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Abstract: Autism spectrum disorder (ASD) is a neurodevelopmental disability and recent evidence
suggests that autistic adults are more likely to develop Alzheimer’s disease (Alz) and other dementias
compared to neurotypical (NT) adults. The ε4-allele of the Apolipoprotein E (APOE) gene is the
strongest genetic risk factor for Alz and negatively impacts cognition in middle-aged and older
(MA+) adults. This study aimed to determine the impact of the APOE ε4-allele on verbal learning
and memory in MA+ autistic adults (ages 40–71 years) compared to matched NT adults. Using the
Auditory Verbal Learning Test (AVLT), we found that ε4 carriers performed worse on short-term
memory and verbal learning across diagnosis groups, but there was no interaction with diagnosis. In
exploratory analyses within sex and diagnosis groups, only autistic men carrying APOE ε4 showed
worse verbal learning (p = 0.02), compared to autistic men who were not carriers. Finally, the APOE ε4-
allele did not significantly affect long-term memory in this sample. These findings replicate previous
work indicating that the APOE ε4-allele negatively impacts short-term memory and verbal learning
in MA+ adults and presents new preliminary findings that MA+ autistic men may be vulnerable to
the effects of APOE ε4 on verbal learning. Future work with a larger sample is needed to determine if
autistic women may also be vulnerable.

Keywords: autism; aging; genomics; cognition; learning; memory; APOE; Alzheimer’s disease;
genetics; neurobiology

1. Introduction

By 2030, there will be approximately 700,000 elderly autistic adults with a formal
diagnosis in the U.S. [1]. Autism Spectrum Disorder (ASD) is a neurodevelopmental
disability identified by social communication challenges as well as restrictive and repetitive
behaviors and interests [2,3]. Recently, the Centers for Disease Control and Prevention
(CDC) estimate the prevalence of autism diagnoses in children aged eight years old to be 1
in 36 in the United States, with the prevalence in boys approximately three times higher than
in girls [4]. Importantly, autistic individuals experience more health-related vulnerabilities
and premature mortality compared to neurotypical (NT) adults. Findings from healthcare
records show that middle-aged and older (MA+) autistic adults are at a higher risk of
developing Alzheimer’s disease (Alz) and related dementias when compared to non-
autistic individuals [5,6]. Additionally, previous studies suggest that autistic individuals
are more likely to develop cognitive problems as they age [6–8]. Better understanding MA+
autistic adults’ aging vulnerabilities and their relation to Alz is vital for providing the best
care for autistic adults across the lifespan.
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Alz is a progressive neurodegenerative disorder associated with cell death and ulti-
mately reduces cognitive abilities and causes dementia [9,10]. ASD and Alz share similar
symptoms, such as cognitive and communicative impairment, insomnia, weak muscular
interaction, and speech and hearing challenges [11,12]. In a series of two publications, our
research group recently showed preliminary longitudinal findings that MA+ autistic adults
demonstrate accelerated short-term memory, long-term memory, and hippocampal volume
loss, compared to matched NT adults [13,14]. Taken together, MA+ autistic adults may
have increased vulnerability towards accelerated cognitive decline and increased risk for
developing Alz compared to NT adults.

The APOE gene provides instructions for making a protein called apolipoprotein E, a
lipid transport protein involved in neuronal repair and cholesterol transport. The various
APOE alleles are differentiated by two collocated single nucleotide polymorphisms in
APOE’s coding regions [15,16]. The ε2-allele shows evidence of protection against Alz,
the ε3-allele is considered the most common allele [17], and the ε4-allele is considered the
strongest genetic risk factor for sporadic Alz yet discovered [17–19]. Interestingly, others
have found that autistic individuals are more likely to carry the ε4-allele [20], although
this has not been shown when assessing entire families with an autistic individual versus
families without an autistic individual [21].

Even before dementia presents, ε4-allele carriers have worse cognitive performance
compared to non-carriers and some studies show sex differences. For example, healthy
older adults who carry the ε4-allele perform more poorly than non-carriers on verbal learn-
ing and memory tests [22,23]. Carriers of the ε4-allele may have a higher risk for ASD-like
symptoms in childhood [24] as well as greater risk for cognitive decline [23]. Interestingly,
ε4-allele carriers may experience memory decline ten years earlier than non-carriers, at
60 years old and 70 years old, respectively [25]. Further, male ε4-allele carriers, exclusively,
present with greater beta-amyloid plaque burden, worsened verbal memory ability, de-
creased hippocampal volume, and brain hypometabolism [26]. Notably, when cognitive
decline begins, women can retain verbal memory for longer periods than men [25,27,28].
Past case-control studies have indicated that the ε4-allele and its correlation to Alz may
be more prevalent in women, in addition to other neurodegenerative brain changes such
as widespread brain hypometabolism and cortical thinning [29,30]. Understanding sex
differences in the impact of ε4-allele status on cognitive aging may contribute to early
precision interventions for the ASD community.

The present study examined the effect of APOE allele status on verbal learning and
memory in MA+ autistic adults, compared to matched NT controls. We hypothesized that
MA+ autistic adults who are APOE ε4-allele carriers will have worse verbal learning and
memory abilities compared to ASD ε4-allele non-carriers and NT controls, regardless of
allele status. Finally, as an exploratory analysis, we evaluated if sex moderates the APOE
ε4-allele carrier status effect on verbal learning and memory in autistic and NT adults.

2. Results

There was a main effect of APOE ε4 for short-term memory and verbal learning, with
ε4 carriers performing worse across diagnosis groups (Tables 1 and 2, Figures 1 and 2). The
APOE ε4-allele did not significantly affect the participants’ long-term memory performance.
The interaction between autism diagnosis and ε4-allele carrier status was not significant
for any verbal learning and memory measure. For verbal learning, sex was a significant
predictor (Table 2); therefore, exploratory analyses separating diagnosis groups by sex were
conducted. For autistic males, NT males, and NT females, carriers and non-carriers were
compared via t-test. Only autistic males carrying APOE ε4 showed worse verbal learning
compared to autistic male non-carriers (Table 2, Figure 3). Due to the small sample size of
autistic female non-carriers (n = 2), single-case analyses were conducted, and there were no
differences between each non-carrier and the group of carriers (Table 2). See Supplementary
Table S2. for all group means and standard deviations.
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Table 1. AVLT raw trial score (A1, A1–A5, and A7) results.

DF t-Value p-Value F
Partial Eta
Squared

(Effect Size)

Short-Term Memory (AVLT A1)

Diagnosis 1, 71 0.352 0.526 0.406 0.006

APOE ε4-allele 1, 71 1.586 0.025 * 5.247 0.069

Diagnosis∗APOE
ε4-allele 1, 71 0.163 0.871 0.027 n/a

Sex 1, 71 1.37 0.177 1.863 0.026

Total Words (AVLT A1-A5)

Diagnosis 1, 71 −0.851 0.467 0.534 0.007

APOE ε4-allele 1, 71 1.783 0.006 * 7.867 0.100

Diagnosis∗APOE
ε4-allele 1, 71 0.420 0.676 0.176 0.002

Sex 1, 71 3.945 <0.001 * 15.563 0.180

Long-Term Memory (AVLT A7)

Diagnosis 1, 71 −1.342 0.195 1.710 0.024

APOE ε4-allele 1, 71 0.512 0.212 1.587 0.022

Diagnosis∗APOE
ε4-allele 1, 71 0.574 0.571 0.324 0.005

Sex 1, 71 1.710 0.86 3.038 0.041
* bold indicates p < 0.05.

Table 2. AVLT total words learned (A1–A5) within sex and diagnosis groups results.

DF p-Value F Partial Eta Squared
(Effect Size)

ASD males 1, 25 0.020 * 6.183 0.198

NT males 1, 25 0.094 3.040 0.108

NT females 1, 12 0.318 1.087 0.083

Bayesian Hypothesis Single Case Comparison Test for ASD Females.

Case’s Test
Score

Percentage of
control population

falling
below case’s score

Effect Size 95% Confidence
Interval

ASD Female
Case 1 60 79.4571% 0.969 (−0.053 to 1.928)

ASD Female
Case 2 37 6.6496% −1.937 (−3.321 to −0.502)

* bold indicates p < 0.05.
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3. Discussion

This study is the first to investigate the APOE ε4-allele’s effect on cognition in MA+
autistic adults compared to matched NT adults, specifically investigating verbal learning
and memory. We replicated previous literature indicating that the APOE ε4-allele has a
significant negative impact on cognition. In exploratory analyses, we compared the impact
of the APOE ε4-allele in autistic male and NT males and females on verbal learning, since
previous studies suggest that sex/gender influence ASD, Alz, and the effect of APOE,
respectfully [31–34]. We put forward new findings showing that only autistic male APOE
ε4 carriers had a worse performance in verbal learning abilities, while this was not the case
for NT males or females. In separate single-case Bayesian analyses, our two female autistic
non-carriers also did not show significant differences from female autistic carriers.

Our results replicated known associations indicating that ε4-allele carriers perform
worse on verbal learning tasks. For example, a study by Liu et al. [33] reported that middle-
aged APOE ε4-allele carriers performed worse on verbal learning tasks compared to NT
controls. However, for short-term memory, there was less evidence that APOE ε4 has a
negative impact, with one study reporting benefits in short-term memory performance
during midlife exclusively for male ε4 carriers [35]. Alternatively, we reported worse short-
term memory performance of ε4 carriers; this discrepancy may be explained by the wider
and older age range of the participants in this study. Further, our cohort was comprised of
both autistic and NT adults, which may have impacted our findings since we previously
reported that MA+ autistic adults are more likely to show clinically meaningful decline in
short-term verbal memory compared to NT controls [13].

Lastly, other studies reported a negative impact of the ε4-allele on long-term verbal
memory performance [36], while we found no ε4-allele effect on this measure. In some
cases, such as Caselli et al., 2015 [37], the discrepancy may be because of age differences,
as our sample was younger and past research has shown the effects of the APOE ε4-allele
to be sex- and age-dependent [38,39]. Additionally, our previous research has shown that
autistic adults are not vulnerable to accelerated long-term verbal memory decline, as they
are with short-term verbal memory [13]. Future research with larger sample sizes is needed
to determine if these discordant short-term and long-term verbal memory findings are
being driven by autistic adults.

We reported novel findings that within sex and diagnosis groups, the ε4-allele neg-
atively impacts verbal learning performance in autistic male adults, but not in NT males
or females. Due to only two autistic female non-carriers, this sex by diagnosis group was
compared through single-case analyses and neither was found to be different from the
group of autistic female carriers. These results should be interpreted with caution, and
future research is warranted to determine if sex and ASD diagnosis may moderate the
impact of the ε4-allele on verbal learning. Past case-control studies have indicated that
the ε4-allele and its correlation to Alz may be more prevalent in women [40], with higher
co-incidence of the two [38,40], and that autistic females have higher self-reported rates of
cognitive decline in dementia screenings than autistic men [8]. However, when evaluating
the effects of APOE ε4 on cognitive function between men and women, others have shown
men to be more vulnerable to ε4 effects than women [39], including effects on hippocampal
volume and hypometabolism in the mildly and cognitively impaired brain [25]. Our verbal
learning findings extend this to show that autistic males may be especially vulnerable to
APOE ε4 effects on cognition. This may be related to general sex differences in verbal
learning and memory, where both autistic and NT female adults tend to perform better
than autistic and NT male adults [41]. Past research suggests that performance in non-
social cognitive areas is sex-dependent in autistic adults [42]. Further, ASD females may
perform better in verbal tasks and demonstrate faster processing speeds than their ASD
male counterparts [41–43]. Therefore, it is critical to further evaluate the detrimental effects
of the APOE ε4-allele on cognition in autistic males and females as they are more likely to
develop age-related cognitive problems [13,20] and early-onset Alz [6].
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Limitations

This study investigated APOE’s association with cognition in ASD, with several limi-
tations worth noting. First, our sample included only autistic adults with average to above
average IQs and therefore does not represent the full spectrum of cognitive abilities in
autistic individuals. Second, the small sample size may be underpowered. Our sample only
had two autistic female ε4-allele non-carriers, which necessitated single-case Bayesian anal-
yses, which are less reliable than group comparisons. Future research should include more
autistic females to evaluate the three-way interaction between ASD diagnosis, APOE allele
status, and sex. Additionally, future research with greater statistical power should employ
multivariate analyses to investigate the role of demographic factors (e.g., participant health
history, race/ethnicity, education level, mental and physical activity levels, and familial
health history) on these results. Lastly, a larger sample size could evaluate the effect of
ε4 dose (i.e., homozygotes vs. heterozygotes), presence of an ε2, or each possible APOE
allelic combination on learning and memory in autistic adults, which was not possible in
this study.

4. Methods and Materials
4.1. Participants

Study demographics are summarized in Table 3. Supplementary Table S1 summarizes
additional participant health demographics. Sex was defined as assigned at birth, which
was concordant with all participants’ gender identity in this sample. Participants were
recruited between the years 2014 and 2022 and were partially representative of participants
from previous publications [5,13,44,45]. Recruitment strategies included flyers posted
around Arizona, USA in a 30-mile radius, community partners, the Southwest Autism
Research & Resource Center (SARRC) Phoenix, Arizona, USA database, and word of mouth.
The SARRC database is voluntary and includes information about individuals who have
been involved in previous clinical or research projects at SARRC. Participants in both
groups underwent the same screening and enrollment procedures.

4.2. Inclusion/Exclusion Criteria

Autistic participants had their diagnosis formally verified at SARRC with the Autism
Diagnostic Observation Schedule-2, module 4 (ADOS-2; [46]) and a brief psychiatric history
interview administered by a research-reliable psychometrist. A score ≥ 7 on the ADOS-2
and an assessment by a psychologist with 25 years of ASD diagnostic experience confirmed
DSM-5 criteria were met for their ASD diagnosis. NT participants were excluded if they
had a first-degree autistic relative, were suspected or confirmed to have an ASD diagnosis,
or if they had a T-score > 66 on the Social Responsiveness Scale-2 Adult Self-Report (SRS-
2; [47]). Participants from both groups were excluded if their full-scale IQ score was <70 on
the Kaufman Brief Intelligence Test-2 (KBIT-2) [48], they scored <25 on the Mini Mental
State Exam (MMSE; [49]), or they self-reported a neurological disease such as a stroke or
dementia, a head injury with loss of consciousness, known genetic disorders, a substance
use disorder, or current use of seizure medications. Comorbid psychiatric conditions were
non-exclusionary because of their high prevalence in the ASD population [50–53].

4.3. Verbal Learning and Memory

Participants performed the Rey Auditory Verbal Learning Test (AVLT; [49]). The AVLT
consists of a supra-span word list of 15 words which are repeated five times (A1–A5),
followed by a free recall trial after a 20–30-min delay (A7). Raw scores for short-term
immediate recall (A1; short-term memory), and long-term delayed recall (A7; long-term
memory), as well as total words (A1–A5; learning) were used for analyses.
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Table 3. Participant demographic information and APOE ε4-allele carrier status.

NT (n = 41)
Mean (±SD)

Range

ASD (n = 35)
Mean (±SD)

Range

Two-Group
Comparison

Statistics

NT APOE ε4
Carriers

NT APOE ε4
Non-Carriers

ASD APOE ε4
Carriers

ASD APOE ε4
Non-Carriers

Four-Group
Comparison

Statistics

Age (Years) 53.90 (±8.44)
40–70

53.06 (±8.91)
40–71

t(74) = 0.424,
p = 0.673

54.05 (±7.06)
41–65

53.76 (±9.75)
40–70

54.38 (±8.50)
41–71

51.07 (±9.44)
40–67

t(75) = 0.234,
p = 0.705

Sex (M/F) 27/14 27/8 X2(1.76) = 1.170,
p = 0.279

10/10 17/4 15/6 12/2 X2(3.76) = 6.775,
p = 0.079

ADOS-2 a Social
Affective n/a 10.03 (±3.12)

(0–17) n/a n/a n/a 10.14 (±2.78)
7–17

9.86 (±3.68)
0–14 n/a

Age at Diagnosis n/a 46.11 (±15.35)
2–67 n/a n/a n/a 48.62 (±11.74)

21–64
42.36 (±19.45)

2–67 n/a

SRS-2 b Total
t-score

45.39 (±5.94)
37–60

71.64 (±11.55)
43–89

t(45.435) = −11.854,
p < 0.001

45.15 (±6.44)
37–59

45.62 (±5.57)
37–60

70.05 (±12.88)
43–89

74.08 (±9.07)
57–87

t(73) = 26.752,
p < 0.001

MMSE c 29.49 (±0.84)
26–30

29.06 (±1.11)
26–30

t(62.626) = 1.775,
p = 0.081

29.35 (±1.04)
26–30

29.57 (±0.598)
28–30

28.90 (±1.09)
27–30

29.29 (±1.14)
26–30

t(75) = 0.849,
p = 0.175

KBIT-2 d

Composite
109.07 (±12.09)

85–141
108.97 (±14.52)

70–131
t(73) = 0.033,

p = 0.973
106.20 (±9.38)

85–124
111.81 (±13.88)

89–141
107.14 (±13.73)

70–131
111.92 (±15.82)

83–131
t(74) = 0.487,

p = 0.410
a Autism Diagnostic Observation Schedule-2; b Social Responsiveness Scale-2; c Mini Mental State Exam; d Kaufman Brief Intelligence Test-2.
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4.4. APOE Genotype

Participants provided saliva samples (Oragene|OG-600) during standard lab visits.
DNA was extracted using the Oragene’s DNA purification protocol and reagents. DNA
underwent polymerase chain reaction (PCR) for APOE allele genotyping with AmpliTaq
PCR Mix Thermo Fisher Scientific Baltics UAB V. A. Graiciuno 8, Vilnius, LT-02241 Lithuania
(Thermo Cat: 4390941). Briefly, DNA sequences were amplified with APOE forward and
reverse primers on a PCR cycling schedule of 95 ◦C for 10 min; 35 cycles of 95 ◦C for 20 s,
69 ◦C for 30 s, 72 ◦C for 45 s, 72 ◦C for 5 min, and 26 ◦C hold. The amplified product was
then examined for size and quality through electrophoresis on an Agilent Tapestation D1000
Agilent Technologies Hewlett-Packard-Straße 8 76337 Waldbronn, Germany. Tapestation
results were analyzed for known fragment distribution of APOE alleles to determine APOE
allele status.

4.5. Statistical Analyses

Statistical Package for Social Sciences version 28.0.1.1(14) (IBM SPSS Statistics for
Windows, IBM Corp, Armonk, NY, USA), (https://www.ibm.com/, accessed on 1 October
2023) was used for statistical analyses. Independent two-sample t-tests, ANOVA, or chi-
squared tests were conducted to examine group differences in age, sex distribution, IQ
(KBIT-2), global cognitive function (MMSE), and self-reported autistic traits (SRS-2; Table 3).
Two-way factorial, univariate general linear models were executed for each dependent
variable with diagnosis group (ASD vs. NT) and APOE ε4 group (carrier vs. non-carrier)
as independent variables and sex as a covariate. In the presence of a significant sex effect,
exploratory analyses within sex and diagnosis groups were evaluated with independent
two-sample t-tests comparing ε4 carriers vs. non-carriers. However, for autistic women,
there were only two non-carriers. Therefore, a Bayesian method was conducted to compare
each autistic female non-carrier to the group of autistic female carriers as a single-case
comparison. SingleBayes_ES.exe was used to determine a point estimate of the percentage
of the carrier population to generate a more extreme score. In addition, it evaluated the
probability that a participant in the carrier population would obtain a lower score than the
non-carrier [54].

5. Conclusions

We replicated previous findings indicating that the APOE ε4-allele is associated with
worse verbal learning and short-term memory performance in MA+ adults. We presented
preliminary results that suggest that autistic males may be particularly vulnerable to the
deleterious effects of the APOE ε4-allele on verbal learning, but future studies with larger
sample sizes (particularly of autistic women) are needed to comprehensively understand
the influence of APOE allelic distribution on verbal learning and memory in autistic and
non-autistic men and women. This is a step forward to understanding cognitive and brain
aging vulnerabilities for the autistic community.
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A1 Short-term memory
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