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Abstract: This study investigated the effect of anti-autotaxin (ATX) aptamers on the development
of proliferative vitreoretinopathy (PVR) in both in vivo and in vitro PVR swine models. For the
in vitro study, primary retinal pigment epithelial (RPE) cells were obtained from porcine eyes and
cultured for cell proliferation and migration assays. For the in vivo study, a swine PVR model was
established by inducing retinal detachment and injecting cultured RPE cells (2.0 × 106). Concurrently,
1 week after RPE cell injection, the anti-ATX aptamer, RBM-006 (10 mg/mL, 0.1 mL), was injected
twice into the vitreous cavity. Post-injection effects of the anti-ATX aptamer on PVR development
in the in vivo swine PVR model were investigated. For the in vitro evaluation, the cultured RPE
cell proliferation and migration were significantly reduced at anti-ATX aptamer concentrations of
0.5–0.05 mg and at only 0.5 mg, respectively. Intravitreal administration of the anti-ATX aptamer also
prevented tractional retinal detachment caused by PVR in the in vivo PVR model. We observed that
the anti-ATX aptamer, RBM-006, inhibited PVR-related RPE cell proliferation and migration in vitro
and inhibited the progression of PVR in the in vivo model, suggesting that the anti-ATX aptamer
may be effective in preventing PVR.
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1. Introduction

Proliferative vitreoretinopathy (PVR) is a severe form of retinopathy that causes irre-
versible blindness. The incidence of PVR progression after vitrectomy for rhegmatogenous
retinal detachment is estimated to be approximately 10% [1–3]. In addition, the success
rate of treatment for PVR is far lower than that for noncomplicated rhegmatogenous retinal
detachment [2,4–6]. Therefore, novel strategies are required to prevent PVR following
vitrectomy.

Fibrosis plays a crucial role in PVR development. Many studies have revealed that
retinal pigment epithelial (RPE) cells play a significant role in fibrosis during the early
stages of PVR [1,2,4,7,8]. RPE cells are dispersed through retinal breaks in the vitreous
cavity and adhere to the retinal surface. Epithelial–mesenchymal transition (EMT) occurs
in RPE cells, transforming them into fibroblast-like cells [9–13]. The interaction between
fibrotic RPE cells and the extracellular matrix results in a proliferative membrane, which
causes retinal traction and contraction and PVR. Although several studies have reported
that various cytokines and growth factors are involved in PVR progression, the ideal target
molecule to prevent this process remains undetermined.

Autotaxin (ATX), an enzyme that produces lysophosphatidic acid (LPA) from lysophos-
phatidylcholine (LPC), is widely distributed in the blood, cerebrospinal fluid, kidneys,
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lymphatic organs, and eyes [14–16]. LPA is a lysophospholipid that exhibits various ef-
fects, such as cell proliferation, migration, cell–cell adhesion, and fibrosis, by activating
downstream pathways through interaction with its receptors. Recent studies have shown
that the ATX–LPA pathway is activated in various glaucoma subtypes [17]. This path-
way contributes to fibrotic changes and extracellular matrix production in the trabecular
meshwork [18]. However, the role of the ATX–LPA pathway in PVR remains unclear.

Recently, anti-ATX aptamers have become available and have been shown to halt
pulmonary fibrosis in mouse models of bleomycin-induced pulmonary fibrosis [19]. Ap-
tamers are superior to antibody therapies in terms of target-binding power, lack of target
restrictions, easy chemical modification, and low antigenicity [20–22].

In this study, we used an in vitro RPE cell culture from porcine eyeballs and an in vivo
swine PVR model to focus on the ATX–LPA pathway in PVR development. We investigated
whether anti-ATX aptamers have a beneficial inhibitory effect on this disease.

2. Results
2.1. RBM-006 Profile

RBM-006, the anti-ATX aptamer, bound stably and specifically to ATX; the binding of
no other tested proteins, including heparin-binding proteins, was as stable. Importantly,
RBM-006 blocked the LPC-to-LPA conversion activity of ATX with an IC50 of 0.5 nM. The
half-life of RBM-006 in the blood was 3.7 h.

2.2. Anti-ATX Aptamer Inhibits RPE Proliferation

The anti-ATX aptamer RBM-006 was administered to cultured RPE (5.0 × 104 cells),
and cell proliferation was investigated. There was no significant difference at an anti-ATX
aptamer concentration of 0.005 mg; however, cell proliferation significantly decreased
when the aptamer was administered at concentrations of 0.05 and 0.5 mg compared with
non-anti-ATX-aptamer-administered cells, with the suppression being in a dose-dependent
manner (Figure 1).
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2.3. Anti-ATX Aptamer Inhibits RPE Migration

We administered the anti-ATX aptamer (RBM-006) to cultured RPE cells (5.0 × 104

cells) and examined cell migration. No significant difference was observed when the anti-
ATX aptamer (RBM-006) was administered at concentrations of 0.005 and 0.05 mg, but cell
migration was significantly reduced at 0.5 mg when compared with non-anti-ATX aptamer
administration (Figure 2).
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Normality was assessed with the Shapiro–Wilk test (cell proliferation, anti ATX ap-
tamer (0.5 mg, 0.05 mg, 0.005 mg, 0 mg): p = 0.796, 0.095, 0.971, 0.363, cell migration; anti
ATX aptamer (0.5 mg, 0.05 mg, 0.005 mg, 0 mg): p = 0.568, 0.369, 0.095, 0.982) and the
equivariance of the distributions with the Bartlett test (cell proliferation: p = 0.235, cell
migration: p = 0.665).
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2.4. Anti-ATX Aptamer Inhibits the Progression of PVR In Vivo

We administered 1.0 mg of anti-ATX aptamer (RBM-006) to cultured RPE (2.0× 106) cells
on days 1 and 7. Cells without the administration of the anti-ATX aptamer were used as controls.
The grade of PVR was confirmed on day 14. We found that the incidence of tractional
retinal detachment (TRD) in PVR was significantly reduced in cells treated with RBM-006
compared with those without treatment (Figure 3). In the five eyes treated with the anti-ATX
aptamer, no TRD of one or more quadrants was observed, except in one eye. In the control
group, without the anti-ATX aptamer treatment, hematoxylin and eosin staining revealed
a proliferative membrane on the retina. Immunostaining revealed that the proliferative
membrane was positive for ATX, α-smooth muscle actin, and fibronectin. However, no
proliferative membranes were observed after anti-ATX aptamer administration; ATX-
positive tissues were not confirmed (Figure 4).
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Figure 3. Effect of the anti-ATX aptamer on proliferative vitreoretinopathy (PVR) in vivo.
(A) Administration of the anti-ATX aptamer suppressed the onset of tractional retinal detachment
(TRD) in PVR. TRD occurred in PVR in controls without the anti-ATX aptamer. (B) The incidence
of TRD in PVR was significantly reduced with anti-ATX aptamer administration compared with
non-administration. * p < 0.05.
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Figure 4. Histological image of anti-ATX aptamer administration. (A) Hematoxylin and eosin
(HE) staining showing a proliferative membrane on the retina (black dotted circle) in the control.
Immunostaining showing that the proliferative membrane is positive for ATX, α-smooth muscle
actin (α-SMA), and fibronectin. (B) No proliferative membrane was seen after anti-ATX aptamer
administration, and ATX positivity was not confirmed. Bar: 100 µm.

3. Discussion

In the present study, anti-ATX aptamer administration inhibited the proliferation and
migration of RPE cells in vitro. Cell proliferation was significantly decreased at 0.05 and
0.5 mg anti-ATX aptamer administration compared with non-anti-ATX aptamer adminis-
tration, and was suppressed in a dose-dependent manner (Figure 1). Compared with the
non-anti-ATX aptamer administration, cell migration was significantly reduced at 0.5 mg
(Figure 2). Thus, cell proliferation, migration, cell–cell adhesion, and fibrosis by EMT of the
RPE, which are reported to be involved relatively early in the onset of PVR [9–13], have
also been shown to play essential roles in the onset of PVR in our present study.

One of the RPE EMT mechanisms is transforming growth factor-β (TGF-β)
signaling [9,23–25]. Glucosamine is known to inhibit the TGF-β signaling pathway in
RPE cells and several downstream events associated with EMT [26]. Resveratrol also
inhibits TGF-β signaling and suppresses the proliferation and migration of RPE [27]. TGF-
β-induced EMT in RPE cells is greatly stimulated by fibroblast growth factor 2 in vitro and
in vivo [25]. In addition, the Rho-kinase pathway is involved in cell proliferation, migra-
tion, cell–cell adhesion, and fibrosis. The inhibition of Rho-kinase decreases the contractile
force generated by RPE cells and attenuates PVR [28,29]. LPA is expressed upstream of the
TGF-β signaling and Rho-kinase pathways; it binds to extracellular receptors to regulate
various physiological activities [30–32]. In previous studies, drug adjuvant treatments have
been investigated regarding the downstream pathways of LPA. In contrast, we focused
on ATX, an enzyme upstream of the LPA pathway, and investigated its effect. Anti-ATX
aptamer administration inhibited the proliferation and migration of RPE cells.

LPA activation in mesothelial cells can stimulate cell proliferation and upregulate the
expression of a profibrotic factor, connective tissue growth factor, in epithelial cells and
fibroblasts [33–37]. The inhibition of ATX by the anti-ATX aptamer did not activate the
downstream pathway of LPA and suppressed the proliferation and migration of RPE cells.
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In the present study, administration of the anti-ATX aptamer also suppressed TRD
in PVR (Figure 3). There are few previous reports on the use of swine models for PVR.
Umazume et al. [38] reported that four intravitreal injections of dasatinib had inhibitory
effects on PVR. We observed an inhibitory effect of PVR with intravitreal injections of two
concentrations of the anti-ATX aptamer, which was less than that previously reported.
When the drug is clinically applied as adjuvant therapy, it is advantageous for patients in
whom a suppressive effect can be obtained with fewer administrations. This is because
the more frequent the intravitreal injection, the higher the cost and the greater risk of
complications such as endophthalmitis.

ATX expression has been observed on the proliferative surfaces in diseases such
as proliferative diabetic retinopathy and PVR [39]. We also observed the presence of
ATX on the proliferative membrane in a porcine PVR model in the absence of anti-ATX
aptamer administration. In contrast, no proliferative membrane was observed with anti-
ATX aptamer administration (Figure 4). These results suggest that ATX is involved in the
pathogenesis of PVR and that ATX inhibition by ATX-aptamer suppresses the development
of PVR.

Many previous studies have reported that EMT occurs in cultured RPE cells and
that the EMT of RPE cells is an initial step in fibrotic processes such as cell proliferation,
migration, and extracellular matrix remodeling in the pathogenesis of PVR [9,10,23,40,41].
The present findings indicate that anti-ATX aptamers may inhibit ATX and suppress cell
proliferation, migration, cell–cell adhesion, and fibrosis downstream of the ATX–LPA
pathway.

In this study, we used swine for the in vivo experiments. Swine eyes have many
similarities to the human eye, such as size and anatomy [42,43]. Therefore, the effects of
drugs in the swine model can be more easily applied to humans.

This study had several limitations. First, only a small number of swine were used
because breeding swine is expensive and requires a lot of space. Recent ethical guidelines
for experimental animals have made conducting research with a minimum number of
samples necessary. Hence, the robustness of the data has been limited. Nevertheless,
several previous studies with the swine model have proven useful to evaluate efficacy with
a small number of samples [44–46], similarly to this study. Second, because the border
between the proliferative membrane and retina is not necessarily clear, it was difficult to
confirm the presence of a proliferative membrane on histological examination. Visualization
of the proliferative membrane may be desirable, and future studies are warranted. Third,
we could not examine the underlying mechanism and only confirmed the effectiveness
of the anti-ATX aptamer in the present study. Further studies are needed to examine the
downstream pathways of the ATX–LPA axis using inhibitors of TGF-beta or Rho-kinase
and to assess the expression levels of relevant genes and proteins.

4. Materials and Methods
4.1. RBM-006 Profile

RBM-006 is an anti-ATX aptamer composed of 29 nucleotides, whose ribose 2′ posi-
tions are heavily modified to resist ribonucleases; the 5′- and 3′-termini are conjugated
with 40 kDa polyethylene glycol and an inverted dT, respectively, to achieve sufficient
pharmacokinetic profiles [47].

4.2. In Vitro RPE Cell Culture

We used 17 eyeballs from wild-type pigs for the in vitro experiments. RPE cells were
isolated from porcine eyes (Tokyo Shibaura Organ Co. Ltd., Tokyo, Japan). Primary
cultures of RPE cells were established following the previously described protocol [48].
The experiments were performed using RPE cells that had been grown at 2–6 weeks of
age until they were confluent with a hexagonal shape and without visible pigmentation in
25 cm2 tissue culture flasks. The cells were cultured in Dulbecco’s modified Eagle medium
containing glutamine (5 mL), penicillin/streptomycin (5 mL), and 5% fetal bovine serum.
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4.3. In Vivo Swine PVR Model

We performed this study on nine eyes of nine wild-type pigs of both sexes (8–12 weeks
old and 20–25 kg) (Zen-Noh, Tokyo, Japan). All animal procedures were approved by the
Animal Care Committee of the Nihon University School of Medicine and were performed
in accordance with the Association for Research in Vision and Ophthalmology Statement
for the Use of Animals in Ophthalmic and Vision Research. Anesthesia was maintained
through the inhalation of isoflurane (1–3%) during surgery. After sedation, pupils were
dilated, and accommodation was relaxed with topical applications of 2.5% phenylephrine
hydrochloride and 1% tropicamide.

PVR was induced in swine using a three-step procedure, following the protocol
reported by Umazume et al. [49]. The study protocol is summarized in Figure 5. Briefly, a
three-port 25-gauge pars plana vitrectomy was performed, and the peripheral vitreous was
shaved. Using a 39-gauge subretinal injection needle, a balanced salt solution was injected
into the subretinal space to induce total retinal detachment. At the end of the vitrectomy,
RPE cells (2.0 × 106 cells) were injected into the eye. The anti-ATX aptamer RBM-006
(RIBOMIC, Tokyo, Japan) (10 mg/mL, 0.1 mL) (n = 5) or vehicle (n = 4) was injected into the
vitreous cavity along with RPE cells. Anti-ATX aptamer RBM-006 or vehicle was reinjected
1 week after vitrectomy.

Clinical examinations were performed on postoperative days 7 and 14. PVR grading
was based on a previously reported protocol [49].
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Figure 5. Protocol for the in vivo Swine PVR model. A vitrectomy was performed. At the end of
vitrectomy, RPE cells were injected into the eye. Anti-ATX aptamer was also injected into the vitreous
cavity after injecting RPE cells. Anti-ATX aptamer was re-injected 1 week after vitrectomy.

4.4. Immunofluorescence and Immunohistochemistry

Swine were euthanized on day 14 with intravenous potassium chloride administered
under general anesthesia and perfusion-fixed with 10% neutral-buffered formalin. After
perfusion fixation, enucleation of the globe was performed, and the anterior segment
was removed using a circumferential cut immediately posterior to the ora serrata. The
eyecups were stored overnight in 10% neutral-buffered formalin. Paraffin sections were
used for hematoxylin and eosin staining and immunostaining; section preparation was
based on a previous protocol [25]. For immunostaining, primary antibodies for α-smooth
muscle actin (#5694; Abcam, Cambridge, MA, USA) and fibronectin (#SC-8422; Santa Cruz
Biotechnology, Dallas, TX, USA) for EMT markers and ATX (#D323-3; MBL, Tokyo, Japan)
were used. Furthermore, Alex647-conjugated donkey anti-rabbit (Invitrogen), Alexa546-
conjugated donkey anti-mouse (Invitrogen), and Alexa488-conjugated donkey anti-rat
secondary antibodies (#150153; Abcam, Cambridge, MA, USA) were used for detection.
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4.5. Cell Proliferation Assay

The proliferation of RPE cells was analyzed using a bromodeoxyuridine enzyme-
linked immunosorbent assay (Roche Applied Science, Indianapolis, IN, USA), according to
the manufacturer’s instructions, with or without the anti-ATX aptamer.

4.6. Cell Migration Assay

According to the manufacturer’s instructions, cell migration assays were performed
using the Oris 96-well cell migration assay kit (Platypus Technologies, Madison, WI, USA).
Cell migration was determined using Photoshop software (Adobe Systems, San Jose,
CA, USA).

4.7. Statistical Analysis

The difference in PVR grading was analyzed using the Mann–Whitney U test, and
one-way analysis of variance was used to analyze the in vitro assays (cell proliferation and
cell migration). Normality was assessed with the Shapiro–Wilk test, and the equivariance of
the distributions was assessed with the Bartlett test. All statistical analyses were performed
using EZR software (Saitama Medical Center, Jichi Medical University, Saitama, Japan).

5. Conclusions

In conclusion, our findings showed that the anti-ATX aptamer inhibited RPE cell
proliferation and migration in vitro in a dose–response manner. In addition, the intravitreal
injection of RBM-006 (10 mg/mL, 0.1 mL) inhibited PVR progression in vivo. Our results
suggest that anti-ATX aptamers may be effective in preventing PVR.
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