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Abstract: Insects harbor diverse assemblages of bacterial and fungal symbionts, which play crucial
roles in host life history. Insects and their various symbionts represent a good model for studying
host–microbe interactions. Phylosymbiosis is used to describe an eco-evolutionary pattern, providing
a new cross-system trend in the research of host-associated microbiota. The phylosymbiosis pattern
is characterized by a significant positive correlation between the host phylogeny and microbial com-
munity dissimilarities. Although host–symbiont interactions have been demonstrated in many insect
groups, our knowledge of the prevalence and mechanisms of phylosymbiosis in insects is still limited.
Here, we provide an order-by-order summary of the phylosymbiosis patterns in insects, including
Blattodea, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera. Then, we highlight the
potential contributions of stochastic effects, evolutionary processes, and ecological filtering in shaping
phylosymbiotic microbiota. Phylosymbiosis in insects can arise from a combination of stochastic and
deterministic mechanisms, such as the dispersal limitations of microbes, codiversification between
symbionts and hosts, and the filtering of phylogenetically conserved host traits (incl., host immune
system, diet, and physiological characteristics).

Keywords: microbial community structure; phylosymbiosis pattern; stochastic effect; codiversification;
ecological filtering

1. Introduction of Phylosymbiosis

Host–microbe symbioses play a crucial role in the ecological and evolutionary history
of animals [1,2]. Recent advances in the field of host–microbe interactions have demon-
strated the influence of host phylogeny and ecological factors on microbial community
assembly [3–5]. Phylosymbiosis occurs when host-associated microbiota relationships are
positively associated with host phylogenetic relatedness.

Phylosymbiosis is defined as “microbial community relationship parallels the host
phylogeny”, in which “phylo” refers to host lineage and “symbiosis” refers to the co-
existence of hosts and microbes (Figure 1) [6,7]. In other words, microbial community
composition dissimilarities are positively associated with the accumulation of host genetic
variation. Phylosymbiosis studies focus on the entire microbiota rather than individuals
within the microbiota. The persistent and intimate association between microbes and their
host is not the necessary assumption of this eco-evolutionary pattern [8].

Pioneering studies on phylosymbiosis were performed on the parasitoid wasp genus
Nasonia under rearing conditions [9], in which species-specific phylosymbiotic gut bacterial
communities caused lethality in interspecific hybrids [7]. Afterward, Brooks et al. [10]
revealed phylosymbiosis in other animals, including deer mice (Peromyscus), fruit flies
(Drosophila), and mosquitoes (i.e., Anopheles, Aedes, and Culex). To date, interspecific
phylosymbiotic structures of microbiota have been widely reported in insects, birds, fishes,
and mammals [5,10–18]. However, phylosymbiosis remains poorly understood at the
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intraspecific level. Intraspecific phylosymbiosis has only been substantiated in the microbial
communities from the American pika Ochotona princeps [19] and the aphid Mollitrichosiphum
tenuicorpus [20]. The host taxa in insect phylosymbiosis studies to date cover orders,
families, genera, and species, and the evolutionary history of hosts spans approximately
0.3–300 million years [6,21]. The strength of the phylosymbiotic signals between the host
and microbiota varies across host taxa [8], and the phylosymbiotic relationships can be
weakened with an increasing host evolutionary history [5,21].
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Figure 1. Phylosymbiotic versus stochastic microbial community assemblages. Branches in the same
color indicate the host and associated microbial community.

Phylosymbiosis analyses typically employ 16S rRNA gene amplicon sequencing data
as the input data of the microbial community. Multiple beta diversity distance metrics
are usually required for the robustness of the results [8]. Furthermore, a reliable host
phylogenetic tree is essential for the determination of phylosymbiosis patterns. The key to
measuring phylosymbiosis is to assess the significant correlation between host phylogeny
and microbiota beta diversity. Principal methods for quantifying phylosymbiosis are as
follows: (1) topological congruency tests [10] utilizing the Robinson–Foulds metric [22] or
matching cluster metric [23], or (2) a matrix correlation-based approach, e.g., the Mantel
test [24] and Procrustean superimposition [25]. More details on examining phylosymbiosis
have been reviewed by Lim and Bordenstein [6].

2. Phylosymbiosis in Insects

Insects constitute the most diverse group of animals and play crucial roles in terrestrial
ecosystems [26]. Insects harbor a great variety of symbionts, which contribute significantly
to the survival, growth, and fecundity of the host [2,27,28]. Additionally, symbionts could
facilitate host adaptation to new ecological niches and potentially drive speciation in
insects [1,29]. Insect microbial community structures have been found to be correlated with
environmental habitat, diet, sex, life stage, and host insect identity and phylogeny [30–32].
Some studies highlighted the strongest impact of insect species on the associated microbial
communities [30,33]. Currently, phylosymbiosis research in insects remains in its infancy,
and phylosymbiosis has been confirmed in the orders Blattodea, Coleoptera, Diptera,
Isoptera, Hemiptera, and Hymenoptera (Table 1).
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Table 1. Summary of phylosymbiosis patterns in insects.

Insects Examined No. of Species
Sampled

Evolutionary Time
(Mya) Diet Core Microbe Obligate Symbiont References

Blattodea 19 >300 Omnivory
Bacteroidetes,

Firmicutes, and
Proteobacteria

— [21]

Coleoptera Dendroctonus frontalis
species complex 7 12 Phloem cell Ceratocystiopsis — [34,35]

Diptera Anopheles, Aedes, and Culex 8 100 Blood Proteobacteria — [10,36]
Drosophila 6 63 Decaying fruit Proteobacteria — [10]

Hemiptera Greenideinae 53 83 Phloem sap — Buchnera aphidicola [37,38]
Mollitrichosiphum 8 18–19 Phloem sap — Buchnera aphidicola [33]

Mollitrichosiphum tenuicorpus 1 (26 colonies) 11 Phloem sap — Buchnera aphidicola [20]
Psylloidea 102 350 Phloem sap — Carsonella ruddii [39,40]

Hymenoptera Cephalotes 13 46 Pollen and
honeydew — Cephaloticoccus [41]

Ceratosolen 6 60 Fig Wolbachia — [42,43]

Formica 14 30 Honeydew and
nectar

Wolbachia,
Lactobacillus,

Liliensternia, and
Spiroplasma

[44,45]

Nasonia 4 <1 Fly puparium
Proteobacteria,

Firmicutes,
and Actinobacteria

— [10]

Lepidoptera Heliconiini 23 20–30 Pollen, nectar, and
fruit

Acinetobacter,
Apibacter, Asaia,

Commensalibacter,
Enterobacter,
Enterococcus,
Lactococcus,

Spiroplasma, and
Pseudomonas

— [46,47]
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2.1. Blattodea

Most insects in the order Blattodea, such as cockroaches and termites, have been
characterized by hundreds of species of microbes [48–50]. Although omnivorous cock-
roaches harbor generally similar gut bacterial communities, this ancient lineage and its gut
microbiota exhibited a weak but significant phylosymbiotic relationship [21]. In this study,
host phylogeny exerted a more important impact on the gut microbiota over a shorter
evolutionary history. In termites, several studies have highlighted the variation in intestinal
bacteria according to the host phylogeny [51–53]. However, the gut bacterial community
structures of wood-feeding cockroaches and termites were driven by certain major events
in host evolution, such as dietary diversification rather than host phylogeny [54].

2.2. Coleoptera

Coleoptera constitutes the most species-rich insect order and depends on various gut
bacterial and fungal symbionts to enable plant cell wall digestion [55], plant secondary
metabolite detoxification [56], and nutrient provision [57,58]. Research based on beetle
species representing five families (i.e., Carabidae, Staphylinidae, Curculionidae, Chrysomel-
idae, and Scarabaeidae) found that the primary factor shaping the bacterial community
is the trophic guild to which the host belongs [59]. Within one specific family, such as
dung beetles (Scarabaeinae), host phylogeny and gut morphology had a stronger impact
on the gut bacterial community composition than diet [60]. Nevertheless, phylosymbiosis
analyses of bacterial communities in coleopterans have yet to be conducted. Regarding
symbiotic fungi, phylosymbiotic mycetangial communities were reported in the Dendroc-
tonus frontalis species complex (Curculionidae: Scolytinae), but the mechanisms establishing
fungal phylosymbiosis were unclear [34].

2.3. Diptera

Most dipterans feed on a wide variety of materials, and their symbioses with bacteria
have been extensively documented in model systems, including mosquitoes and fruit
flies [61–63]. The phylosymbiosis pattern has been confirmed in both wild and lab-reared
mosquito species [10,36]. Drosophila fruit flies exhibit mixed evidence for phylosymbio-
sis [10,64,65]. Under rearing conditions, host phylogenetic relatedness was positively
associated with bacterial community dissimilarities in Drosophila flies [10]. However, other
studies did not observe phylosymbiosis patterns in wild or laboratory-reared Drosophila
species [64–66]. The variation in gut bacterial communities among Drosophila species could
be related to responses to different selective pressures rather than host phylogeny, such as
geography and diet [67,68]. Within the leaf miner flies of Liriomyza (Diptera: Agromiyzi-
dae), the bacterial communities did not exhibit apparent phylosymbiotic signals but were
primarily structured by host species identity [69].

2.4. Hemiptera

Insects feeding on phloem or xylem sap engage in intimate associations with obligate
symbionts, which provide nutritional supplements for the host [29,70]. In addition to obli-
gate symbionts, hemipteran insects possess a variety of facultative symbionts with ecologi-
cal benefits [71]. These multipartner symbioses have been documented in many hemipteran
taxa, including aphids [72,73], psyllids [74,75], whiteflies [76,77], and cicadas [78,79]. Host
relatedness was proposed to be an important factor influencing the structures of bacterial
communities within Aphidoidea [80]. Phylosymbiosis was observed in the monoecious
aphids of Greenideinae at different taxonomic scales, including at subfamily, genus, and
intraspecific levels [20,33,37]. However, the dissimilarities in symbiont communities did
not correlate significantly with host genetic variation in the heteroecious aphid lineages
Eriosomatinae [81] and Hormaphidinae [82]. Another study concerning phylosymbiosis in
Hemiptera focused on the psyllid bacterial community, which demonstrated the greater
effect of host phylogeny than host plant and geographic distribution [39].
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2.5. Hymenoptera

Symbioses with bacteria and fungi have been documented in many herbivorous hy-
menopteran species [83–85]. Some gut bacterial symbionts of social bees, such as Gilliamella
apicola, play key roles in pollen digestion, toxin metabolism, and pathogen protection [86,87].
In fungus-growing ants, cultivated fungi serve as the sole nutritional source for the larvae
of attine ants [88]. Phylosymbiosis has been revealed in several Hymenoptera groups, i.e.,
fig wasps (Ceratosolen), parasitoid wasps (Nasonia), turtle ants (Cephalotes), and Formica
ants [10,41,42,44]. Under controlled rearing conditions, the bacterial communities of para-
sitoid wasps of Nasonia mirror the host phylogeny at different developmental stages [9].
Within another holometabolous hymenopteran group, the social turtle ants (Cephalotes),
however, only adults exhibit phylosymbiotic gut bacterial communities; the microbiota of
larvae are dominated by environmental bacteria [41].

2.6. Lepidoptera

The composition, diversity, and function of gut microbiota in Lepidoptera has been
reviewed [89]. The high variability in the composition and diversity of lepidopteran gut
microbiota may arise from the environment, host diet, host developmental stage, or host
gut physiology [90]. For example, caterpillar larvae acquire a low number of intestinal
bacteria and fungi from host plants (e.g., armyworm Spodoptera frugiperda) [91] or soil (e.g.,
cabbage moth Mamestra brassicae) [92], while butterflies usually harbor a large number of
microbes in their midguts, which are derived from dietary sources [93,94]. Lepidopteran
phylosymbiosis has been confirmed in heliconiine butterflies [46]. Hammer et al. [46]
suggested that multiple filtering of phylogenetically conserved host traits, including pollen
feeding, might have given rise to their phylosymbiotic microbiota.

3. Mechanisms Underlying Phylosymbiosis

In most animal systems, microbial transmission and host filtering are major factors
influencing microbial community assembly [8,95]. The maintenance of microbes within
insect populations usually relies on vertical and horizontal transmission. Strict vertical
transmission can promote host–microbe codiversification and ensure the high fidelity of
close host–microbe associations during a long evolutionary history. Horizontal transfer
of microbes can occur between different individuals of the same or different host species.
Horizontal transmissions within conspecifics improve the probability of convergence in
microbiota, which may facilitate the appearance of phylosymbiosis [95,96]. However,
horizontal transmissions between different host species may weaken the stability of long-
lasting host–microbe associations and obscure the phylosymbiotic signatures of microbial
communities. For example, significant phylogenetic correlations were not found within the
bacterial communities of heteroecious aphids, in which frequent horizontal transmissions of
secondary symbionts might have occurred [81,82]. Two typical patterns constitute another
principal factor that shapes microbial communities, namely, microorganism filtration within
the host. One is the species assortment assembly process, which emphasizes interspecific
competition between microorganisms [97]. That is, microbial communities structured
according to the species assortment model usually consist of microorganisms that occupy
non-overlapping niches. The other is the habitat-filtering model, in which members of
the microbiota with similar nutritional requirements tend to arise simultaneously [98,99].
In human gut microbiota with a phylosymbiotic signature, habitat filtering plays a more
important role than species assortment [100].

Here, we summarize the contributions of stochastic effects and deterministic forces
(i.e., evolutionary and/or ecological factors) on governing the phylosymbiosis patterns in
insects (Figure 2). Stochastic and deterministic effects are not mutually exclusive and can
contribute to the phylosymbiotic microbiota in combination. For instance, phylosymbiosis
in the ants of Cephalotes was attributed to a mix of environmental filtering and shared
evolutionary history between ants and symbionts [41].
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3.1. Stochastic Effects

Phylosymbiotic microbiota can be a consequence of stochastic effects, such as spatial
limitations on microbial dispersal and random fluctuations in the abundance of microbes
(Figure 2A) [101]. Dispersal is referred to as the movement and successful colonization of
microbes across space [102]. Moeller et al. [103] revealed that the dispersal limitations of
bacteria could promote the compositional divergence of gut microbial communities among
mammalian species. In addition to spatial limitations, the composition of the microbial
community can be disturbed by the rate and order of microbes that are added to the
microbiota during dispersal processes [104]. The microbial dispersal associated with insects
generally occurs in the extracellular transmission of microbes, including environmental
acquisition, social behavior acquisition, coprophagy, smearing of the egg surface, and
capsule or jelly-like secretion transmission [105].

Ecological drift leads to random variation in the relative abundance of species within
the microbial community over time [106]. Microbes in low abundances are more sus-
ceptible to drift with subsequent extinction. Ecological drift can generate differences in
microbial community composition when deterministic processes are weak [104]. In insects,
microbiota profiling varies greatly across different groups, with extremes represented by
some sap-feeding insects having few gut microbes but abundant intracellular symbionts
and by detritivores and wood feeders harboring large and complex gut microbiota [50].
Currently, the effect of ecological drift as the sole factor structuring the microbiota has
not been confirmed in any animal system. The phylosymbiotic microbial communities
of insects are typically composed of diverse microbes, some of which are abundant and
resident. Therefore, the phylosymbiosis pattern within insects is unlikely to be merely
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drift-driven. Ecological drift may play a part in the interactions with other community
assembly processes in structuring insect microbiota.

3.2. Evolutionary Processes

Phylosymbiosis can arise from long-term and stable associations between microbes
and hosts, such as coevolution and cospeciation. Here, we use “coevolution” in the narrow
sense, which emphasizes the reciprocity and simultaneity of evolutionary changes in in-
teracting species [107]. Cospeciation can result from coevolution and occurs when hosts
and microbes speciate simultaneously [108]. Demonstrating the coevolution of animals
and symbionts under controlled conditions with laboratory models is difficult because it
usually requires long periods of time. However, by utilizing phylogenetic and genomic
analyses, we can deduce insect–symbiont coevolution [109,110]. Insects feeding on phloem
sap, such as species of Hemiptera, possess symbionts that can provide nutrients to com-
pensate for deficiencies in their food source [111,112]. Many hemipteran taxa and their
bacterial endosymbionts rely on the biosynthetic and metabolic complementarity of es-
sential nutrition to maintain intimate associations [29,113–115]. For instance, the primary
endosymbiont Buchnera aphidicola has highly coadapted to and evolved with aphids for mil-
lions of years [116–118]. Likewise, such coevolutionary examples have been identified from
extracellular gut symbionts that enable nutrient provisioning, e.g., Ishikawaella capsulate in
plataspid stinkbugs [119] and Rosenkranzia clausaccus in acanthosomatid stinkbugs [120].

Codiversification represents another evolutionary process that underlies phylosymbio-
sis (Figure 2B). It occurs when hosts and microbes exhibit congruent phylogenetic trees but
does not necessarily imply an occurrence of coevolution [121]. Codiversification can be a
consequence of unidirectional selection; that is, microbes adapt to the evolutionary changes
imposed by their hosts but not vice versa. In the social corbiculate bees, a strain-level phy-
logenetic association between the core gut bacteria Lactobacillus Firm-5 and the host bees
was observed, which suggested host–microbe codiversification [122]. Other adaptation
processes, such as host-shift speciation [123] and shared geographic isolation [124], can
also contribute to matching phylogenies of microbes and host lineages.

Considering the low probability of the entirety of a microbial community being trans-
mitted from mother to offspring with high fidelity, it seems unlikely that all microbiota
members are involved in the aforementioned evolutionary processes driving phylosym-
biosis. Early-arriving species can affect the ability of late-arriving species to establish
themselves during community assembly, which is referred to as priority effects [125]. The
importance of priority effects in shaping microbial community composition has been re-
viewed [126]. Moreover, multiple studies have revealed that highly connected keystone
or hub microbes can determine the overall community structure via interspecific interac-
tions [127–129]. The evolutionary processes underlying phylosymbiosis represented by co-
evolution rely on vertical transmissions to maintain the stable inheritance of “early-arriving
species”. Heritable symbionts have proven to be universal in herbivorous insects [110,130].
For example, Buchnera is located in specialized bacteriocytes and maintained within aphid
generations via direct maternal transmission [131]. In the green rice leafhopper Nephotettix
cincticeps, the facultative symbiont Rickettsia is vertically transmitted to offspring paternally
via an intrasperm passage as well as maternally via an ovarial passage [132]. Additionally,
some extracellular gut symbionts can be maternally transmitted through host generations,
such as the specific clade of γ-proteobacteria from acanthosomatid stinkbugs, which is ma-
ternally transmitted via egg smearing [133]. For social insects, e.g., Acromyrmex leaf-cutting
ants [134] and the honey bee Apis mellifera [135], social acquisition of beneficial microbes
is critical for specificity and partner fidelity in host–bacterial associations. These initial
colonizing symbionts with vertical transmission may have served as keystones or hubs
and are responsible for the host-species-specific microbial community composition, which
provides the opportunity for phylosymbiosis to occur.
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3.3. Ecological Filtering

Moran and Sloan [121] proposed that phylosymbiosis patterns could emerge from
simple ecological filtering without any long-term coevolutionary mechanisms. In principle,
some host traits can function as filters that exert a selective role on environmental microbes,
and the microbes suitable according to these selective forces can coexist with the host
(Figure 2C). It is possible that hosts maintain host-species-specific microbial communities
via a strong selection of environmental microbes and then yield phylosymbiotic microbiota.
Closely related hosts have similar physiological characteristics, immune systems, or mi-
crobial defense mechanisms [133,136–138], which may bring about the tendency to harbor
similar microbial communities. If the ecological factors that shape microbiota structures
are highly phylogenetically conserved during host evolutionary history, we can observe a
phylosymbiotic relationship between the host and microbiota [8]. Here, we provide several
potential ecological factors shaping the phylosymbiotic microbiota of insects.

3.3.1. Immune System

Numerous studies have highlighted the importance of the host immune system in
regulating microbial community composition [139–142]. Insects rely on physiological barri-
ers and innate immune responses to defend themselves against pathogens [143,144]. The
innate immune system of insects is composed of cellular immune responses by circulating
hemocytes [145] and humoral immune responses. Although the hemocyte categories in-
volved in the cellular immune responses vary among different insect species, hemocyte
functions primarily include phagocytosis, nodulation, and encapsulation [146–148]. The
humoral defenses are modulated by the Toll, immune deficiency (IMD), Jun N-terminal
kinase (JNK), Janus kinase/signal transducers and activators of transcription (JAK/STAT),
and prophenoloxidase (PPO) pathways [144,149]. The expression of genes in these path-
ways subsequently results in antimicrobial peptide (AMP) production, reactive oxygen
species (ROS) generation, and melanization. Insects depend on two pathways to regulate
antimicrobial peptide generation, namely, the Toll pathway, which responds to fungi and
most Gram-positive bacteria, and the IMD pathway, which is induced by Gram-negative
bacteria [150].

An insect’s innate immune system not only defends against pathogens but also plays
an important role in maintaining host–microbe symbiosis [151–153]. Serving as one of
the model systems in Hemiptera, aphids lack several immune-related genes that are sus-
pected to be essential in arthropod immunity [154]. Previous studies have suggested that
the reduced antimicrobial defense in aphid immunity is attributed to the maintenance of
symbionts [155]. To be more specific, the extent of alteration in multiple aphid cellular im-
munity responses is related to the difference in facultative symbiont species [156]. Eusocial
corbiculate bees, including honey bees, bumblebees, and stingless bees, harbor distinctive
gut microbiota that are more similar among closely related bee species [122]. The exotic
strain of the gut symbiont Gilliamella in honey bees induced higher prostaglandin (PG)
production than the native strain, which increased the expression of genes in the IMD
and Toll immune pathways [157]. These immune pathways then modulated dual oxidase
(Duox) production and ROS generation to inhibit the non-native strain of Gilliamella.

3.3.2. Diet

There is increasing evidence that diet plays a pivotal role in shaping the microbiota
structures of animals [16,32,158,159]. Diet has emerged as a key filter of mammalian gut mi-
crobiota [160,161]. The gut microbiota of non-flying mammals was strongly correlated with
diet and host phylogeny [159]. Likewise, the microbial communities in bamboo-feeding
insects were filtered by diet [31]. If diets themselves are phylogenetically non-independent,
they can serve as ecological filters and lead to phylosymbiotic microbiota. Moreover,
complete dietary shifts over long evolutionary periods can disrupt the phylosymbiotic
relationships between hosts and microbial communities [5].
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Host plants are one of the major ecological factors shaping the bacterial communi-
ties of insect herbivores [31,32,162,163]. The gut microbial communities of caterpillars
are dominated by transient and diet-associated bacteria [164], whereas major members
of the adult-stage gut microbiota in butterflies are abundant and consistent [46]. The
phylosymbiotic signature of microbiota within heliconiine butterflies may arise from the
filtering of phylogenetically conserved diet preferences [46]. Within aphids, host–symbiont
codiversificationm as well as filtering by host plants, has been highlighted in structuring
the phylosymbiotic microbiota of Greenideinae species [37].

3.3.3. Physiological Characteristics

Another candidate ecological filter underlying host species-specific microbiota is
the host’s physiological structure, such as the gut [165] and proventriculus [166]. The
biomolecules such as glycans and mucins secreted by the host intestinal wall shape dif-
ferent intestinal environments and are regulators of gut microbial community composi-
tion [167,168]. Other host-specific physical and chemical factors in the gut, including the
biochemical characteristics of the intestinal surface, pH, oxygen levels, and concentrations
of metabolites, are also potential filtering factors of microbes. If these factors themselves are
phylogenetically conserved over evolutionary history, the microbial communities might
exhibit significant correlations with host phylogeny.

The selective filtering of microbes in the gut environment can explain major variations
in phylosymbiotic gut microbial communities in humans [100]. Compared with mammals,
birds (e.g., cranes) have strong gastric acidity, which can serve as a microbial filter to
limit host-associated differentiation in the gut microbiota and subsequently result in weak
phylosymbiotic signatures [14]. In insects, selective effects of the gut environment were
experimentally confirmed in the cockroach gut microbiota [169]. Cockroaches preferentially
select bacteria that are specifically adapted to their intestinal environment. The proven-
tricular filtering mechanism in ants is responsible for the maintenance of ant–bacteria
fidelity [166]. Although the importance of the host’s physiological characteristics in filter-
ing gut microbiota has been emphasized in certain insect groups, its role in shaping insect
phylosymbiosis remains poorly understood.

4. Future Directions for Research on Phylosymbiosis in Insects

While host–symbiont interactions have been documented across many insect groups,
we still have a poor understanding of the prevalence of phylosymbiosis in insects. Phy-
losymbiotic investigations should be performed on a greater variety of insects to sufficiently
disentangle the mechanisms underlying this pattern. In addition to bacterial and fungal
communities, phylosymbiosis studies at the insect–virome level [170,171] will contribute
to developing a comprehensive landscape of host–microbe symbioses. The application
of metagenomic sequencing data to phylosymbiosis detection is recommended due to
its finer-scale taxonomic and functional profiling. Integrated multi-omic analyses of the
microbiome are advantageous in comprehending the mechanisms behind phylosymbio-
sis because they resolve linkages between host functions, microbial diversity, microbial
functions, and environmental variables [172].

To date, most studies have focused on the impact of evolutionary processes on driving
phylosymbiotic microbiota. Quantifying the contribution of ecological filtering factors
in phylosymbiosis will greatly improve our understanding of the mechanisms behind
these patterns. Host-specific biological characteristics and environmental factors should be
identified and evaluated quantitatively in the future. It is more likely that a combination of
multiple mechanisms rather than a single evolutionary or ecological process is involved in
the development of phylosymbiosis; therefore, candidate mechanisms, including stochastic
effects, evolutionary processes, and ecological filtering, need to be tested in a diversity of
symbiosis systems in both evolutionary and ecological contexts.
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