P. putida and T. aromatica, we first inoculated the medium with
approximately 106 cells mL−1 of T. aromatica. After 15 h of incubation, we injected approx-
imately 105 cells mL−1 of P. putida. Samples were taken directly before adding P. putida
and after 0; 18; 25; 39; and 48 h incubation time. Cells were harvested from 1 mL samples
by centrifugation at 16,000× g for 10 min, and the pellet was washed with 50 mM AMBIC
buffer. Cell pellets were stored at −80 ◦C until further analysis. For protein extraction,
cell pellets were resuspended in 50 mM AMBIC buffer and lysed by three freeze and thaw
cycles, utilizing liquid nitrogen and a thermal shaker operating at 40 ◦C. Additionally, a
30 s treatment in a sonication bath was applied to enhance lysis efficiency. Cell debris
and insoluble proteins were removed by centrifuging at 16,000× g for 10 min. Protein
concentrations were determined with the enhanced protocol of the bicinchoninic acid (BCA)
assay kit (Pierce, Thermo Scientific, Waltham, MA, USA). For synthetic bicultures, crude
extracts of T. aromatica and P. putida were mixed in varying protein ratios, resulting in total
protein content of 5 µg in 30 µL AMBIC buffer.

4.2. Sample Preparation for Protein Mass Spectrometry

Crude extract samples containing 5 µg protein in 30 µL AMBIC buffer were first
amended with 40 ng bovine serum albumin (BSA) as a quality control measure and prepared
for shotgun protein mass spectrometry as previously described [55]. In brief, samples were
sequentially treated with a final concentration of 62.5 mM dithiothreitol and 128 mM
2-iodoacetamide to reduce and alkylate cysteine residues. Subsequently, proteins were
digested overnight with 0.63 µg trypsin (Promega, Madison, WI, USA). Tryptic digestion
was stopped by adding formic acid to a final concentration of 1.8% (v/v). Undigested and
precipitated proteins were removed by centrifugation at 16,000× g for 10 min, and samples
were dried by vacuum centrifugation. Subsequently, the peptides were resuspended in
0.1% (v/v) formic acid and desalted using Pierce C-18 tips (Thermo Scientific, Waltham, MA,
USA). The peptides were again dried by vacuum centrifugation before being reconstituted
in 50 µL of 0.1% (v/v) formic acid for nLC-MS/MS analysis.

In separate experiments, we decreased the heterogeneity of the crude extracts before
nLC-MS/MS analysis using sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) [56]. For SDS-PAGE, the crude extract containing 5 µg protein in 30 µL AMBIC
buffer was mixed with 10 µL SDS reducing buffer and incubated at 95 ◦C for 10 min to
fully denature the proteins. After cooling to room temperature, samples were subjected
to SDS-PAGE at 110 V for 60–90 min and Coomassie stained [57]. Protein bands with
a molecular weight of approximately 60 kDa, corresponding to the size of GroEL, were
excised and prepared for protein mass spectrometry as previously described [21]. In brief,
gel slices were destained with acetonitrile. Then, proteins captured within the gel slice
were reduced and alkylated by sequential incubation in 50 µL of 10 mM dithiothreitol and
50 µL of 100 mM 2-iodoacetamide for 60 min each. Subsequently, 40 ng of reduced and
alkylated BSA was added as a quality control measure. Proteins were then digested with
0.1 µg trypsin (Promega, Madison, WI, USA) at 37 ◦C overnight. After digestion, peptides
were extracted from gel pieces with 50% (v/v) acetonitrile and 5% (v/v) formic acid and
dried by vacuum centrifugation. Next, peptides were resuspended in 20 µL of 0.1% (v/v)
formic acid, desalted using C18 Zip tips (Pierce, Thermo Scientific), and repeatedly dried by
vacuum centrifugation. Finally, the desalted peptides were resuspended in 50 µL of 0.1%
(v/v) formic acid for nLC-MS/MS analysis.
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4.3. Mass Spectrometry

Desalted peptides were separated on an UltiMate 3000 RSLCnano high-performance
nano-UPLC system (Thermo Scientific, Waltham, MA, USA) coupled to an Orbitrap Fusion
Tribrid mass spectrometer (Thermo Scientific, Waltham, MA, USA) via a TriVersa NanoMate
nano-electrospray ionization (nano-ESI) ion source (Advion, Ithaca, NY, USA). For in-
solution digested samples, 3 µL of the peptide solution was injected, whereas 5 µL was
injected for in-gel digested samples. Peptides were first loaded for 3 min onto the Acclaim
PepMap 100 C18 trap column (75 µm × 2 cm, 3 µm material, Thermo Scientific, Waltham,
MA, USA) with 5 µL min−1 of 3.2% (v/v) acetonitrile in water at 0.1% formic acid. Then, the
trap column was switched into line with the Acclaim PepMap 100 C18 analytical column
(75 µm × 25 cm, 3 µm material, Thermo Scientific, Waltham, MA, USA) heated up to
35 ◦C to separate peptides at a flow rate of 0.3 µL min−1 using a gradient of 145 min (for
in-solution digested samples) or 60 min (for in-gel digested samples) from 3.2% to 72% (v/v)
acetonitrile in water at 0.1% (v/v) formic acid. The ion source operated in positive mode
at a spray voltage of 2.4 kV and a source temperature of 275 ◦C. The mass spectrometer
was run in data-dependent mode with a cycle time of 3 s. Internal mass calibration was
performed using a lock mass of 445.12003 m/z. Precursor ions were scanned in the Orbitrap
mass analyzer over a range of 350–2000 m/z with a resolution of 120,000, an automatic gain
control (AGC) target of 4 × 105 ions, and a maximum injection time of 50 ms. Precursor
ions with a minimum intensity of 5 × 104 and charge state of +2 and +3 (for in-solution
digested samples) or +2 to +7 (for in-gel digested samples) were selected and isolated by
the quadrupole in a window of 1.6 m/z accumulating to an AGC target of 5 × 104 ions
with a maximum injection time of 54 ms (for in-solution digested samples) and 120 ms (for
in-gel digested samples). The isolated precursor ions were fragmented using higher energy
collisional dissociation (HCD) at 30% relative collision energy. Fragment ions were scanned
with the Orbitrap mass analyzer at a resolution of 30,000 (for in-solution digested samples)
or 60,000 (for in-gel digested samples), respectively. Precursor ions with the same mass
(±10 ppm) were excluded for further precursor selection for 30 s.

4.4. Databases for Mass-Spectrometric Analysis

We assembled a comprehensive dataset of bacterial GroEL protein sequences by down-
loading all available amino acid sequences from the National Center for Biotechnology
Information (NCBI) in GenBank format on 7 September 2021 [58]. The dataset was used
to generate a file in fasta format as input for peptide identification search engines (see
below) and to generate a second file with tab-separated values (tsv) for protein and tax-
onomy inferences. The tsv-database included, in separated columns, accession number,
amino acid sequence, expected tryptic peptides, and taxonomic classification at various
levels (kingdom, phylum, class, order, family, and genus). Tryptic peptides were cal-
culated with pyOpenMS [59], accepting two missed cleavages and a peptide length of
6–144 amino acids. The taxonomic classification was updated by cross-referencing the “List
of Prokaryotic names with Standing in Nomenclature” (LPSN) on 18 October 2022 [60]. We
also included GroEL sequences from the separately published genomes of Roseobacter sp.
AK199 and Chromobacterium violaceum CV026 [20]. The common Repository of Adventitious
Proteins (cRAP, https://www.thegpm.org/crap/, date: 4 March 2019) was appended to
the database to identify common contaminants. Additionally, we downloaded the whole
proteome databases of T. aromatica K172 (CP028339.1) and P. putida KT2440 (NC_002947.4)
from NCBI. The detectability of GroEL peptides by tandem mass spectrometry was assessed
using DeepMSPeptide [36].

4.5. Analysis of Mass-Spectrometric Raw Data Files

Thermo raw files were first converted into mzML format using msConvert (Prote-
oWizard) [61]. Next, we analyzed the mzML files using a customized MetaProSIP work-
flow [62] on the Galaxy platform [63]. Briefly, peptides were identified using MS-GF+ [64]
and MetaProSIP [41]. We accepted two missed trypsin cleavages, peptide lengths of
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6–40 amino acids, and precursor m/z deviations of 5 ppm. Oxidation of methionine and
carbamidomethylation of cysteine were set as dynamic and static modifications, respec-
tively. The false discovery rate of identified peptide sequences was kept below 0.01, based
on the SpecEValue calculated by MS-GF+. The peptide-centric output of MetaProSIP was
used as input for a custom GroEL-proteotyping Python script. The isobaric amino acids
leucine (L) and isoleucine (I) were treated as indistinguishable. Peptides listed in the cRAP
database were excluded from the analysis with the customized GroEL-proteotyping Python
script. The Python script assigns detected peptides to each possible GroEL protein in the
tsv-database based on matching sequences. GroEL proteins with the same set of detected
peptides are merged into protein groups and sorted by the number of detected peptides in
descending order. For each GroEL protein group, only the detected peptides not present in
another GroEL protein group containing more peptides are counted, resulting in a Top Rank
Count. GroEL protein groups are then filtered by the Top Rank Count with a threshold
(≥5), and the taxonomy of the remaining GroEL protein groups is read from the tsv-file. For
each taxonomic level, the most frequent taxonomic description and its frequency within the
GroEL protein group are calculated. The most frequent taxonomic description is used to
merge GroEL protein groups into taxonomic groups at the level of interest, which are then
quantified by the sum of the MS1 precursor ion intensities (INT) calculated by MetaProSIP
or the number of non-redundant peptides within the taxonomic group. In the current
version of the Python script (version 1.0.0), non-redundant peptides are only counted
once for the same taxonomic group and multiple times for different taxonomic groups.
Furthermore, the precursor intensity of peptides assigned to multiple taxonomic groups
is distributed proportionately to the total number of peptides assigned to each group. To
evaluate our workflow, we used published metaproteome data from synthetic microbial
communities (PRIDE repository PXD006118). Specifically, we used the raw data acquired
with an LC gradient of 260 min (run 4 and 5), as this provided sufficient data for community
analysis [20]. The identified peptides of technical replicates were pooled before running
our GroEL-proteotyping Python script. Furthermore, we applied our analysis workflow to
a metaproteome dataset of human gut microbiota (PRIDE repository PXD020786). Identi-
fied peptides of biological replicates were pooled before running the GroEL-proteotyping
Python script to allow comparison with the original study (Supplementary Table S3 of
García-Durán et al. [37]).
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