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Abstract: Pesticides are chemicals used in agriculture, forestry, and, to some extent, public health. As
effective as they can be, due to the limited biodegradability and toxicity of some of them, they can also
have negative environmental and health impacts. Pesticide biodegradation is important because it
can help mitigate the negative effects of pesticides. Many types of microorganisms, including bacteria,
fungi, and algae, can degrade pesticides; microorganisms are able to bioremediate pesticides using
diverse metabolic pathways where enzymatic degradation plays a crucial role in achieving chemical
transformation of the pesticides. The growing concern about the environmental and health impacts
of pesticides is pushing the industry of these products to develop more sustainable alternatives,
such as high biodegradable chemicals. The degradative properties of microorganisms could be fully
exploited using the advances in genetic engineering and biotechnology, paving the way for more
effective bioremediation strategies, new technologies, and novel applications. The purpose of the
current review is to discuss the microorganisms that have demonstrated their capacity to degrade
pesticides and those categorized by the World Health Organization as important for the impact
they may have on human health. A comprehensive list of microorganisms is presented, and some
metabolic pathways and enzymes for pesticide degradation and the genetics behind this process are
discussed. Due to the high number of microorganisms known to be capable of degrading pesticides
and the low number of metabolic pathways that are fully described for this purpose, more research
must be conducted in this field, and more enzymes and genes are yet to be discovered with the
possibility of finding more efficient metabolic pathways for pesticide biodegradation.

Keywords: biodegradation; bioremediation; pesticides; microorganism; biodegradation pathways;
degradation mechanism; degrading bacteria; biodegradation metabolism; microorganism degraders

1. Introduction

Currently, there are 5000 mega hectares (38% of the Earth’s surface) of land on Earth
that have been recorded as being used for agricultural development. This surface can
be divided into three parts, where one part represents crops, and the remaining two are
prairies and pastures [1]. To keep crops suitable for human consumption, free of pests,
and maximize their production, it is necessary to apply pesticides; according to Clark and
Tilman [2], by 2030, the world population is expected to reach 8.5 billion people, which in
turn will increase the use of pesticides.

A pesticide is any substance that can destroy, diminish, prevent, repel, control, attract,
or even kill a pest or non-target organism; pesticides are classified by the World Health
Organization (WHO) according to their degree of danger based on the lethal dose (LD50)
in rats. Exposure to the substance, either by single or multiple exposures during a short
period, causes an effect on the person who handles the product [3,4].
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Due to the negative impact that pesticides have on the environment and non-target
species, there is a constant search to find ways to reduce the effects caused by these com-
pounds. Microorganisms have a considerable biochemical versatility, which they use to
adapt and develop in different environments. This feature and others make microorganisms
a suitable tool for the remediation of both soil and water. Additionally, their use is com-
monly less expensive compared to physical and chemical methods [5]. The great variety
of microorganisms that have the capacity to degrade pesticides include fungi, bacteria,
actinomycetes, and algae; these organisms can use xenobiotic compounds as a source of
nutrients [6]. These microorganisms can use xenobiotic compounds as a source of nutrients
through the use of enzymes [7].

An emphasis on bacteria has been present throughout previous decades; this is un-
derstandable since bacteria are more easily cultivated. Other microorganisms with a more
complex and diverse metabolism, such as fungi, have also been studied but not as in-depth
as bacteria. For instance, most of the metabolic pathways discussed in this review were
studied from bacteria; this presents an opportunity for further research to focus on fungi or
algae to explore if more efficient metabolic pathways for pesticide degradation are present
in these microorganisms.

In this review, we will provide a comprehensive list of microorganisms that can
degrade diverse pesticides, the metabolic pathways some of them use to achieve this
process, and the genetics behind these metabolic pathways. Finally, a current panorama
and perspectives on the application of microorganisms as a method for the bioremediation
of xenobiotic compounds focused on agricultural pesticides will be presented.

2. Pesticides Used in Agriculture

According to the FAO (Food and Agriculture Organization) [8], a pesticide is any
substance or mixture of substances intended for preventing, destroying, or controlling
any pest, including vectors of human or animal disease, unwanted species of plants or
animals causing harm during or otherwise interfering with the production, processing,
storage, transport or marketing of food, agricultural commodities, wood, wood products,
or animal feedstuffs, or substances which may be administered to animals for the control
of insects, arachnids, or other pests in or on their bodies. The term includes substances
intended for use as a plant growth regulator, defoliant, desiccant, or agent for thinning fruit
or preventing the premature fall of fruit, and substances applied to crops either before or
after harvest to protect the commodity from deterioration during storage and transport.

Pesticides have been used in agriculture for at least 80 years, and the first pesticide to
be created was dichloro-diphenyl-trichloroethane (DDT). Twenty years after its discovery,
DTT was banned for its use in agriculture [9]. Since the DDT discovery, several other types
of pesticides have entered the market, most of them claiming safe use. Nonetheless, there
is still public concern about the risks to health that the use of pesticides may present.

The use of pesticides has been increasing for the last few decades. From 2016 to 2021,
the use of different pesticides experienced steady growth (Figure 1); when analyzed from
1990 to 2016, the trend of more tons per year is clearer [10].

2.1. Classification

There are different forms of classification of pesticides; they can be classified based on
their chemical composition or by their target [10]. The WHO (World Health Organization)
provides a classification based on the pesticide lethal dose 50 (LD50), which represents the
dose required to kill half the tested population after a standardized test duration. WHO
reports the LD50 for two types of exposition to the substances, dermal and oral [11]. This
classification (Table 1) is very useful because it gives information about the health risks of
any type of pesticide.
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Figure 1. Pesticide use from 2016 to 2021 (data from https://www.fao.org/faostat, accessed on
18 October 2023).

Table 1. WHO pesticide classification.

Class Oral LD50 for the Rat
(mg/kg Body Weight)

Dermal LD50 for the Rat
(mg/kg Body Weight)

Ia: Extremely hazardous <5 <50
Ib: Highly hazardous 5–50 50–200

II: Moderately hazardous 50–2000 200–2000
III: Slightly hazardous Over 2000

U: Unlikely to present acute hazard 5000 or higher

2.2. Extremely Hazardous Pesticides

According to WHO and the Globally Harmonized System of Classification and La-
belling of Chemicals (GHS) of the UN (United Nations) [4], these types of pesticides may
cause cancer and genetic defects and may have a negative impact on fertility or an unborn
child. Table 2 shows pesticides that are used in agriculture that are extremely hazardous.

Table 2. Extremely hazardous pesticides used in agriculture.

Substance LD50 in Rats
(mg/kg Body Weight) Reference

Aldicarb (Carbamate) 0.46–0.93 [12]
Terbufos (Organophosphate) 1.6–4.5 [13]

Methyl Parathion (Organophosphate) 6.9 [14]

Aldicarb is a highly toxic carbamate insecticide that is soluble in water due to its
polarity; in both target and non-target organisms, this pesticide acts as a cholinesterase
inhibitor. Though the inhibition is reversible, the effect may be acute depending on the
amount of pesticide exposure to the organism; in non-target organisms such as humans, it
may have a considerable effect on the central nervous system [15,16]. This pesticide has
been found in the drinking water of some U.S. cities, such as New York, where it exceeded
the permissible limit [17].

https://www.fao.org/faostat
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Terbufos (TBF), an organophosphate (OP) pesticide, is used as an insecticide and
nematicide; its use is prohibited in the European Union, and in the United States, the EPA
lists it as a restricted use pesticide (RUP), meaning that it can be used for agricultural
purposes, but it should not be used in homes [18,19].

Methyl parathion is used as an insecticide, nematicide, and acaricide/organophosphate
acaricide to control agricultural crop pests; its application on crops consumed by children
is prohibited [19,20].

2.3. Highly Hazardous Pesticides

According to the WHO classification, a pesticide that falls into class Ib is one whose median
lethal dose is within the values of 5–50 mg kg−1 body weight orally and 50–200 mg kg−1

dermally. Table 3 shows the pesticides in use that fall within this classification [4].

Table 3. Highly hazardous pesticides used in agriculture.

Substance LD50 in Rats
(mg/kg Body Weight) Reference

Cyfluthrin (Pyrethroid) 900 [21]
Tefluthrin (Pyrethroid) 21.8 [22]

Carbofuran (Carbamate) 7 [22]

Cyfluthrin is a type II pyrethroid, which is frequently used in veterinary medicine
and agriculture against pests [23]; the residual pesticide may end up in food consumed by
humans, affecting their health. If present in soils, it can have a detrimental effect on the soil
microorganisms [24].

Tefluthrin is a type I pyrethroid, which contains a cyclopropane carboxylic acid moiety
linked to an aromatic alcohol [25]. Its action on pests results in paralysis and death; it is
applied to lepidopteran and coleopteran pests [26].

Carbofuran is an N-methylcarbamate pesticide used to control crop insect and nema-
tode pests [27]. As a cholinesterase inhibitor, it can cause harmful effects on the health
of non-target organisms such as mammals. Due to this and other health effects, the use
of carbofuran has been banned in some countries, but it has not stopped being used in
developing countries [28].

2.4. Moderately Hazardous Pesticides

According to the WHO classification, a pesticide that falls into class II is one whose
median lethal dose is within the values of 50–2000 mg kg−1 body weight orally and
200–2000 mg kg−1 dermally. Table 4 shows the pesticides in use that fall within this
classification [4].

Table 4. Moderately hazardous pesticides used in agriculture.

Substance LD50 in Rats
(mg/kg Body Weight) Reference

DDT (Organochlorine) 113–118 [29]
λ-cyhalothrin (Pyrethroid) 612 [30]
Permethrin (Pyrethroid) 430–4000 [31]

Chlorpyrifos (Organophosphate) 135 [32]
Dimethoate (Organophosphate) 245 [33]

2,4-D (Organochlorine) 375 [34]
Dicamba (Organochlorine) 1581 [35]

Cyanazine (Organochlorine) 140–750 [36]

DDT is a moderately toxic pesticide with a half-life of 4–30 years. In addition to being
toxic, it is a recalcitrant chemical with a complex degradation process [37]. In the 1960s, it
was observed that DDT was present in all life forms in addition to water, air, and soil [38].



Int. J. Mol. Sci. 2023, 24, 15969 5 of 47

Lambda-cyhalothrin is a pesticide belonging to the pyrethroid class, developed in
1984 [39,40]. It is an acaricide insecticide [41]. Concentrations of this pesticide have been
detected in mixtures with other types of pesticides, and relatively high doses (ranging from
10 to 100 ng of active ingredient per liter of water) can commonly be detected [41].

Permethrin was the first photostable synthetic pyrethroid developed in 1972 by
Michael Elliot [39]. This pesticide is one of the most common pesticides that can be
found in the environment. Permethrin is commonly used in agricultural and domestic
applications, and traces of this pesticide have been found and reported in water bodies [42].
It belongs to the group of organophosphates commonly used as insecticides. It is one
of the insecticides used after the prohibition of the use of organochlorines. Studies have
shown that complete biodegradation of permethrin can take more than 15 years [39,43]. It
is one of the pesticides included in the European Water Framework Directive (Directive
2000/60/EC), monitoring its persistence in water [44].

Dimethoate is an insecticide commonly used to kill insects and mites. It targets the
central nervous system of pests [45]. It is also used to control fungal diseases of fruits,
vegetables, and field crops [46].

2,4-dichlorophenoxyacetic acid (2,4-D) is a phenoxy herbicide that was originally
synthesized in 1941 and was commercialized for the first time in 1945, and since then, it has
been one of the lowest-cost herbicides sold in the USA [38]. Even though it is considered an
excellent herbicide, it is a disruptor of the endocrine system of mammals, highly toxic to the
liver and kidneys, and has been cataloged as a carcinogenic and mutagenic pesticide [47].

Dicamba is a post-emergence pesticide that is used in a variety of crops where
glyphosate-resistant weeds have emerged [48]. Considerable exposition to this pesticide
can have a toxic effect on the liver and cellular functions. When comparing the toxic-
ity of this pesticide with that reported in the pesticide data sheet, a great difference can
be observed [48]. Toxic effects on mammals, from embryotoxicity and teratogenicity to
neurotoxicity, have been demonstrated [49].

Cyanazine, a herbicide belonging to the triazine group, is one of the most widely
applied pesticides in the US crop. This pesticide is commonly found in water samples [50].
According to some studies, the concentration of this pesticide has reached up to 1300 µg L−1

in surface water and 3500 µg L−1 in groundwater [51].

2.5. Slightly Hazardous Pesticides

A pesticide that falls into class III has a median lethal dose of >2000 mg kg−1 body
weight orally and >2000 mg kg−1 dermally. Table 5 shows pesticides in use that fall within
this classification [4].

Table 5. Slightly hazardous pesticides used in agriculture.

Substance LD50 in Rats
(mg/kg Body Weight) Reference

Glyphosate (Organophosphate) 7203.58–7397.25 [52]
Atrazine (Organochlorine) 1869 [53]

Metolachlor (Organochlorine) 1500 [54]

Glyphosate is one of the most used herbicides in the world; it is used to control the
growth of weeds in fields. After its application, the pesticide remains in the soil, reaching
groundwater, and as a potential contaminant, it may affect wildlife and humans [55]. It
is a non-selective herbicide [39]. This pesticide was originally patented as a chelator in
1950 [56].

Atrazine is a synthetic herbicide of the triazine group. This herbicide is responsible for
modifying the development of plants by affecting the process of enzyme production and
photosynthesis [57].

Metolachlor belongs to the chloroacetanilide herbicides, which are very common
to find when analyzing water samples. This herbicide was banned in 2006 [54]; when
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introduced to the market, it was sold as a product containing the enantiomer pair (R and S).
It was developed for the control of grasses and weeds and is recorded to have been used
on at least 70 crops [58].

2.6. Unlikely to Present Acute Hazard Pesticides

The pesticides that are classified in this group are those that do not present alarming
toxicity since, to cause lethal toxicity, very high quantities are needed, exceeding 5 g of
pesticide [4]. Table 6 shows the pesticide in this classification that is used in agriculture.

Table 6. Unlikely hazardous pesticides used in agriculture.

Substance LD50 in Rats
(mg/kg Body Weight) Reference

Trifluralin (Organophosphate) 10,000 [59]

Trifluralin is a pesticide capable of depolymerizing microtubules or altering the con-
centration of calcium ions in the cell, causing interference in the mitotic division of cells. It
affects the meristems and the subterranean tissues of the plant [60]. This herbicide is used
in pre-emergence stages for weed control, mainly in wheat crops [61].

3. Biodegradation of Pesticides
3.1. Microbial Diversity

Some pesticides are extremely resistant to degradation, making them persistent con-
taminants in the environment. Moreover, most of them may be considered a health concern.
Due to the chemical stability of the chemicals, new strategies, such as biodegradation,
are needed to achieve the removal of these molecules from the environment [62]. As
Matsumura et al. [63] rightly argue, one environmentally friendly method is the use of
microorganisms with the capacity to biodegrade these contaminating compounds that are
present in soil and water.

Microorganisms have a strong capacity to adapt to the constant changes in the environ-
ment they inhabit, for example, mutation or induction. Microorganisms will use different
types of metabolisms to metabolize these xenobiotic compounds, which they can later
use as a source of carbon, nitrogen, phosphorus, energy, etc. Microbial metabolism of the
pesticides ends in one of two scenarios: the complete biodegradation of the molecules or
the mineralization of it; in this case, most of the by-products are suitable for their re-entry
into the environment [63,64].

It should be emphasized that pesticide biodegradation is less expensive than tradi-
tional methods, which makes it financially viable for companies wishing to implement it,
and that the by-products produced are less or almost not harmful to the environment [64,65].
Within the microbial kingdom, bacteria, fungi, and algae are currently being investigated
for their ability to degrade pesticides [66].

3.1.1. Bacteria

Multiple genera of bacteria (Table 7) have the metabolic tools to metabolize pesticides.
In this process, pesticide molecules may be used as nutrients or as electron donors; the
metabolism rate will depend on several biotic and abiotic factors, such as temperature, wa-
ter availability, nutrient availability, other microorganisms present, and physical disruption
of soil by agricultural practices. The overall result of the bacterial pesticide biodegra-
dation process is the conversion of a highly toxic substance to a less or even non-toxic
product [65,67].
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Table 7. Pesticide degrading bacteria.

WHO Pesticide
Classification

Pesticide (% of
Biodegradation Rate) Bacteria Reference

Extremely
Hazardous

Aldicarb (85%)
Terbufos (42%)
Methyl parathion
(7–90%)

Enterobacter cloacae TA7
Micrococcus arborescens
Pseudomonas aeruginosa
Brachybacterium sp.
Salsuginibacillus kocurii
Stenotrophomonas sp. YC-1
Flavobacterium sp.
Ochrobactrum sp. B2
Agrobacterium sp. YW12
Fischerella sp.
Serratia sp. DS001
Bacillus sp. CBMAI 1833
Bacillus cereus P5CNB
Pseudomonas sp. Z1
Burkholderia zhejiangensis CEIB S4–3
Nodularia linckia
Nostoc muscorum
Oscilatoria animalis
Phormidium foveolarum
Burkholderia cenocepacia CEIB S5-2
Acinetobacter sp.
Pseudomonas putida
Bacillus sp.
Citrobacter freundii
Stenotrophomonas sp.
Flavobacterium sp.
Proteus vulgaris
Pseudomonas sp.
Acinetobacter sp.
Klebsiella sp.
Proteus sp.
Microcystis novacekii
Alcaligenes sp. SRG
Serratia marcescens MEW06

[20,67–83]

Highly
Hazardous

Cyfluthrin (80%)
Tefluthrin 1

Carbofuran (97.5%)

Photobacterium ganghwense T14
Novosphingobium sp. KN65.2
Pseudomonas stutzeri S1
Lysinibacillus sphaericus FLQ-11-1
Brevibacterium aureum
Cupriavidus sp. ISTL7
Enterobacter cloacae TA7
Bacillus sp.
Chryseobacterium sp. BSC2-3
Burkholderia cepacia PCL3

[67,84–92]
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Table 7. Cont.

WHO Pesticide
Classification

Pesticide (% of
Biodegradation Rate) Bacteria Reference

Moderately
Hazardous

DDT (5–98%)
Lambda-
Cyhalothrin (70–90%)
Permethrin (80–100%)
Chlorpyrifos (60–90%)
Dimethoate (80–98%)
2,4-D (30–90%)
Dicamba 1

Cyanazine 1

Alcaligenes faecalis strain DSP3
Pseudomonas nitroreducens AR-3
Ralstonia pickettii
Stenotrophomonas sp.
Pseudomonas aeruginosa
Ochrobactrum sp. DDT-2
Alcaligenes sp. KK
Arthrobacter globiformis DC-1
Serratia marcescens NCIM 2919
Advenella kashmirensis
Corynebacterium sp.
Enterobacter cloacae
Bacillus thuringiensis ZS-19
Bacillus velezensis sd
Bacillus subtilis
Paracoccus acridae SCU-M53
Brucella intermedia Halo1
Alcaligenes faecalis CH1S
Aquamicrobium terrae CH1T
Enterobacter ludwigii
Bacillus thuringiensis Berliner
Acinetobacter baumannii ZH-14
Hortaea sp. B15
Streptomyces sp.
Enterobacter sp. SWLC2
Pseudomonas putida CBF10-2
Ochrobactrum anthropi FRAF13
Rhizobium radiobacter GHKF11
Methylobacterium extorquens
Bacillus cereus Ct3
Stenotrophomonas maltophilia
Acinetobacter calcoaceticus
Bacillus amyloliquefaciens CP28
Pseudomonas putida T7
Pseudomonas aeruginosa M2
Klebsiella pneumoniae M6
Alcaligenes sp.
Bacillus subtilis
Enterobacter sp.
Klebsiella sp.
Micrococci sp.
Cupriavidus nantongensis X1T
Bacillus megaterium CCLP1
Bacillus safensis CCLP2
Shewanella sp. BT05
Pseudomonas fluorescens CD5
Achromobacter spanius C1
Pseudomonas rhodesiae C4
Weissella confusa
Azotobacter vinelandii ATCC 12837
Coleofasciculus chthonoplastes
Lysinibacillus sp. HBUM206408

[37,93–155]
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Table 7. Cont.

WHO Pesticide
Classification

Pesticide (% of
Biodegradation Rate) Bacteria Reference

Moderately
Hazardous

DDT (5–98%)
Lambda-
Cyhalothrin (70–90%)
Permethrin (80–100%)
Chlorpyrifos (60–90%)
Dimethoate (80–98%)
2,4-D (30–90%)
Dicamba 1

Cyanazine 1

Achromobacter insuavis
Dyadobacter jiangsuensis 12851
Arthrobacter sp. HM01
Psychrobacter alimentarius T14
Streptomyces phaeochromogenes
Streptomyces praecox SP1
Pseudomonas putida
Xanthomonas campestris pv. Translucens
Pseudomonas kilonensis MB490
Serratia sp. (100%)
Sphingomonas sp. DC-6
Raoultella sp. X1
Lactobacillus plantarum
Chryseobacterium
Variovorax
Aeromonas
Xanthobacter
Acidovorax
Cupriavidus gilardii T-1
Enterobacter hormaechei subsp. xiangfangensis 19_357_F
Cupriavidus campinensis
Delftia sp.
Cupriavidus necator
Arthrobacter sp. SVMIICT25
Sphingomonas sp. SVMIICT11
Stenotrophomonas sp. SVMIICT13
Corynebacterium humireducens MFC-5
Cupriavidus oxalaticus X32
Thauera sp. DKT
Pseudomonas simiae EGD-AQ6
Sphingobium sp. Ndbn-10
Sphingomonas sp. Ndbn-20
Pseudomonas maltophilia DI-6
Rhizorhabdus dicambivorans Ndbn-20

[37,93–155]

Slightly
Hazardous

Glyphosate (30–90%)
Atrazine (40–100%)
Metolachlor (40–100%)

Rhodococcus soli G41
Stenotrophomonas maltophilia GP-1
Achromobacter sp. MPK7A
Bacillus cereus
Burkholderia vietnamiensis AO5–12 Burkholderia sp.
AO5–13
Enterobacter cloacae K7
Ochrobacterium anthropic GPK3
Pseudomonas sp.
Agrobacterium tumefaciens CNI28
Novosphingobium sp. CNI35
Ochrobactrum pituitosum CNI52
Gallinifaecis sp. CAS4
Chryseobacterium sp. Y16C
Spirulina platensis
Streptomyces lusitanus
Lysinibacillus sphaericus
Stenotrophomonas acidaminiphila Y4B
Bradyrhizobium spp.

[55,156–208]
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Table 7. Cont.

WHO Pesticide
Classification

Pesticide (% of
Biodegradation Rate) Bacteria Reference

Slightly
Hazardous

Glyphosate (30–90%)
Atrazine (40–100%)
Metolachlor (40–100%)

Comamonas odontotermitis P2
Bacillus subtilis
Rhizobium leguminosarum
Serratia sp.
Bacillus aryabhattai FACU
Pseudomonas fluorescens
Providencia rettgeri GDB 1
Bacillus cereus
Pseudomonas alcaligenes
Pseudomonas stutzeri
Bacillus licheniformis
Lactobacillus plantarum
Lactobacillus rhamnosus
Bacillus shackletonii
Pseudomonas citronellolis ADA-23B
Solicoccozyma terricola M 3.1.4.
Achromobacter denitrificans
Ochrobactrum haematophilum
Pseudomonas putida Ch2
Ochrobactrum intermedium Sq20
Burkholderia cepacia PSBB1
Pseudomonas aeruginosa
Ensifer adhaerens SZMC 25856
Pseudomonas resinovorans SZMC 25875
Burkholderia anthina
Burkholderia cenocepacia
Geobacillus caldoxylosilyticus T20
Bacillus licheniformis ATLJ-5.
Bacillus megaterium ATLJ-11
Pseudomonas sp.
Pseudaminobacter sp.
Nocardioides sp.
Klebsiella sp. A1
Comamonas sp. A2
Klebsiella variicola FH-1
Arthrobacter sp. NJ-1
Acinetobacter lwoffii DNS32
Agrobacterium rhizogenes AT13
Acetobacter
Pseudomonas
Clostridium-sensu-stricto
Burkholderia
Ensifer sp.
Solibacillus sp.
Bacillus sp.
Arthrobacter sp.
Bacillus velezensis MHNK1
Citricoccus sp. TT3
Paenarthrobacter sp. W11
Methylobacillus
Enterobacter sp. P1
Arthrobacter sp. DNS10
Bradyrhizobium
Rhodococcus
Hydrogenophaga sp. Gsoil 1545 Sinorhizobium sp. TJ170

[55,156–208]
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Table 7. Cont.

WHO Pesticide
Classification

Pesticide (% of
Biodegradation Rate) Bacteria Reference

Slightly
Hazardous

Glyphosate (30–90%)
Atrazine (40–100%)
Metolachlor (40–100%)

Rhizobium sp.
Bacillus anthracis
Pseudomonas balearica
Pseudomonas otitidis
Pseudomonas indica
Providencia vermicola
Pseudomonas spp. ACB
Pseudomonas spp. TLB
Methylobacterium
Mycobacterium
Bacillus atrophaeus
Variovorax sp. 38R
Arthrobacter sp. TES
Chelatobacter sp. SR38
Bacillus megaterium Mes11
Ralstonia
Phyllobacterium
Stenotrophomonas
Holophaga foetida

[55,156–208]

Unlikely
Hazardous Trifuralin (30–95%)

Arthrobacter aurescens CTFL7
Herbaspirillum sp.
Klebsiella sp.
Pseudomonas fluorescens
Bacillus simplex
Bacillus muralis
Micrococcus luteus
Micrococcus yunnanensis
Clostridium tetani
Klebsiella oxytoca
Herbaspirillum seropedicae
Bacillus megaterium
Brevundimonas diminuta
Streptomyces PS1/5

[123,209–214]

1 Biodegradation rates for these pesticides are not reported.

3.1.2. Fungi

Because fungi show mycelial growth, they are more frequently used for bioremediation
in soil than in water, and they have the property of producing extracellular enzymes in
sufficient quantities to produce the enzymes needed for bioremediation [215]. It must
be emphasized that the right factors must be in place for the fungi to achieve proper
degradation of the xenobiotic compounds in the soil, pH, minerals present, and moisture,
to name a few factors [65].

Basidiomycetes is one of the main soil bioremediating agents against xenobiotic com-
pounds. They are characterized by a high degradation capacity, and their bioremediation
strategy relies heavily on the production of extracellular ligninolytic enzymes, converting
toxic compounds into sources of energy and nutrients, going from complex to simple
compounds [216]; a list of pesticide-degrading fungi is shown in Table 8.
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Table 8. Pesticide degrading fungi.

WHO Pesticide
Classification

Pesticide (% of
Biodegradation Rate) Fungi Reference

Extremely
Hazardous

Aldicarb (40–50%)
Terbufos (50–100%)
Methyl parathion
(80–100%)

Ascochyta sp. CBS 237.37
Trametes versicolor
Coriolus versicolor NBRC 9791
Bjerkandera adusta 8258
Pleurotus ostreatus 7989 Phanerochaete chrysosporium 3641
Fusarium sp.
Yarrowia lipolytica
Aspergillus niger AN400
Penicillium citrinum DL4M3
Penicillium citrinum DL9M3
Fusarium proliferatum DL11A
Aspergillus sydowii
Penicillium decaturense
Aspergillus niger MRU01
Aspergillus niger NCIM 563

[217–226]

Highly
Hazardous

Cyfluthrin (10–70%)
Carbofuran (96%)

Ascochyta sp. CBS 237.37 Trichoderma viride 2211
Aspergillus niger ZD11
Aspergillus nidulans var. dentatus
Sepedonium maheswarium
Trametes versicolor
Mucor ramannianus
Pichia anomala
Trametes versicolor

[217,227–233]

Moderately
Hazardous

DDT (50–100%)
Lambda-
Cyhalothrin (50–100%)
Permethrin (90%)
Chlorpyrifos
(40–100%)
Dimethoate (60–97%)
2,4-D (2–30%)

Ganoderma lingzhi
Fomitopsis pinicola
Gloeophyllum trabeum
Cladosporium sp.
Aspergillus sydowii
Trichoderma sp.
Cladosporium cladosporioides Hu-01
Rhodotorula glutinis
Rhodotorula rubra
Phanerochaete chrysosporium
Trichoderma harzianum
Trichoderma virens
Byssochlamys spectabilis
Aspergillus fumigates
Aspergillus terreus TF1
Verticillium sp.
Aspergillus sp.
Trichoderma viride
Trichoderma harzianum
Aspergillus niger
Aspergillus oryzae
Penicillium citrinum
Aspergillus fumigates
Trametes versicolor
Penicillium chrysogenum
Aspergillus niger MRU01
Eurotim sp. F4
Emericella sp. F5
Trichosporon sp.
Penicillium implicatum
Aspergillus viridinutans

[96,120,137,216,225,
234–249]
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Table 8. Cont.

WHO Pesticide
Classification

Pesticide (% of
Biodegradation Rate) Fungi Reference

Slightly
Hazardous

Glyphosate (60–80%)
Atrazine (70–100%)
Metolachlor (30%)

Aspergillus flavus
Aspergillus terricola
Fusarium sp.
Aspergillus niger
Scopulariopsis sp.
Trichoderma harzianum
Fusarium oxysporum
Penicillium notanum
Aspergillus oryzae A-F02
Penicillium chrysogenum
Fusarium dimerum
Fusarium verticillioides
Aspergillus fumigatus
Penicillium citrinum
Purpureocillium lilacinum
Mucor spp.
Sterilia spp.
Trametes maxima
Paecilomyces carneus
Pleurotus ostreatus INCQS 40310
Trametes versicolor
Bjerkandera adusta
Pluteus cubensis SXS320
Gloelophyllum striatum MCA7
Agaricales MCA17
Polyporus sp. MCA128
Datronia stereoides MCA167
Datronia caperata MCA5
Metarhizium robertsii
Trichoderma sp.
Aspergillus section Flavi
Pichia kudriavzevii Atz-EN-01
Penicillium sp. yz11-22N2
Saccharomyces cerevisiae
Anthracophyllum discolor
Glomus caledonium
Aspergillus niger
Candida xestobii
Mortierella
Kernia
Chaetomium
Trichosporon
Candida tropicalis
Penicillium oxalicum MET-F-1

[165,167,250–277]

Unlikely
Hazardous Trifuralin (80%)

Phanerochaete chrysosporium
Trametes versicolor
Penicillium simplicissimum
Metacordyceps chlamydosporia
Stachybotrys chartarum
Alternia alternata

[211,278]

3.1.3. Algae

As mentioned by García-Galán [279], contrary to fungi and bacteria, algae can and
should be cultured in aqueous media. A particularity of algae is that they can grow in low-
quality water where other microorganisms would experience excessive stress, considerably
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hindering their ability to grow. Algae are good bioremediation agents of contaminated
water, whether coming from the industrial, domestic, or agricultural sector; thanks to their
metabolic versatility, algae can use effluents contaminated with heavy metals, pesticides
(Table 9), or organic matter and transform them into a source of nitrogen (N), eliminating
the excess of nitrogen in the environment. They can also sequester carbon and produce
oxygen (O2) [280].

If metabolically impeded, algae can establish relationships with heterotrophic microor-
ganisms to achieve the bioremediation of pesticides present in water [281,282].

Table 9. Some of the algae currently have a bioremediating function.

Algae Degraded Pesticide Reference

Chlorococcum humicola
Gracilaria verrucosa 2,4-D 1 [283,284]

Chlorella vulgaris
Scenedesmus bijugatus Methyl Parathion 1 [285]

Chlorococcum sp. DDT 1 [285]

Selenastrum capricornutum
Synechococcus elongatus
Chlorella vulgaris
Chlorella sp.

Atrazine (60–80%) [286–288]

Oscillatoria limnetica
Skeletonema costatum
Emiliania huxleyi
Isochrysis galbana

Glyphosate 1 [289,290]

Chlorella sp.
Scenedesmus sp. Chlorpyrifos 1 [291]

Chlorella vulgaris Carbofuran (100%) [292]

Chlorella vulgaris Dimethoate (100%) [292]

Chlorella vulgaris Metolachlor (100%) [292]
1 Biodegradation rates for these pesticides are not reported.

3.1.4. Actinomycetes

Actinomycetes have an established ability to metabolize xenobiotic chemicals from
soil and water. They are capable of adapting to different environmental setups; for exam-
ple, they can grow well in acidic and alkaline conditions; this is important because the
availability of different toxic compounds could be determined by this chemical factor. The
genus Streptomyces is one of the most researched members of the actinomycetes; they are
saprophytic bacteria that can be found both in soil and water [7,293,294].

Actinobacteria, such as Streptomyces, can use pesticides as a carbon source, degrading
inorganic compounds completely and rendering them non-toxic to the environment [293].
Streptomycetes can utilize several metabolic tools to achieve bioremediation processes, one
of which is the production of enzymes such as hydrolases, glucosyltransferases, xylanases,
laccases, and proteinases [7].

Using a consortium of different genera and species of bacteria makes bioremediation
more feasible. Streptomycetes can degrade different families of pesticides, such as organochlo-
rines, organophosphates, pyrethroids, and urea [7]. According to Alvarez [295,296],
the most outstanding genera belonging to the actinobacteria are Frankia, Janibacter, Kokuria,
Mycobacterium, Nocardia, Rhodococcus, Arthrobacter, Pseudonocardia, and Streptomyces.



Int. J. Mol. Sci. 2023, 24, 15969 15 of 47

3.2. Metabolic Pathways

Metabolic pathways play a crucial role in the biodegradation of pesticides. Microor-
ganisms utilize various metabolic pathways to break down pesticides into less harmful
compounds. These pathways may include mitochondrial energy metabolism, fatty acid
and lipid metabolism, amino acid metabolism, oxidative and hydrolytic pathways, and
methylation.

Understanding these pathways is essential for two reasons. First, for developing
safe and efficient pesticide use and bioremediation strategies for contaminated soil and
water. Second, a comprehensive understanding of the enzymes involved in the metabolic
pathways could allow the use of metabolic engineering or DNA recombinant techniques to
use these biomolecules and, to a certain degree, not depend on the microorganisms.

The present section discusses metabolic pathways for the degradation of different
pesticides. Almost all the information comes from bacteria; this observation is important
because it exposes the need to study the metabolic pathways of pesticides from different
microorganisms, such as fungi and algae.

Fungi exhibit a greater metabolic diversity compared to bacteria; this is evident in
various aspects of their metabolic capabilities and interactions within ecosystems.

One key aspect is the diversity of fungal cytochrome P450 enzymes. Fungi possess a
wider range of cytochrome P450 families than plants, animals, and bacteria [297]. These
enzymes play a crucial role in the metabolism of various compounds, including xenobiotics
and natural products [298]; the tremendous variation in fungal cytochrome P450s suggests
that fungi have evolved diverse metabolic functions to meet novel metabolic needs [297].

Furthermore, studies have shown that fungi have a greater metabolic activity and
diversity in certain environments. For example, in forest soils, fungi are more important and
active at low temperatures than bacteria [299]. In suboptimal combinations of temperature
and moisture, the cultivable bacteria in planted soil exhibit higher activity and metabolic
diversity compared to unplanted soil, while the cultivable fungi in planted soil exhibit
higher metabolic diversity than those in unplanted soil [300]. These findings highlight the
metabolic versatility of fungi in different environmental conditions.

The metabolic diversity of fungi also has implications for carbon turnover and nutri-
ent cycling in ecosystems. Fungal decomposers have wider enzymatic capabilities than
bacteria, allowing them to mineralize low-quality substrates like particulate leaf litter [301].
Fungi dominate over bacteria in terms of biomass, production, and enzymatic substrate
degradation in freshwater ecosystems [302]. These findings highlight the importance of
fungal metabolic diversity and how it can be exploited for the biodegradation of pesticides.

3.2.1. Extremely Hazardous Pesticides
Aldicarb

The metabolic degradation of aldicarb from microorganisms, such as bacteria, proceeds
by oxidative and hydrolytic pathways in which they use this carbamate as the only source of
carbon and nitrogen; therefore, their growth depends on the use of aldicarb (Figure 2) [67,303].

The first phase in metabolic degradation is sulfur oxidation, where aldicarb is first oxi-
dized to aldicarb sulfoxide (2-methyl-2-(methylsulfinyl) propionaldehyde O-(methylcarbamoyl)
oxime) and subsequently to aldicarb sulfone (2-methyl-2-(methylsulfonyl) propionaldehyde
O-(methylcarbamoyl) oxime) [303,304]; these intermediates may enhance crop production
but will persist in soil with a toxicity similar to that of the original aldicarb [303,305].

In the second stage, hydrolysis of sulfone and sulfoxides occurs via the enzymatic
action of aldicarb hydrolase. This enzyme was detected in a cell-free extract of Enterobacter
cloacae strain TA7 in the biodegradation of carbamates [296,303]. The products of the
enzyme reaction are carbamic acid, which breaks down into carbon dioxide (CO2) and a
corresponding amine [15], as well as N-methyl-carbamic acid and oximes, which undergo
dehydration to form nitriles [303].
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The products derived from the hydrolytic route are less toxic than aldicarb. It has
been reported that bacteria belonging to the genera Arthrobacter, Acinetobacter, Enterobacter,
Bacillus, Pseudomonas, Methylobacterium, and Kocuria can use aldicarb and its degradation
products in the form of nitrogen [304].
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Figure 2. Aldicarb degradation pathway—adapted and re-drawn from [303].

Terbufos

Terbufos (TBF) [S-t-butylthiomethyl-O,O-diethyl phosphorodithioate] is an
organophosphate (OP) pesticide used as an insecticide and nematicide [18]. Terbufos
is vulnerable to the enzymatic activity of organophosphorus hydrolase (OPH), an enzyme
known to be very efficient in degrading organophosphorus compounds [306]. It is also
subject to other microbial enzymatic reactions, such as hydrolysis, oxidation, alkylation,
and dealkylation [307,308].

Biodegradation of terbufos requires several steps (Figure 3). The first step is the
generation of the intermediate terbufos-oxon, which is formed by oxidative desulfurization
by an -OH radical on the P-S bond. Then, the interfacial transfer of a single electron from the
sulfur atom near the phosphorus atom leads to the formation of the cation radical terbufos
and the cleavage of the C-S bond in this radical, causing the formation of (C2H5O)2P(S)S-
radicals which are the precursor of the O,O-diethyl phosphorodithioic ester [309,310].
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Figure 3. Terbufos biodegradation: metabolic pathway—adapted and re-drawn from [310].

The intermediate tert-butyl-hydroxymethyl sulfide is hydrolytically formed by the C-S
bond of terbufos and leads to the formation of -SC(CH3)3 radicals, which are precursors
of tert-butanethiol; recombination of these radicals can form dimers such as di-tert-butyl
disulfide [310].

Finally, cleavage of the C-S bond leads to the formation of the tert-butyl carbonium
ion, and hydrolysis of this molecule produces tert-butanol, dehydrogenation leads to the
formation of isobutene which is oxidized to form acetone [309].

Methyl Parathion

Methyl parathion is produced by the reaction of O,O-dimethyl phosphorochloridoth-
ionate and 4-nitrophenol sodium salt in an acetone solvent [311]. Organic phosphorus
hydrolase (OPH) hydrolyzes methyl parathion into 4-nitrophenol (PNP) and dimethylphos-
phate (DMP); this hydrolytic reaction is the first step in the degradation of methyl parathion
by soil microorganisms [311,312] (Figure 4). In addition, OPHs are important bacterial
enzymes as they participate in the hydrolyzation of PO and P=S bonds [313].
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Figure 4. Methyl parathion biodegradation: metabolic pathway—adapted and re-drawn from [314].

PNP is hydrolyzed to benzoquinone, which is subsequently transformed into hydro-
quinone, γ-hydroxymuconic semialdehyde, and maleylacetate. These reactions are impor-
tant in the degradation process of methyl parathion to finally form β-ketoadipate [314].
The enzyme monooxygenase is involved in catalyzing the reaction of PNP to benzoquinone
in the presence of FAD and NADH [315].
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3.2.2. Highly Hazardous Pesticides
Cyfluthrin

Degradation of this pyrethroid begins with the transformation of the carboxylester
bond by cleavage to yield 2,2,3,3-tetramethyl-cyclopropanomethanol and 4-fluoro-3-phenexy-
benzoic acid [316] (Figure 5). This reaction is the primary step of biodegradation of
Cyfluthrin [88]. Then, 4-fluoro-3-phenexy-benzoic acid undergoes diaryl cleavage, re-
sulting in a molecule of 3,5-dimethoxy-phenol and a molecule of phenol; both are further
metabolized [317].
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Carboxylesterases are essential in the metabolism of various living organisms and
are produced as a defense to metabolize pesticides and insecticides [318]. In addition,
they efficiently hydrolyze cyfluthrin to its corresponding acids and alcohols to reduce
toxicity [319].
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Tefluthrin

The degradation process of tefluthrin, a chemical lacking the α-cyano group in the
phenoxybenzyl moiety [320], includes hydrolysis of the central ester bond and oxidation at
several points (Figure 6) [321].
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After the first step of hydrolysis, two intermediates are formed, cyclopropane car-
boxylic acid and PBAlc; the latter is oxidized to PBAld, and finally, PBA1d is transformed
to either 1,2-benzenedicarboxylic acid or 1,2-benzenedicarboxylic butyl dacyl ester [322].

Different enzymes are involved in the biodegradation process of tefluthrin, such as
carboxylesterase, which is the most purified enzyme of pyrethroid-degrading microorgan-
isms; the enzymes monooxygenase and aminopeptidase are attributed to the hydrolysis of
the ester bond during microbial degradation [25].

Transformation of tefluthrin occurs through the involvement of carboxylesterases
at the central ester bond or monooxygenases at one or more of the acid or alcohol bind-
ing sites [323]. Monooxygenases are mediated by cytochrome P450, a metabolic system
involved in the metabolism of xenobiotics, such as insecticides, in all living organisms,
including microorganisms and plants [324]. They also catalyze the degradation of aro-
matic compounds by introducing an oxygen molecule, which increases their reactivity and
solubility [324,325].
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Carbofuran

Biodegradation of carbofuran proceeds in three main steps: hydrolysis of the carba-
mate bond, processing the aromatic fraction, and subsequent degradation of the aromatic
ring [85].

Hydrolysis of carbofuran involves the participation of a hydrolase to separate the ester
bond of the carbonyl group of N-methylcarbamic acid attached to phenol and the amide
bond of methylcarbamic acid to produce carbofuran-7-phenol (7-phenol (2,3-dihydro-2,2-
dimethyl-7-benzofuranol)), CO2, and methylamine (Figure 7) [325,326].
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Carbofuran-7-phenol is then converted to 3-(2-hydroxy-2-methylpropyl) benzene-1,2-
diol by carbofuran-7-phenol hydrolase [327]. The enzyme carbofuran hydrolase is encoded
by the mcd gene, which was cloned from the plasmid DNA of Achromobacter sp. WM111,
and it was observed that some carbofuran-degrading bacteria have sequence homology
with this gene [328]. Carbofuran-7-phenol is the main metabolite produced in this process,
which is considered less toxic than the parent compound, while methylamine is used as a
carbon source by carbofuran-degrading microorganisms [326].

It has been reported that some bacteria that degrade carbofuran into carbofuran
phenol belong to the genera Pseudomonas, Flavobacterium, Achromobacter, Sphingomonas,
Novosphingobium, and Paracoccus [27]. By meta-scission of the aromatic ring, 3-(2-hydroxy-
2-methylpropyl) benzene-1,2-diol is formed. Oxidation of this intermediate produces
2,8-dihydroxy-8-methyl-6-oxonone-2,4-dienoic acid; hydroxylation of this product leads to
the production of 3-hydroxy-3-methyl butanoic acid and 2-oxopent-4-enoate, which is then
converted to acetyl-CoA and pyruvate [85,327].

3.2.3. Moderately Hazardous Pesticides
DDT

DDT DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane) is first dechlorinated and
transformed to either 1,1-dichloro-2,2-bis(p-chlorophenyl) ethane (DDD) or 2,2-bis(p-
chlorophenyl)-1,1-dichloroethylene (DDE) [329]. Both intermediates are more toxic than
the original molecule; DDD can also be transformed into DDE [330] (Figure 8).
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Several chemical reactions occur in the degradation of DDT, but mainly reductive
dechlorination, which occurs through the dechlorination of the aliphatic chloroethyl group
of the molecule [331]. Other chemical reactions that may be involved during the degrada-
tion process are dehydrohalogenation, dioxygenation, hydroxylation, hydrogenation, and
meta-ring cleavage [307]. In addition, there are enzymes involved in the process, such as
dehydrochlorinase, dioxygenase, reductase, decarboxylase, and hydrolase [331].

As mentioned before, the first primary intermediate in the DDT metabolic biodegrada-
tion route is DDD or DDE. Each of them is produced under different growth conditions.
DDD is more common in anaerobic conditions, while DDE is associated with aerobic
conditions [332]. Under aerobic conditions, DDT is transformed into DDE by dehydrochlo-
rination carried out by the dehydrochlorinase enzyme [333]. Only a few microorganisms
can completely degrade DDE to CO2 using co-metabolism of biphenyl to obtain biphenyl
dioxygenase, an enzyme required to degrade DDE [334].
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DDE and DDD are transformed to DDMU (1-chloro-2,2-bis(4′-chlorophenyl) ethylene),
which is transformed into DDOH (2,2-bis(p-chlorophenyl) ethanol) and DDA
(bis(4′-chlorophenyl) acetate) by hydroxylation and carboxylation, respectively, and finally
mineralized to carbon dioxide [37]. DDMU is hydroxylated to DDOH by a hydroxylase,
which has been detected in some bacteria, such as P. aeruginosa [97]. DDA is obtained by
the carboxylation of DDOH [98].

Lambda-Cyhalothrin

Pyrethroids are insecticides containing an ester bond formed by alcohol and an acid.
Lambda-cyhalothrin belongs to the type II pyrethroids, in which an alpha-cyano group is
present in the phenylbenzyl alcohol position [323,335]. The main mechanism of biodegra-
dation of type II pyrethroids is the hydrolysis of their carboxyl ester bonds, in which
metabolites, such as PBA (3-phenoxybenzoic acid), PBAlc (3-phenoxybenzyl alcohol) and
PBAld (3-phenoxybenzaldehyde), are formed [336].

Hydrolysis of ester bonds is performed by a carboxylesterase. This type of en-
zyme plays a fundamental role in the detoxification of pyrethroids, and some genes of
carboxylesterase enzymes involved in the degradation of pyrethroids have been identi-
fied [323].

After hydrolysis of the carboxyl ester bond, 2-hydroxy-2-(3-phenoxyphenyl) acetoni-
trile is formed, which is converted to PBAld (3-phenoxybenzamide), and both compounds
can be transformed into PBA (Figure 9) [25]. In addition, PBAld can become PBAlc, while
PBAlc becomes PBA or PBAld [337]. The catalytic conversion of PBAld to PBA involves
aldehyde oxidizing enzymes, such as aldehyde dehydrogenase. PBAlc is oxidized to PBAld
by an alcohol dehydrogenase [338]. The aldh gene encoding aldehyde dehydrogenase has
been found to be activated by pesticide presence in Bacillus spp. [339].
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Permethrin

Permethrin (Per) is a type I pyrethroid with no cyanide in its chemical composi-
tion, and it is present in two forms of diastereomers, cis-Per and trans-Per [340]. An
important step in the degradation of permethrin is ester cleavage, which allows this pro-
cess to produce its metabolites [317,341] (Figure 10). During biodegradation, through
the action of carboxylesterase, the metabolites 3-phenoxybenzyl alcohol (PBAlc) and
3-phenoxybenzaldehyde (PBAld) [342] are obtained. In addition, cyclopropanic acid
(Cl2CA) is produced, and the PBAlc fragment is often intermediate in the photocatabolism
of permethrin that can be oxidized to 3-phenoxybenzoic acid (PBAcid) [343]. The de-
carboxylation of cyclopropanic acid and phenoxybenzoic acid allows the production of
CO2 [342].
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Chlorpyrifos

Chlorpyrifos (CP) is the common name for the insecticide 0,0-diethyl 0-(3,5,6-trichloro-
2-pyridinyl)-phosphorothioate, which is commonly used in the treatment of crops, turf,
and ornamentals [344]. The degradation pathway of this insecticide comprises different
metabolic steps (Figure 11). In the first step, chlorpyrifos is converted to chlorpyrifos-oxon
(CPO) by oxidative desulfurization performed by an oxidase enzyme [345].

Chlorpyrifos reacts with hydroxyl radicals produced photochemically in the atmo-
sphere to enable the formation of CPOs. Chlorpyrifos-oxon (CPO) is an unstable intermedi-
ate formed from chlorpyrifos by oxidative desulfurization or acylation. CPO hydrolyzes
rapidly to TCP and diethylphosphate (DTP) in alkaline soils [346]. After this, two other
metabolites are produced: 3,5,6-trichloro-2-pyridinol (TCP) and diethyl thiophosphate
(DETP) [347].
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The hydrolysis of chlorpyrifos is important for degradation, producing 3,5,6-trichloro-2-
methoxy pyridine (TMP) and deactivating CPO to TCP [345]. In addition, reductive dechlori-
nation produces 2,3-dihydroxypyridine, which hydrolyzes to 2,5,6-trihydroxypyridine, and
metabolites are subsequently oxidized to aliphatic amines, inorganic phosphate, carbon
fragments, etc. 2,3-dihydroxypyridine can also be broken down to produce maleamic
acid, which in turn is oxidized to pyruvic acid, finally entering the Krebs cycle [345].
Chlorpyrifos is ultimately converted to CO2, or its metabolites are integrated into organic
soil matter.
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DETP is hydrolyzed to phosphorothioic acid and ethanol, where it is subsequently
used by CP-degrading microorganisms as a source of sulfur, phosphorus, and carbon [347].
Enzymes, such as hydrolase, phosphotriesterase, phosphatase, catalase, and oxidase, hy-
drolyze chlorpyrifos by cleavage of the P-O, P-F, and P-S bonds [348].

Dimethoate

Biodegradation of dimethoate is achieved mainly by bacteria; two main pathways
of biodegradation have been documented, and their intermediate metabolites have been
detected and confirmed. In the first pathway (Figure 12A), dimethoate is first oxidized to
omethoate, and the result of the metabolic route is two molecules, Aspartylglycine ethyl
ester and O, O, O-Trimethyl thiophosphate. Both are mineralized and assimilated by the
cell. In this pathway, two types of enzymes are proposed to participate: phosphatase and
amidase [93].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 26 of 50 
 

 

route: O,O,O-trimethyl phosphoric ester and phosphorothioic O,O,S-acid [136]. Enzymes 

involved in this second pathway remain to be discovered. 

PS S

O

O

O

NH

PO S

O

O

O

NH

PO

S

S

N

OH OH

PS

O

O

O

N

O

NH2

O

OH

O

O

PS S

O

O

OH
O

P

S

S

O

O PO S

OH

O

OH
O

P

S

S

O

O

P

O

SH

O

OHP

O

O

O

O

P

O

SH

OH

OH

 

Figure 12. Dimethoate degradation pathway—adapted and re-drawn from [93,136]. (A) Dimethoate 

degradation via omethoate. (B) Dimethoate degradation via carboxylation. 

2,4-Dichlorophenoxyacetic Acid 

2,4-D is usually referred to as the oldest organic herbicide; it is used against wide-

leaf weeds in different crops, including rice, wheat, sorghum, sugar cane, and corn [349]. 

It is a molecule that mimics the action of auxins, promoting the synthesis of metabolites 

such as ethylene and ABA, triggering cell death. It has been used for more than 80 years 

[350], and due to its high environmental persistence, it can accumulate in soil and 

eventually contaminate underground water [349]. 

Biological degradation of 2,4-D has been documented in fungi and bacteria. In 

bacteria, two pathways have been characterized [351], and the enzymes that participate 

in both are known and well-studied (Figure 13). In both metabolic pathways, the enzymes 

involved are oxidoreductases, except for one dehalogenase that participates in the second 

pathway (Figure 13B). 

Figure 12. Dimethoate degradation pathway—adapted and re-drawn from [93,136]. (A) Dimethoate
degradation via omethoate. (B) Dimethoate degradation via carboxylation.

In the second pathway (Figure 12B), dimethoate is first oxidized to form dimethoate
carboxylic acid by the release of a molecule of methylamine. Dimethoate carboxylic acid
may be decarboxylated or oxidized, and there are two possible products of the metabolic
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route: O,O,O-trimethyl phosphoric ester and phosphorothioic O,O,S-acid [136]. Enzymes
involved in this second pathway remain to be discovered.

2,4-Dichlorophenoxyacetic Acid

2,4-D is usually referred to as the oldest organic herbicide; it is used against wide-leaf
weeds in different crops, including rice, wheat, sorghum, sugar cane, and corn [349]. It is
a molecule that mimics the action of auxins, promoting the synthesis of metabolites such
as ethylene and ABA, triggering cell death. It has been used for more than 80 years [350],
and due to its high environmental persistence, it can accumulate in soil and eventually
contaminate underground water [349].

Biological degradation of 2,4-D has been documented in fungi and bacteria. In bacteria,
two pathways have been characterized [351], and the enzymes that participate in both are
known and well-studied (Figure 13). In both metabolic pathways, the enzymes involved
are oxidoreductases, except for one dehalogenase that participates in the second pathway
(Figure 13B).
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Recently, an engineered strain of E. coli succeeded at degrading 2,4-D [352]. In both
metabolic pathways, the result is a molecule that enters the Krebs cycle and can be used for
the central metabolism of the cell.

In fungi, the full biodegradation pathway has not been elucidated, but there is evidence
that the cytochrome P450 enzymes may be involved to some extent in the fungal metabolism
of this herbicide [353].

Dicamba

Dicamba (2-methoxy-3,6-dichlorobenzoic acid) is an auxin mimic herbicide used to
control wide-leaf weeds that are used in a variety of crops [354]. It is one of the most com-
monly used herbicides [355], and due to its chemical properties, the off-target movement
of this herbicide considerably poses a risk for contamination of soil, ground, and surface
water [356].

Biodegradation of Dicamba has been documented mainly in bacteria; the experimen-
tally confirmed metabolic pathway involves the dechlorination and demethylation of the
molecule to end up with a molecule of 2-chloromaleylpyruvate (Figure 14) [357]; subse-
quent enzymatic transformation of this molecule has been inferred from the homology
analysis of the genes in the operon, where two or three more enzymes participate with a pro-
posed final product of pyruvate and fumarate/maleate. Both of them can be incorporated
into the central metabolism of the cell [357].
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3.2.4. Slightly Hazardous Pesticides
Glyphosate

Glyphosate is one of the most commonly used wide-spectrum herbicides. For more
than 40 years, it has been used in a variety of crops; it is considered to be the number one
herbicide used worldwide. The existence of genetically modified crops that are resistant to
glyphosate has caused a surge in its use during the last 20 years.

Glyphosate acts as an inhibitor of the enzyme EnolPyruvylShikimate-3-Phosphate
Synthase (EPSPS), causing the plant to not be able to synthesize aromatic amino acids and
eventually causing cell death.

Its bioremediation is performed by bacteria and fungi [358]. In bacteria, two different
metabolic pathways have been elucidated; the first one involves the dephosphorylation of
the molecule, and oxidation of the metabolic intermediate results in a molecule of glycine
and formaldehyde, both of which are used as carbon sources. In the second metabolic
pathway, the molecule is first oxidized, resulting in a metabolic intermediate and a molecule
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of glyoxylate, which the bacteria can use in the glyoxylate cycle. The intermediate is also
oxidized, and a molecule of formaldehyde is the resulting product (Figure 15) [359].
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tion pathway mediated by the enzyme C-P lyase.

Atrazine

Atrazine is an s-triazine-derived herbicide that has different uses, such as agricultural
applications in corn, sorghum, and sugarcane and non-agricultural applications in forestry
and conifers [360]. Atrazine inhibits one subunit of the photosystem II in plants, halting
this process and ultimately causing plant death.

Due to its chemical structure, aerobic degradation of the molecule is difficult, and for
this reason, microbial degradation is usually performed by a consortium of microorgan-
isms rather than just one microorganism doing the job [361]. Three pathways have been
elucidated with a common product, cyanuric acid. The first pathway (Figure 16A) is the
most common one, mainly found in bacteria, the second (Figure 16B) and third (Figure 16C)
are usually associated with microorganisms consortia [360].

In the three pathways, the dealkylation and dechlorination of the molecule are per-
formed by oxygenases and hydrolases. Cyanuric acid is degraded to ammonia and carbon
dioxide and used as a source of nitrogen and carbon, respectively (Figure 16).
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consortium.

Metolachlor

Metolachlor is a pre-emergent herbicide that is used to control grasses and some
weeds in corn, sorghum, soybean, and cotton [362]. This type of herbicide acts as an
alkylating agent that can bind to different types of proteins within the plant, but the
principal mechanism of action is the inhibition of lipid biosynthesis [362].
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Metolachlor has a considerable half-life, and its persistence in the environment can
cause its mobilization to water bodies. The biodegradation process of this molecule has
been studied since 1990 [363]. Several metabolites of the metolachlor biodegradation
pathway have been identified so far, but a complete metabolic pathway remains to be
fully discovered; the general pathway that has been described involves the dichlorination
(Figure 17B) or hydroxylation (Figure 17A) of the molecule. In both steps, intermediates
are formed, which are then further metabolized to carbon dioxide [275] (Figure 17).
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3.3. Genetics of Pesticide Biodegradation

Analysis of the genes involved in the biodegradation of pesticides is key to fully
comprehending this biological process. Understanding the genetics could help to trace the
evolutionary history of pesticide biodegradation; it could also support the engineering of
microorganisms that can degrade pesticides more efficiently and the development of new
bioremediation techniques that can be used to remove pesticides from contaminated soils,
sediments, and water.

Genes related to the degradation of carbamate pesticides, such as carbofuran, have
been identified in more than 50 carbofuran-degrading bacteria [364]; the mcd gene encodes
a carbofuran hydrolase and was first identified in the pPDL11 plasmid. The gene for
the degradation of carbaryl cehA, another carbamate pesticide, also encodes a hydrolase.
Homology between these two genes is very low, and the carbaryl hydrolase has no activity
in the presence of carbofuran [365]. A homolog of the cehA gene has been found in
the bacteria Novosphingoium sp. KN65.2. The gene cdfJ encodes a hydrolase that shows
enzymatic activity both with carbaryl and carbofuran [85]. Other genes for carbamate
pesticide degradation have been found in different bacteria, and most of them share a high
homology with the cehA gene [304]. All the genes are present in plasmids and are thought
to be mobile elements that can be shared between bacteria.
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Genes involved in the degradation of organophosphates pesticides, such as Terbufos,
Methyl Parathion, Chlorpyrifos, Dimethoate, and Glyphosate were discovered in the
late 80’s [366]. The opd gene encodes an organophosphorus hydrolase and was found
in a plasmid. A chromosomal homolog of the opd gene, the opdA gene, was found in
Agrobacterium radiobacter P230 [367]. Whole genome sequencing has allowed the discovery
of several opd-like genes in different microorganisms, all of which are phylogenetically
closely related, indicating horizontal mobility [315].

The mpd gene is also involved in the degradation of organophosphate pesticides,
particularly parathion and methyl parathion; the gene encodes a hydrolase that has been
well characterized. The hydrolase has conserved β-lactamase domains [368], and several
homolog genes have been found in different microorganisms, although experimental
evidence of their activity as parathion hydrolases is yet to be proved [368].

The phnJ gene encodes a C-P lyase that participates in the biodegradation process of
glyphosate; the gene is part of the phn operon, and the C-P lyase has an important physio-
logical function, possibly explaining that the gene is highly conserved within bacteria [369].
Glyphosate oxidation is performed by the enzyme glyphosate oxidase, which is the product
of the gene gox [370]; the gene has not been fully studied, and whether it is present or not
in other microbial genomes is unknown.

Pyrethroids such as Cyfluthrin, Tefluthrin, Lambda-cyhalothrin, and Permethrin
are biodegraded by microorganisms by the action of carboxylesterases, also known as
pyrethroid hydrolases. These enzymes and their genes have been identified in mammals,
insects, and microorganisms [317]. Several bacterial pyrethroid degrading genes like pytY,
pytZ, estP, pytH, and pye have been identified [37].

The genes involved in the degradation of organochloride pesticides like DDT have
been described by genome annotation of Stenotrophomonas sp., dhc, and rdh genes are
involved in the transformation of DDT to DDMU; sds, dhg, and hdt genes are involved in
the transformation of DDMU to DDHO. dlc and hdl genes are involved in the last step of
DDT biodegradation [371].

Genes involved in the biodegradation process of the chlorophenoxy herbicide Dicamba
are situated in two different operons. In the first one, dmt genes encoding a demethylase
are responsible for the first step in the biodegradation route of dicamba [372]; in the second
operon, we found the genes dsmABC, dtdA, dsmD, dsmG, and dsmE that are responsible
for the steps of reduction, oxidation, and dichlorination of the demethylated metabo-
lite of dicamba. 2,4-D is another chlorophenoxy herbicide. The genes involved in both
metabolic pathways have been identified; the tfd operon [373] comprising the genes tfdA
and tfdBCDEF(II) is responsible for the metabolic pathway of 2,4-D biodegradation.

Atrazine and Cyanazine are both triazine-based herbicides. The genes involved in
the biodegradation process of Atrazine are part of the atz operon, where atzABC genes are
responsible for the transformation of Cyanazine to Cyanuric acid [374].

Understanding the genetics behind the biodegradation of pesticides is important for
several reasons. Firstly, it allows for identifying and characterizing the genes and enzymes
involved in pesticide degradation, which can help obtain more insights into the biochemical
pathways and mechanisms of biodegradation. This knowledge can be used to develop
bioremediation strategies and novel applications, such as the development of transgenic
plants tolerant to herbicides.

Secondly, understanding the genetics of pesticide biodegradation can help in the
assessment and monitoring of biodegradation processes in environmental settings, such as
agricultural soils and bioremediation systems. This information is crucial for evaluating
the efficiency and effectiveness of biodegradation processes and for designing strategies to
mitigate environmental pollution.

Finally, studying the genetics of pesticide biodegradation can contribute to under-
standing microbial adaptation and evolution in response to selective pressures, such as
organic xenobiotics. This knowledge can enhance our understanding of microbial ecology
and the role of microorganisms in alleviating environmental pollution.
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3.4. Application and Perspective

Pesticide bioremediation is a promising approach to mitigating the negative impacts of
pesticides on the environment. Bioremediation can be achieved by using microorganisms
such as fungi [375], bacteria [376], algae [279], and actinobacteria [377], all of them strong
promising candidates to be used as bioremediating agents of pesticides. Through this
process, different economically important chemicals, such as biofertilizers, biogas, or
bioplastics [280,378], can be obtained.

Pesticide bioremediation has remained largely in the laboratory phase, where experi-
ments under controlled conditions are performed. In order to be successfully used in situ,
factors such as pesticide bioavailability, physiochemical conditions, temperature, pH, soil
moisture, soil composition, surfactants, and organic amendments still reamain to be fully
manageable [376].

When microorganisms are a constraint for the bioremediation process, enzymes [379]
can be used. In an in situ scenario, free or immobilized enzymes are added to the con-
taminated soil or water, and degradation of the pollutant molecule is achieved through
enzymatic activity. A successful pesticide bioremediation process using enzymes is depen-
dent on several factors, the most important of which is enzyme stability.

New technologies could help achieve an effective pesticide biodegradation process.
The use of nanoparticles to deliver pesticides is an alternative where a more precise quantity
of pesticide is used, and due to the chemical and physical properties of the nanoparticles,
biodegradation by the action of microorganisms could be more efficient [380–382]. Nanocar-
riers are also a potential alternative for pesticide biodegradation; biomolecules, such as
enzymes, can be transported, attached to the nanoparticles, and delivered to the place
where the pesticide is. Chitinases have been successfully immobilized in nanoparticles and
tested for biocontrol against nematodes [383], opening the possibility of using nanocarriers
for pesticide-degrading enzymes.

As the population increases, so does the production of crops; the necessity to maximize
the production of these crops to meet the needs of the population will likely continue to be
the implementation of pesticides. More research is needed for the development of different
approaches and new technology, and their effective adoption is and will continue to be
crucial for pesticide biodegradation.
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167. Lipok, J.; Wieczorek, D.; Jewgiński, M.; Kafarski, P. Prospects of in Vivo 31P NMR Method in Glyphosate Degradation Studies in
Whole Cell System. Enzym. Microb. Technol. 2009, 44, 11–16. [CrossRef]

168. Pérez Rodríguez, M.; Melo, C.; Jiménez, E.; Dussán, J. Glyphosate Bioremediation through the Sarcosine Oxidase Pathway
Mediated by Lysinibacillus sphaericus in Soils Cultivated with Potatoes. Agriculture 2019, 9, 217. [CrossRef]

169. Li, J.; Chen, W.-J.; Zhang, W.; Zhang, Y.; Lei, Q.; Wu, S.; Huang, Y.; Mishra, S.; Bhatt, P.; Chen, S. Effects of Free or Immobilized
Bacterium Stenotrophomonas acidaminiphila Y4B on Glyphosate Degradation Performance and Indigenous Microbial Community
Structure. J. Agric. Food Chem. 2022, 70, 13945–13958. [CrossRef] [PubMed]

170. Hernández Guijarro, K.; De Gerónimo, E.; Erijman, L. Glyphosate Biodegradation Potential in Soil Based on Glycine Oxidase
Gene (thiO) from Bradyrhizobium. Curr. Microbiol. 2021, 78, 1991–2000. [CrossRef] [PubMed]

171. Firdous, S.; Iqbal, S.; Anwar, S. Optimization and Modeling of Glyphosate Biodegradation by a Novel Comamonas odontotermitis
P2 through Response Surface Methodology. Pedosphere 2020, 30, 618–627. [CrossRef]

172. Singh, S.; Kumar, V.; Singh, J. Kinetic Study of the Biodegradation of Glyphosate by Indigenous Soil Bacterial Isolates in Presence
of Humic Acid, Fe(III) and Cu(II) Ions. J. Environ. Chem. Eng. 2019, 7, 103098. [CrossRef]

173. Grube, M.; Kalnenieks, U.; Muter, O. Metabolic Response of Bacteria to Elevated Concentrations of Glyphosate-Based Herbicide.
Ecotoxicol. Environ. Saf. 2019, 173, 373–380. [CrossRef]

174. Elarabi, N.I.; Abdelhadi, A.A.; Ahmed, R.H.; Saleh, I.; Arif, I.A.; Osman, G.; Ahmed, D.S. Bacillus aryabhattai FACU: A Promising
Bacterial Strain Capable of Manipulate the Glyphosate Herbicide Residues. Saudi J. Biol. Sci. 2020, 27, 2207–2214. [CrossRef]

175. Kaczynski, P.; Lozowicka, B.; Wolejko, E.; Iwaniuk, P.; Konecki, R.; Dragowski, W.; Lozowicki, J.; Amanbek, N.; Rusilowska, J.;
Pietraszko, A. Complex Study of Glyphosate and Metabolites Influence on Enzymatic Activity and Microorganisms Association
in Soil Enriched with Pseudomonas fluorescens and Sewage Sludge. J. Hazard. Mater. 2020, 393, 122443. [CrossRef]

176. Xu, B.; Sun, Q.-J.; Lan, J.C.-W.; Chen, W.-M.; Hsueh, C.-C.; Chen, B.-Y. Exploring the Glyphosate-Degrading Characteristics of
a Newly Isolated, Highly Adapted Indigenous Bacterial Strain, Providencia rettgeri GDB 1. J. Biosci. Bioeng. 2019, 128, 80–87.
[CrossRef] [PubMed]

177. Abo Serih, N.; Salim, R.; Fikry, A.; Hammad, M.; El-Sayed, G. In-Vitro Biodegradation of Glyphosate Using Genetically Improved
Bacterial Isolates from highly Polluted Wastewater. Egypt. J. Chem. 2022, 65, 669–681. [CrossRef]

178. Malla, M.A.; Dubey, A.; Kumar, A.; Patil, A.; Ahmad, S.; Kothari, R.; Yadav, S. Optimization and Elucidation of Organophosphorus
and Pyrethroid Degradation Pathways by a Novel Bacterial Consortium C3 Using RSM and GC-MS-Based Metabolomics.
J. Taiwan Inst. Chem. Eng. 2023, 144, 104744. [CrossRef]

179. Góngora-Echeverría, V.R.; García-Escalante, R.; Rojas-Herrera, R.; Giácoman-Vallejos, G.; Ponce-Caballero, C. Pesticide Bioreme-
diation in Liquid Media Using a Microbial Consortium and Bacteria-Pure Strains Isolated from a Biomixture Used in Agricultural
Areas. Ecotoxicol. Environ. Saf. 2020, 200, 110734. [CrossRef] [PubMed]
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337. Cycoń, M.; Piotrowska-Seget, Z. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contami-
nated Soils: A Review. Front. Microbiol. 2016, 7, 1463. [CrossRef]

338. Wang, X.; Martínez, M.-A.; Dai, M.; Chen, D.; Ares, I.; Romero, A.; Castellano, V.; Martínez, M.; Rodríguez, J.L.;
Martínez-Larrañaga, M.-R.; et al. Permethrin-Induced Oxidative Stress and Toxicity and Metabolism. A Review. Environ.
Res. 2016, 149, 86–104. [CrossRef]

339. Bhatt, P.; Gangola, S.; Chaudhary, P.; Khati, P.; Kumar, G.; Sharma, A.; Srivastava, A. Pesticide Induced Up-Regulation of Esterase
and Aldehyde Dehydrogenase in Indigenous Bacillus spp. Bioremediation J. 2019, 23, 42–52. [CrossRef]

340. Zhang, M.; Mei, J.; Lv, S.; Lai, J.; Zheng, X.; Yang, J.; Cui, S. Simultaneous Extraction of Permethrin Diastereomers and Deltamethrin
in Environmental Water Samples Based on Aperture Regulated Magnetic Mesoporous Silica. New J. Chem. 2020, 44, 16152–16162.
[CrossRef]

https://doi.org/10.1016/j.bbrc.2018.09.040
https://doi.org/10.2139/ssrn.3974041
https://doi.org/10.3389/fmicb.2019.01778
https://doi.org/10.1111/1462-2920.15774
https://www.ncbi.nlm.nih.gov/pubmed/34528362
https://doi.org/10.1038/s41598-017-03561-8
https://www.ncbi.nlm.nih.gov/pubmed/28615636
https://doi.org/10.1603/EC11267
https://www.ncbi.nlm.nih.gov/pubmed/22420259
https://doi.org/10.1016/j.chemosphere.2022.136183
https://www.ncbi.nlm.nih.gov/pubmed/36058371
https://doi.org/10.1007/s11515-018-1489-z
https://doi.org/10.1016/j.jenvman.2017.12.075
https://www.ncbi.nlm.nih.gov/pubmed/29329004
https://doi.org/10.1016/j.chemosphere.2020.127419
https://www.ncbi.nlm.nih.gov/pubmed/32593003
https://doi.org/10.4014/jmb.1108.08087
https://doi.org/10.1007/s10532-011-9464-2
https://doi.org/10.1016/j.chemosphere.2016.08.050
https://doi.org/10.3389/fmicb.2017.00265
https://www.ncbi.nlm.nih.gov/pubmed/28265269
https://doi.org/10.1080/15320383.2018.1485629
https://doi.org/10.1016/j.jhazmat.2020.124006
https://www.ncbi.nlm.nih.gov/pubmed/33068995
https://doi.org/10.21577/0103-5053.20180096
https://doi.org/10.1007/s00253-020-10728-3
https://www.ncbi.nlm.nih.gov/pubmed/32666189
https://doi.org/10.3389/fmicb.2016.01463
https://doi.org/10.1016/j.envres.2016.05.003
https://doi.org/10.1080/10889868.2019.1569586
https://doi.org/10.1039/D0NJ01634A


Int. J. Mol. Sci. 2023, 24, 15969 46 of 47

341. Qin, S.; Gan, J. Enantiomeric Differences in Permethrin Degradation Pathways in Soil and Sediment. J. Agric. Food Chem. 2006, 54,
9145–9151. [CrossRef]

342. Feng, X.; Liu, N. Functional Analyses of House Fly Carboxylesterases Involved in Insecticide Resistance. Front. Physiol. 2020,
11, 595009. [CrossRef]

343. Tyler, C.R.; Beresford, N.; Van Der Woning, M.; Sumpter, J.P.; Tchorpe, K. Metabolism and Environmental Degradation of
Pyrethroid Insecticides Produce Compounds with Endocrine Activities. Environ. Toxicol. Chem. 2000, 19, 801–809. [CrossRef]

344. Liu, H.-F.; Ku, C.-H.; Chang, S.-S.; Chang, C.-M.; Wang, I.-K.; Yang, H.-Y.; Weng, C.-H.; Huang, W.-H.; Hsu, C.-W.; Yen, T.-H.
Outcome of Patients with Chlorpyrifos Intoxication. Hum. Exp. Toxicol. 2020, 39, 1291–1300. [CrossRef]

345. Ahirwar, U.; Kollah, B.; Dubey, G.; Mohanty, S.R. Chlorpyrifos Biodegradation in Relation to Metabolic Attributes and 16S rRNA
Gene Phylogeny of Bacteria in a Tropical Vertisol. SN Appl. Sci. 2019, 1, 228. [CrossRef]

346. Huang, Y.; Zhang, W.; Pang, S.; Chen, J.; Bhatt, P.; Mishra, S.; Chen, S. Insights into the Microbial Degradation and Catalytic
Mechanisms of Chlorpyrifos. Environ. Res. 2021, 194, 110660. [CrossRef]

347. McLachlan, M.S.; Undeman, E.; Zhao, F.; MacLeod, M. Predicting Global Scale Exposure of Humans to PCB 153 from Historical
Emissions. Environ. Sci. Process. Impacts 2018, 20, 747–756. [CrossRef]

348. Dar, M.A.; Kaushik, G.; Villarreal-Chiu, J.F. Pollution Status and Bioremediation of Chlorpyrifos in Environmental Matrices by
the Application of Bacterial Communities: A Review. J. Environ. Manag. 2019, 239, 124–136. [CrossRef]

349. Magnoli, K.; Carranza, C.S.; Aluffi, M.E.; Magnoli, C.E.; Barberis, C.L. Herbicides Based on 2,4-D: Its Behavior in Agricultural
Environments and Microbial Biodegradation Aspects. A Review. Env. Sci. Pollut. Res. 2020, 27, 38501–38512. [CrossRef]

350. Islam, F.; Wang, J.; Farooq, M.A.; Khan, M.S.S.; Xu, L.; Zhu, J.; Zhao, M.; Muños, S.; Li, Q.X.; Zhou, W. Potential Impact of the
Herbicide 2,4-Dichlorophenoxyacetic Acid on Human and Ecosystems. Environ. Int. 2018, 111, 332–351. [CrossRef]

351. Trefault, N.; De La Iglesia, R.; Molina, A.M.; Manzano, M.; Ledger, T.; Perez-Pantoja, D.; Sanchez, M.A.; Stuardo, M.; Gonzalez, B.
Genetic Organization of the Catabolic Plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) Reveals Mechanisms of Adaptation to
Chloroaromatic Pollutants and Evolution of Specialized Chloroaromatic Degradation Pathways. Env. Microbiol. 2004, 6, 655–668.
[CrossRef] [PubMed]

352. Wang, Y.; Tian, Y.-S.; Gao, J.-J.; Xu, J.; Li, Z.-J.; Fu, X.-Y.; Han, H.-J.; Wang, L.-J.; Zhang, W.-H.; Deng, Y.-D.; et al. Complete
Biodegradation of the Oldest Organic Herbicide 2,4-Dichlorophenoxyacetic Acid by Engineering Escherichia coli. J. Hazard. Mater.
2023, 451, 131099. [CrossRef] [PubMed]
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