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Abstract: Cutaneous melanoma (CM) is an increasingly significant public health concern. Due to
alarming mortality rates and escalating incidence, it is crucial to understand its etiology and identify
emerging biomarkers for improved diagnosis and treatment strategies. This review aims to provide a
comprehensive overview of the multifactorial etiology of CM, underscore the importance of early
detection, discuss the molecular mechanisms behind melanoma development and progression, and
shed light on the role of the potential biomarkers in diagnosis and treatment. The pathogenesis of
CM involves a complex interplay of genetic predispositions and environmental exposures, ultraviolet
radiation exposure being the predominant environmental risk factor. The emergence of new biomark-
ers, such as novel immunohistochemical markers, gene mutation analysis, microRNA, and exosome
protein expressions, holds promise for improved early detection, and prognostic and personalized
therapeutic strategies.
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1. Introduction

Cutaneous melanoma (CM) is a particularly aggressive form of cancer that originates
from melanocytes, pigment-producing cells derived from the neural crest [1]. Despite
representing a mere 4% of all skin cancers, CM accounts for up to 75% of skin cancer-related
deaths [2]. However, with early detection and proper intervention, over 90% of the cases
could be cured [3].

The pathogenesis of CM is multifactorial, involving both genetic and environmental
factors [4]. Ultraviolet radiation (UVR), either from natural light or artificial sources, is the
most important environmental risk factor for CM. Additionally, individuals with lighter
complexion have the highest risk of developing CM due to lower levels of melanin which
make these individuals more likely to develop sunburns. A higher number of nevi are
also associated with an increased risk. A familial history of CM further increases this risk,
possibly due to shared sun exposure behaviors or hereditary genetic mutations [5].

In this context, patient survival is strongly correlated with an early detection of the
disease. Among various prognostic factors, the depth of invasion remains the most critical
determinant of survival in numerous studies. Intraepidermal (in situ) melanomas can be
cured by excision alone, and thin melanomas have minimal metastatic potential [6]. On the
contrary, thick CMs still have very high mortality rates [7].

Despite its growing incidence, due to the advancements in diagnosis and management,
the prognosis of CM has significantly increased. In this context, due to the ongoing
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challenges in melanoma prevention, diagnosis, and treatment, we performed a literature
review discussing the latest progress in the diagnosis and management of CM, emphasizing
the role of genetic testing, conventional immunohistochemistry, as well as several emerging
biomarkers. These novel biomarkers such as microRNA and exosomes may significantly
improve the prognosis of melanoma due to their potential to be used for non-invasive early
diagnosis and monitoring, but also to become therapeutic targets.

2. Melanoma Pathogenesis

Ultraviolet radiation exposure is a major risk factor for CM due to the UVR capacity to
damage DNA, causing somatic mutations [8]. The exposure can be classified as intermittent
or chronic, the latter being mostly occupational. Both these exposure patterns are associated
with an increased risk of CM, but it appears that the risk is higher for intermittent expo-
sure [8,9]. This may be explained by the fact that intermittently exposed individuals have
lower melanin levels and are more likely to develop sunburns [10]. Nevertheless, there are
cutaneous melanomas, such as acral melanomas, which arise in skin that is not exposed
to UVR. In this context, according to the 2023 WHO Classification of Tumors, cutaneous
melanomas are classified as melanomas arising in sun-exposed skin and melanomas arising
in sun-shielded sites (Table 1) [11].

Table 1. WHO Classification of cutaneous melanomas.

Melanomas arising in sun-exposed skin

Low CSD melanoma: SSM, low CSD nodular melanoma

High CSD melanoma: lentigo malignant melanoma, high CSD nodular
melanoma

Desmoplastic melanoma: most often associated with severely
sun-damaged skin

Melanomas arising in sun-shielded skin or without
known UVR exposure

Spitz melanoma

Acral melanoma

Melanoma arising in congenital nevus

Melanoma arising in blue nevus

CSD—cumulative sun-damage, SSM—superficial spreading melanoma.

Apart from UVR exposure, hereditary predisposition is another risk factor for cuta-
neous melanomas. However, familial cases encompass around 10% of all melanomas [12].
In this respect, several high-penetrance genes such as CDKN2A, CDK4, or BAP1 are the
most mutated in hereditary melanomas [13]. Individuals with germline mutations in the
CDKN2A, a tumor suppressor gene, have a very high lifetime risk of developing CM, this
mutation being encountered in up to 40% of melanoma-prone families [12]. Nevertheless,
these mutations are relatively rare and are responsible for just around 2% of all CM cases [8].
In addition to these high-penetrance genes, some medium-penetrance genes such as MITF
and MC1R are also involved in hereditary CM [12]. Furthermore, MC1R can be considered
a “melanoma modifier gene” as it also increases the penetrance of CDKN2A [14].

As hereditary melanomas are relatively rare, most cutaneous melanomas are char-
acterized by a remarkably high burden of somatic genetic mutations [15,16]. Identifying
these genetic mutations can serve both diagnostic and prognostic purposes. Genetic testing
is particularly useful for the diagnosis of dedifferentiated CMs which lack typical morpho-
logical and immunohistochemical features. In such cases, the diagnosis can be established
by identifying melanoma-specific mutations [17].

The most frequent mutations in CM affect genes involved in the aberrant activation
of the RAS/RAF/MEK/ERK signaling pathway, also known as the mitogen-activated
protein kinase (MAPK) pathway, and the phosphoinositol-3-kinase (PI3K)/AKT path-
way [18]. These mutated genes include BRAF, NRAS, NF1, PTEN, KIT, TP53, CDKN2A,
and TERT [19,20].
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The MAPK pathway is involved in the transduction of extracellular signals to the
nucleus, thus activating genes that regulate cell proliferation and differentiation [21,22].
This aberrant activation is responsible for several cellular dysfunctions, such as the deregu-
lation of the cell cycle and inhibition of apoptosis [21,23,24]. MAPK is the most frequently
dysregulated pathway in cutaneous melanoma [25]. Up to 90% of all melanoma cases ex-
hibit an abnormal activation of the MAPK pathway. The second most frequently activated
pathway in CM is the PI3K pathway which plays a crucial role in maintaining cellular
homeostasis [26,27].

As the MAPK pathway is the most affected in CM, numerous mechanisms contribute
to its abnormal signaling, including BRAF mutations [18,28]. Between 37% and 60% of
cutaneous melanomas harbor a somatic mutation in this gene, with the highest frequency
observed in CM associated with low CSD [29]. The majority of BRAF mutations in cu-
taneous melanoma are missense, resulting in amino acid substitutions at the valine 600
position. Approximately 80% are V600E mutations (glutamic acid substitution), while
5–12% are V600K mutations (lysine substitution). Less common mutations include V600D
(valine to aspartic acid) or V600R (arginine substitution). Additionally, BRAF non-V600
mutations can occur in around 5% of cases [30]. The BRAF gene encodes a protein kinase
with three distinct domains: two regulatory and one catalytic. The latter is involved in the
phosphorylation of MEK and in maintaining the protein inactive through a hydrophobic
interaction. [31]. In the BRAF V600E mutation, the hydrophobic valine residue is substi-
tuted by a polar, hydrophilic glutamic acid which induces a conformational change in the
catalytic domain, resulting in a constitutively active kinase [32,33]. BRAF non-V600E muta-
tions generally operate through a similar mechanism, enhancing BRAF kinase activity [33].
Acknowledging these mutations is clinically significant for treatment and prognosis. BRAF
V600-mutated melanomas can be treated with BRAF/MEK inhibitors, with response rates
higher in V600E-mutated cases compared to V600K-mutated cases. Furthermore, even
though the evidence is still limited, BRAF non-V600-mutated melanomas may still benefit
from BRAF/MEK inhibitors [30].

The second most prevalent cause of aberrant MAPK pathway signaling In cutaneous
melanoma is attributed to activating mutations in the NRAS gene. These mutations
occur in 15–30% of melanomas and are predominantly missense, most often affecting
codon 61 [34,35]. These mutations perpetuate aberrant signaling through both the MAPK
and PI3K pathways [18,36,37]. It is noteworthy that NRAS and BRAF mutations are gen-
erally considered to be mutually exclusive, although co-mutations have been observed
in rare instances [37]. NRAS- and NRAS-BRAF-co-mutated melanomas have a less fa-
vorable prognosis than BRAF-mutated ones as there are no target therapies for NRAS
mutations [17].

Neurofibromin 1 (NF1) is a tumor suppressor gene, mutated in 10–15% of CM, making
it the third most common mutation in this pathology [38,39]. NF1 alterations are more
frequent in melanomas associated with high CSD. These cases tend to possess a high mu-
tational burden, including a co-occurrence of BRAF or NRAS mutations [19,40]. The NF1
protein serves as a regulator of the RAS family, attenuating downstream RAS signaling [41].
Consequently, loss-of-function mutations in NF1 result in the hyperactivation of NRAS,
leading to increased signaling through both the MAPK and PI3K pathways [19,38,39,41].
Analyzing NF1 mutation status has some prognostic value even though there are no
target therapies for NF1-mutated melanomas, but such cases respond favorably to im-
munotherapy [42]. Moreover, NF1 analysis can offer important diagnostic information as
this mutation is particularly common in dedifferentiated lesions which can be difficult to
diagnose otherwise [17].

The receptor tyrosine kinase KIT plays a crucial physiological role in the proliferation
and survival of melanoma cells, through the PI3K and the MAPK signaling cascades. KIT
mutations are found in 2–8% of melanoma cases and are more common in acral melanomas
and melanomas associated with low CSD [43,44]. Recognizing these mutations is important
as such cases can benefit from tyrosine kinase inhibitors [45].
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Mutations in the TERT promoter confer a proliferative advantage to melanoma cells
and are common in advanced disease, being associated with a less favorable prognosis.
Nevertheless, this mutation could become a potential therapeutic target [46,47]. TP53-
mutated melanomas are also associated with advanced disease [46]. Assessing the status of
TP53 is important as these mutations have been associated with MAPK inhibitor resistance
but they can also become potential therapeutic targets [48,49].

The PTEN gene, a tumor suppressor gene, is commonly dysregulated in the vertical
growth phase of melanoma and in metastatic lesions, occurring in 10–30% of cutaneous
melanomas [18,50]. PTEN alterations tend to be mutually exclusive with NRAS mutations
but often co-occur with mutations in BRAF [51,52]. This co-occurrence has been hypothe-
sized to increase PI3K pathway activation [51,52], mimicking the effects of an NRAS-only
activation [51,53]. Additionally, PTEN loss-of-function is involved in acquired resistance to
BRAF inhibitors in BRAF-mutated melanomas [54]. As mentioned before, BRAF-mutated
melanomas may respond to BRAF inhibitors. However, therapeutic success is often tem-
porary, as patients usually experience disease progression at some point or may even
exhibit primary resistance to this target therapy. In this respect, acquired genetic mutations
affecting the MAPK and PI3K signaling pathways play a central role in resistance to both
chemotherapy and targeted therapies [55–57]. In this context, targeted PTEN therapy could
improve the outcomes of the patients [49]. Having taken everything into consideration,
due to this extraordinary genetic heterogeneity of melanomas, a multi-faced diagnostic
and therapeutic approach including the identification of molecular biomarkers and genetic
aberrations is imperative for optimizing patient outcomes.

3. Diagnostic and Prognostic Immunohistochemical Markers in CM

Cutaneous melanomas can manifest a broad array of morphological characteristics, ren-
dering them easily confusable with other neoplastic lesions on standard histopathological
examination. Consequently, additional diagnostic tools, particularly immunohistochemical
(IHC) staining methods, may be necessary, especially in instances where the histological
sample is partial, or the differentiation status of the neoplasm is ambiguous [58].

Various melanocytic markers such as S100, HMB45, Melan A, tyrosinase, MITF, and
SOX10 can aid in the detection and subtyping of melanoma [58–60]. The S100 marker
stands out for its high sensitivity for melanomas of all subtypes, including desmoplastic
melanoma [60,61]. However, it is important to note that while S100 demonstrates high
sensitivity, its specificity is limited, given that it is also expressed in a range of other malig-
nancies and normal cellular components, such as dendritic cells, certain macrophages, and
Schwann cells in lymph nodes [62,63]. This lack of specificity can create diagnostic pitfalls
by masking the presence of small metastatic melanoma foci amid other S100-expressing
structures within lymph nodes [62,63]. Additionally, primary cutaneous, particularly dedif-
ferentiated ones, and metastatic melanomas can, in rare cases, lack S100 expression [17]. In
this context, Aisner D.L. et al. discovered that approximately 1% of metastatic melanoma
specimens were devoid of S100 expression. The loss of S100 expression did not appear to
correlate with any specific histological subtype or the anatomical site of metastasis [64].

HMB-45 and Melan-A/MART-1 are melanocyte-specific markers with considerable
specificity. HMB-45 recognizes gp100, a component of the melanosomal complex, and
is highly specific for melanoma [65–67]. HMB-45 is particularly useful in distinguishing
between a benign and a malignant melanocytic tumor as nevi gradually lose HMB-45 due
to their maturation process [67,68]. Nevertheless, its use is limited due to low sensitivity as
it fails to stain a significant proportion of metastatic melanomas [69,70]. These numbers can
be remarkably high even in primary cutaneous melanomas with divergent differentiation,
when HMB-45 may be negative in up to 86% of the cases [17]. Melan-A expression is
predominantly localized within the endoplasmic reticulum and melanosomes, thus having
higher sensitivity compared to HMB-45. Melan-A is particularly useful in identifying
isolated tumoral melanocytes in the dermis, which can reclassify a melanoma initially
diagnosed as in situ to an invasive lesion [66,71,72]. Drabeni M. et al. reported an increased
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Breslow thickness in approximately 60% of cases when utilizing Melan-A compared to
H&E staining alone [71]. Similarly, Megahed M. et al. found evidence of dermal invasion
in 30 out of 104 cases that were initially classified as melanoma in situ based on H&E
staining [72]. However, Melan-A analysis has its limitations. The formation of pseudome-
lanocytic nests—clusters of Melan-A positive cells at the dermo–epidermal junction—can
confound the diagnosis of melanoma in situ in the presence of lichenoid inflammation [73].
The concomitant application of nuclear markers like MITF (microphthalmia-associated
transcription factor) and SOX10 has been suggested as a solution [73]. SOX10 is signifi-
cantly more specific than Melan-A (96% vs. 17%) in identifying epidermal melanocytes and
consequently avoiding the overdiagnosis of melanoma in situ in sun-damaged skin [74].
Similarly, MITF is also superior to Melan-A for the correct diagnosis of solar lentigo [75]. Ad-
ditionally, Melan-A also fails to stain most primary dedifferentiated cutaneous melanomas.
SOX10 and MITF perform better in such cases but their sensitivity is still rather low at
around 34% [17]. In this context, melanomas completely lacking expression of conventional
melanocytic markers have been described in both primary and metastatic lesions [76]. In
addition to their low sensitivity in dedifferentiated lesions, none of these markers is entirely
specific for melanomas [17]. For example, clear-cell sarcomas express HMB-45, Melan-A,
MITF, S100, and SOX10 [77,78]. PEComas, even though rarely located on the skin, express
HMB-45 and MITF [79]. Malignant peripheral nerve sheet tumors express SOX10 and S100,
and in rare cases can express Melan-A and tyrosinase [80]. As a consequence, several other
immunohistochemical markers have been developed.

The NK1/C3 antibody is noteworthy for its ability to identify a specific cytoplasmic
antigen prevalent in melanoma cells. The NK1/C3 antibody was synthesized at the Nether-
lands Cancer Institute, and although its target antigen was not initially known, it appears
to be a glycoprotein located on the membranes of cytoplasmatic vesicles in melanoma
cells [81,82]. However, its expression is not confined to melanoma alone. It is also detected
in other melanocytic lesions including intradermal and compound nevi, congenital nevi,
dysplastic nevi, blue nevi, and Spitz nevi [81]. Moreover, NK1/C3 is also highly sensitive
for metastatic lesions [70]. Nevertheless, this antigen is also sporadically present in certain
non-melanocytic neoplasms such as a subset of breast and prostate carcinomas, cellular
neurothekeomas, granular cell tumors, and dendritic cells within lymph nodes [81,83,84].
Furthermore, the high cost associated with its use poses an additional impediment to
its widespread use [85]. These constraints underscore the need for further research to
either refine the specificity of NK1/C3 or to identify alternative, cost-effective markers
with greater diagnostic precision. Future studies might aim to delineate the functional
implications of the antigen identified by NK1/C3 in tumor pathogenesis, as this could
provide additional insight into its potential roles as a therapeutic target or as part of a
multi-marker diagnostic panel.

Immunohistochemical analysis for PRAME (preferentially expressed antigen in
melanoma) has become increasingly used in the diagnosis of CM [86–88]. One study
assessed the immunoexpression of PRAME in 400 melanocytic tumors, including primary
melanomas, metastatic melanomas, and melanocytic nevi [86]. The study revealed diffuse
nuclear immunoreactivity in over 80% of the metastatic (87%) and primary melanomas
(83.2%). The expression was notably high in all subtypes except for desmoplastic melanomas
(35%). Importantly, PRAME was expressed in both in situ and non-desmoplastic inva-
sive components. Additionally, 86.4% of the melanocytic nevi investigated were entirely
negative for this marker [86]. Furthermore, PRAME analysis is also useful for identifying
melanocytic pseudonests in order to distinguish melanoma in situ from lichenoid der-
matoses or keratoses [89]. PRAME expression also seems retained in primary dedifferenti-
ated melanomas, but more studies are needed to confirm these findings [17]. Moreover, it is
significantly less expressed in clear-cell sarcoma, PEComas, and other skin spindle-cell neo-
plasms that can be considered in the differential diagnosis of CM [90,91]. Therefore, PRAME
is a constituent of a 23-gene array diagnostic assay used for cutaneous melanoma [92,93],
and is one of two genes employed in a noninvasive molecular assay that aids clinicians in
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determining the necessity for biopsy in the case of melanocytic lesions [94]. PRAME is also
highly useful for assessing metastatic lesions. For instance, a study comparing nodal nevi
and melanoma metastases demonstrated that PRAME was expressed in 0% of the nevi and
in 100% of the lymph node metastases [87]. Nevertheless, its expression is not confined to
melanoma but is also present in various other malignancies, such as lung cancer, breast
carcinoma and other gynecological malignancies, renal carcinoma, leukemia, synovial
sarcoma, myxoid liposarcoma, and various other sarcomas [95–98]. Therefore, in the setting
of metastatic disease, the diagnosis of melanoma should not solely rely on PRAME expres-
sion and should be confirmed by additional immunohistochemical or molecular analysis.
However, PRAME analysis for metastatic melanoma may not possess just diagnostic, but
also prognostic value as it may become a potential target for immunotherapy [99].

In addition to these markers, BRAF V600E immunohistochemical analysis is increas-
ingly performed for primary cutaneous melanomas and metastatic lesions [100,101]. This
method is particularly useful for diagnosing dedifferentiated melanomas that lack expres-
sion of conventional melanocytic markers and may aberrantly express other markers [102].
Another great advantage of immunohistochemical analysis is its considerably lower costs
compared to molecular analysis while the results are similar, with a study reporting a
sensitivity of 80.8% and specificity of 100% for immunohistochemistry [103]. In spite of
these promising results, at present BRAF V600E immunohistochemical results should be
confirmed by PCR analysis, as concordance between the two methods varies between
71.4 and 97% [101]. In the future, immunohistochemical methods for BRAF detection may
significantly improve, providing increased diagnostic accuracy at lower costs.

The main characteristics of the immunohistochemical markers discussed above are
presented in Table 2.

Table 2. Advantages and disadvantages of the main melanocytic markers.

Melanocytic
Marker Advantages Disadvantages

S100
• High sensitivity for all CM melanoma

subtypes (including desmoplastic) and for
metastases

• Limited specificity: expressed in normal cells in the
lymph nodes (dendritic cells, macrophages) and
non-melanocytic tumors

HMB-45
• High specificity for CM and for melanoma

metastasis to lymph nodes

• Limited sensitivity: fails to stain primary
dedifferentiated CM and metastatic melanomas;

• Expressed in some non-melanocytic tumors:
clear-cell sarcoma, PEComa

Melan A
• Higher sensitivity compared to HMB-45;
• Improves Breslow depth evaluation

• Can stain pseudomelanocytic nests, resulting in a
false-positive diagnosis;

• Limited sensitivity in primary dedifferentiated CM;
• Expressed in clear-cell sarcoma, MPNST

MITF
• Higher sensitivity and specificity than S100

and HMB-45

• Relatively low sensitivity for dedifferentiated
melanomas;

• Expressed in clear-cell sarcoma, PEComa

SOX 10 • Generally high sensitivity and specificity
• Relatively low sensitivity for dedifferentiated

melanomas;
• Expressed in clear-cell sarcoma, MPNST

NK1/C3 • High sensitivity • Low specificity;
• Expensive to use

PRAME
• High sensitivity for primary and metastatic

melanomas, including dedifferentiated
lesions

• Low sensitivity for desmoplastic melanomas;
• Relatively low specificity, particularly for

metastatic lesions

BRAF V600E
• Useful for dedifferentiated melanomas;
• Lower costs than PCR analysis

• Sensitivity and specificity need to be improved



Int. J. Mol. Sci. 2023, 24, 15881 7 of 17

Another pitfall in the immunohistochemical analysis of CM is that rare cases may
display atypical IHC staining patterns. As mentioned before, these may include the
aberrant expression of markers typically unrelated to melanocytes or the absence of con-
ventional melanocytic markers, further complicating the diagnosis [104]. The heterogenous
immunophenotypic profile in melanoma underscores the necessity for a multi-marker
approach to the diagnosis of this malignancy. It also raises important questions about the
biological mechanisms underlying the loss of conventional melanocytic markers during
disease progression. These aspects could have significant implications for both prognosis
and therapeutic choices. Future research might focus on understanding the molecular
mechanism of marker loss, helping the development of more effective diagnostic tools and
targeted therapies.

Finally, apart from their diagnostic value, immunohistochemical markers have also
been analyzed as prognostic tools. Even though traditional markers may lose expression in
dedifferentiated and metastatic lesions, it is not clear how this correlates with prognosis.
For instance, primary dedifferentiated cutaneous melanomas and conventional CMs with
similar prognostic factors have a similar overall prognosis [105]. In recent years, as PRAME
expression has been associated with prognosis in patients with uveal melanomas [106], it
has been studied as a potential prognostic marker in CM but it does not influence patient
survival [107,108]. On the contrary, a higher expression of the proliferation marker, Ki67 has
been associated with decreased survival in some studies [107,109]. A 2021 meta-analysis
found a significant association between higher Ki67 expression and lower overall survival
rates. However, no correlation was found between Ki67 expression and progression-free
survival or recurrence-free survival [110] Having taken all these reports into consideration,
Ki67 may be proved to be a useful prognostic factor in CM, but further studies are needed
to validate these findings and establish a cut-off value associated with decreased survival.

4. Emerging Biomarkers in CM

Due to the extraordinarily heterogenous histopathological, immunohistochemical, and
molecular landscape of CM, this disease continues to pose important challenges in terms
of diagnosis and treatment. Therefore, several new biomarkers have become increasingly
studied in recent years in the hope of improving the understanding of CM pathogenesis and
management. Unlike immunohistochemical and genetic testing, these emerging biomarkers
are expected to improve the early detection and subsequent monitoring of CM in rapid,
cost-effective, and non-invasive ways as they can easily be analyzed from blood samples.
Furthermore, these new biomarkers may also serve as potential therapeutic targets.

4.1. MicroRNA

MicroRNA (miRNAs) represent non-coding RNAs involved in degrading mRNAs [96].
They have been increasingly recognized as critical modulators of oncogenic processes,
including various stages of cancer progression such as melanoma [111,112]. In melanomas,
miRNA dysregulation is involved in promoting cell proliferation, resistance to apoptosis
and invasion, angiogenesis, and metastasis [113]. Additionally, miRNAs have also been
associated with resistance to BRAF and MAPK inhibitors [114,115]. In this context, due
to their detectability in both intra- and extracellular compartments and their stable levels
even in unfavorable conditions, miRNAs have attracted considerable attention as emerging
biomarkers in oncology [116].

At present, miRNA levels can be assessed from various sources, such as resected pri-
mary or metastatic tumors, as well as arterial or venous plasma and serum. Importantly, the
data derived from these different sources have shown no significant divergence. Depending
on the type of cancer under investigation, abnormal miRNA expression profiles have been
found to correlate with various disease stages, overall prognosis, tumor recurrence, and
potential responsiveness to therapeutic interventions [111,117]. In patients with melanoma,
different miRNAs can be either up- or down-regulated, and have been correlated with
progression-free survival and overall survival [118–120]. Interestingly, serum levels of
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various microRNAs can discriminate between melanoma stages with increased accuracy
compared to S100B or LDH [121]. For instance, miR-137, miR-148, and miR-182 down-
regulate MITF expression and promote tumor invasion [122]. miR-221 plasma levels are
increased in melanoma patients, and are correlated with stage, recurrence, and disease pro-
gression [123]. Rigg E. et al. demonstrated that miR-146a-5p is overexpressed in melanoma
brain metastases and its knockdown results in a reduction of metastatic lesions [124]. On
the contrary, other types of microRNA such as mirR-211, miR-542 3p, or miR-152-3p are
downregulated in invasive melanomas [125]. In vitro studies demonstrated that increasing
miR-152-3p expression inhibits the proliferation and invasiveness of melanoma cells [126].
miR-542 3p is involved in epithelial-to-mesenchymal transition (ETM), and its experimental
upregulation inhibited ETM and metastatic spread [127]. miR-143 also bears anti-tumoral
effects as it has been linked to promoting apoptosis and inhibiting the proliferation of
melanoma cells [128]. Similar anti-tumoral effects have been reported for miR-224-5p
which can additionally overturn acquired resistance to BRAF inhibitors [129]. Several other
microRNA seem to play a role in resistance to target or conventional chemotherapy. A
downregulation of miR-7, miR-579 3p, and miR-126 3p was found in melanomas resistant
to BRAF/MAPK inhibitors [130–132], while miR-31 downregulation is associated with
chemoresistance [133]. Importantly, the experimental upregulation of miR-7 and miR-126
3p restored responses to BRAF inhibitors in melanoma cell lines [130,131].

Therefore, miRNA analysis could become a useful tool for monitoring melanoma
progression after surgical excision and therapy, as well as a potential therapeutic target.

4.2. Exosomes

Exosomes are extracellular vesicles secreted by cells, encompassing a unique molecular
signature that reflects the cell type from which they originate. Given their traceable
cellular origins and facile isolation, exosomes can be regarded as potential biomarkers
for diagnosis and prognosis in various cancers, including melanoma [134]. They are
readily available through minimally invasive methods, as they can be isolated from a
variety of biological fluids such as blood, plasma, urine, and cerebrospinal fluid [135].
Exosomes extracted from melanoma cell lines have been shown to contain distinct mRNA,
miRNA, and protein profiles [134,135]. Exosome analysis can offer important diagnostic
and prognostic information, as various exosomal components are significantly altered in
cutaneous melanomas [134,136,137]. In this respect, Surman M. et al. found increased
exosome concentrations in melanoma cases but those levels were not correlated with disease
stage [134]. On the contrary, Boussadia Z. et al. reported a higher exosome concentration in
metastatic melanoma compared to non-metastatic cases [138]. The complex relationship
between exosomal components and melanoma progression is not entirely understood,
but various mechanisms have been proposed. For instance, exosomes can carry and
modulate the activity of matrix metalloproteinases (MMPs), as well as alter cell adhesion
and activate fibroblasts to become cancer-associated fibroblasts, thus stimulating melanoma
invasiveness [134,139–141]. Exosomal components have also been shown to enhance
metastatic potential in CM by promoting epithelial-to-mesenchymal transition (ETM) [142],
angiogenesis [134,143], and lymphangiogenesis [144]. As melanoma is particularly prone
to brain metastases, exosomes may also at least partially explain this characteristic by
damaging endothelial cells and the blood–brain barrier, and activating glial cells [145].

Some exosomal components have also been linked to resistance to therapy in CM,
and targeting these molecules may improve therapeutic response [146]. In this context,
exosomes can influence the melanoma microenvironment by altering the function of lym-
phocytes and stimulating tumor-associated macrophages (TAMs) to become M2-polarized
and secrete pro-tumorigenic cytokines [147–149]. These effects can affect the response to im-
munotherapy, and targeting TAMs could improve the outcome of melanoma patients [150].
Furthermore, exosomes can be used as a means for administering therapy [151]. In this
respect, exosomes containing BRAF siRNA were shown to have increased anti-tumoral
activity compared to siBRAF in melanoma cell lines [152]. Similarly, cord-blood-derived
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exosomes produced significant genotoxicity and a decrease in survival time for melanoma
cells and lymphocytes from melanoma patients, apparently by delivering anti-oncogenic
miR-7. These results are particularly important as the exosome caused no significant dam-
age to normal lymphocytes [153]. While these findings underscore the promising role of
exosomes as diagnostic, prognostic, and treatment tools in melanoma, additional research
is required to comprehensively delineate their utility. Future studies may aim to validate
these biomarkers in larger patient cohorts, completely elucidate the roles of exosomal
components in melanoma progression, and assess the feasibility of incorporating exosomal
markers into existing diagnostic, prognostic, and therapeutic frameworks.

The complex effects of exosomal components in CM pathogenesis are presented in
Figure 1.
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4.3. Melanoma-Inhibiting Activity

Melanoma-inhibiting activity (MIA) is a soluble protein overexpressed in melanoma
cells and actively secreted into the extracellular environment, where it binds to various
extracellular and cell surface proteins [154]. This protein was first identified in supernatants
of melanoma cell lines and, in vitro, it was considered to possess growth-inhibiting activi-
ties [155]. Despite its paradoxical nomenclature, in vivo, elevated levels of MIA have been
substantiated to promote invasive capabilities, extravasation, and metastatic spread [156].
Recent studies on murine melanocytes demonstrated that MIA is involved in cellular
senescence, and its knockdown enhances cell proliferation [157].

In a study encompassing 176 cutaneous melanoma patients, a progressive escalation
in serum MIA levels was observed in correlation with advanced stages of the disease.
Only 18.5% of patients in stage I displayed elevated MIA levels, as opposed to 59% in
stage IV [156]. Alegre E. et al. found significantly increased MIA levels in patients with
metastatic CM compared to disease-free patients or healthy individuals [158]. Similar re-
sults were reported by various other authors [159–161]. Furthermore, increased MIA levels
are significantly associated with decreased survival [158,162]. Moreover, MIA levels have
also been correlated with melanoma recurrence [163]. Compared to LDH, measuring MIA
concentrations is a more accurate method for identifying patients with advanced disease
and for predicting metastatic spread in CM [160]. In this context, as MIA concentrations
are correlated with disease severity, this protein may become a prognostic biomarker in
cutaneous melanomas. Furthermore, MIA could also become a therapeutic target itself, as

https://www.biorender.com
https://www.biorender.com
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Schmidt J. et al. demonstrated that inhibiting MIA dimerization resulted in the reduction
of melanoma metastases in murine models [154].

It is, however, crucial to recognize that serum MIA levels are not exclusively elevated
in melanoma. Elevations have also been documented in lung cancer [164], while immuno-
histochemical analysis demonstrated positive MIA expression in lung, esophageal, and
cervical cancers [159].

5. Conclusions

Cutaneous malignant melanoma is a prevalent and highly aggressive form of skin
cancer that requires improved prevention, diagnosis, and treatment methods. Recognizing
risk factors such as UVR exposure, genetics, and family history is crucial for prevention.

The role of traditional biomarkers remains essential in the diagnosis and monitoring
of melanoma. However, the field is rapidly evolving with the identification of emerging
biomarkers. MicroRNA, exosomes, and MIA offer insights into melanoma pathogenesis
and progression, potentially serving as both diagnostic and therapeutic targets. These
emerging biomarkers could be the key to more personalized and effective treatments,
ultimately improving survival rates and quality of life for patients.
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