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Abstract: The hepatitis C virus (HCV) is a major causative agent of hepatitis that may also lead to
liver cancer and lymphomas. Chronic hepatitis C affects an estimated 2.4 million people in the USA
alone. As the sole member of the genus Hepacivirus within the Flaviviridae family, HCV encodes a
single-stranded positive-sense RNA genome that is translated into a single large polypeptide, which
is then proteolytically processed to yield the individual viral proteins, all of which are necessary for
optimal viral infection. However, cellular innate immunity, such as type-I interferon (IFN), promptly
thwarts the replication of viruses and other pathogens, which forms the basis of the use of conjugated
IFN-alpha in chronic hepatitis C management. As a countermeasure, HCV suppresses this form of
immunity by enlisting diverse gene products, such as HCV protease(s), whose primary role is to
process the large viral polyprotein into individual proteins of specific function. The exact number of
HCV immune suppressors and the specificity and molecular mechanism of their action have remained
unclear. Nonetheless, the evasion of host immunity promotes HCV pathogenesis, chronic infection,
and carcinogenesis. Here, the known and putative HCV-encoded suppressors of innate immunity
have been reviewed and analyzed, with a predominant emphasis on the molecular mechanisms.
Clinically, the knowledge should aid in rational interventions and the management of HCV infection,
particularly in chronic hepatitis.

Keywords: RNA virus; interferon; innate immunity; nonstructural protein; hepatitis C; host–virus
interaction; immune suppression; protease

1. Hepatitis C Virus and Its Gene Expression

Hepatitis is most commonly caused by the namesake hepatitis viruses A, B, C, D, and
E, and constitutes a major public health burden [1,2]. Though they all infect hepatic cells
and affect liver function, the hepatitis viruses are diverse both genetically and clinically.
Hepatitis C virus (HCV) is the only member of this group that belongs to the Flaviviridae
family and contains a positive-sense (i.e., mRNA sense), single-stranded RNA genome
of ~9.6 kb (kilobase) [3,4]. The genome is readily translated by the host cell’s translation
machinery by a relatively unique initiation mechanism that is independent of the 5′-cap but
utilizes an internal ribosome entry site (IRES) consisting of alternate RNA hairpin structures
that are regulated by a specific microRNA, miR-122, prevalent in the liver cells. Translation
of the long open-reading frame produces a single, large polyprotein, ~3000 amino acids
long [5]. The polyprotein is rapidly cleaved by host and viral proteinases to generate at
least 10 individual proteins [6–8]. The only structural proteins that comprise the enveloped
virion architecture are: the nucleocapsid (also called the core, or C protein; p22) and
the two envelope glycoproteins, E1 and E2. All other viral proteins are nonstructural:
nonstructural 1, 2, 3, 4A, 4B, 5A, and 5B (NS1 through NS5B) (Figure 1).
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which is ~7 kDa in molecular weight, may be labeled NS1 as well as p7. The functions of selected 

proteins are described in their respective subsections in Section 3, but many proteins have multiple 

roles. The polypeptides, as shown in the bottom row, are the final products of programmed prote-

olysis of the single-precursor polypeptide, generated by genomic translation. The internal ribosome 

entry site (IRES) is depicted as an approximate stem–loop secondary structure. This diagram is not 

drawn to scale; the colors have been used simply to demarcate the different regions. 
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like receptor (TLR) or cytoplasmic RNA-binding proteins, retinoic acid-inducible gene-1 
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cruitment to the mitochondrial adaptor protein MAVS (mitochondrial antiviral-signaling 

protein), also called IPS-1/Cardif/VISA (interferon-beta promoter stimulator-1/CARD-

adaptor-inducing IFN-β/virus-induced signaling adaptor) [19–24]. MAVS, therefore, acts 
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Figure 1. Schematic presentation of hepatitis C virus gene expression and protein products (Section 1).
For each polypeptide, the alphabet names are written inside the box, and the theoretical molecular
weights are on top (‘p’ = protein; ‘gp’ = glycoprotein). Thus, the nonstructural protein 1 (NS1), which
is ~7 kDa in molecular weight, may be labeled NS1 as well as p7. The functions of selected proteins
are described in their respective subsections in Section 3, but many proteins have multiple roles. The
polypeptides, as shown in the bottom row, are the final products of programmed proteolysis of the
single-precursor polypeptide, generated by genomic translation. The internal ribosome entry site
(IRES) is depicted as an approximate stem–loop secondary structure. This diagram is not drawn to
scale; the colors have been used simply to demarcate the different regions.

These HCV proteins are not only essential for overall viral multiplication but also affect
a variety of cellular functions, forming an intricate web of host–virus interactions. In this
review, we will focus primarily on their involvement in the suppression of antiviral innate
immunity. We begin with a brief introduction of type-I interferon (IFN), the predominant
arm of innate immunity. It is to be mentioned that essentially all HCV studies use the
human-hepatoma-derived HuH-7 cell line or its various derivatives, such as Huh7.5 and
Huh7.5.1 [9–11], and the culture-adapted HCV clone, JFH1 (genotype 2a) [12,13].

2. Type-I Interferon
2.1. Interferon Induction Pathways and Factors
2.1.1. The Overall Pathway

The type-I interferon (IFN) family, represented by IFN-alpha and IFN-beta (IFN-α and
-β), is a major arm of the cellular innate immunity that acts as an antiviral defense system
for essentially all viruses, and HCV is no exception [14]. The IFN genes are induced in the
cell upon infection by a microbe, such as viruses and bacteria, whereby their gene products
are released intracellularly. Specific molecular features or patterns in these molecules,
collectively termed pathogen-associated molecular patterns (PAMPs), are exemplified by
viral glycoproteins and viral RNA that are double-stranded and/or contain 5′-triphosphate
instead of a 5′-cap [15–18]. Each type of PAMP is sensed by a cognate cellular protein,
named the pattern-recognition receptor (PRR), such as membrane-bound Toll-like receptor
(TLR) or cytoplasmic RNA-binding proteins, retinoic acid-inducible gene-1 (RIG-I), or
melanoma-differentiation-associated protein 5 (MDA5) [18]. Upon the binding of the
PAMP, the RIG-I/MDA-5 proteins change their conformation, resulting in their recruitment
to the mitochondrial adaptor protein MAVS (mitochondrial antiviral-signaling protein),
also called IPS-1/Cardif/VISA (interferon-beta promoter stimulator-1/CARD-adaptor-
inducing IFN-β/virus-induced signaling adaptor) [19–24]. MAVS, therefore, acts as a
central innate immunity regulator, where upstream signals from several types of RNA
ligands converge. The binding activates a signaling cascade that eventually leads to the
site-specific phosphorylation of cytoplasmic interferon regulatory factors-3 and -7 (IRF-
3/-7). The dimeric complexes of these two factors translocate to the nucleus, and along
with nuclear factor kappa-B (NF-κB), bind near type-1 IFN gene promoters and promote
transcriptional induction (Figure 2) [25].
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Figure 2. Selected members of the IFN induction and response pathways. The various abbreviations
and the signaling of the pathways have been described in detail in the text (Section 2). The cascade
pathways, triggered by diverse pathogenic nucleic acids (e.g., HCV RNA), and the downstream
molecules are indicated. The targets of HCV (Section 3) are shown in red color.

2.1.2. Major ‘Pattern Recognition Receptors’ (PRRs) in HCV Infection

Several lines of evidence have established RIG-I as the main PRR for HCV and which
acts within minutes of virus infection [26]; RIG-I recognizes not only the 5′-triphosphate of
the HCV genome, but also double-stranded regions formed by intragenomic annealing of
portions of the 5′-end and the 3′-untranslated region [27,28]. The primary role of RIG-I in
eliciting innate immunity to HCV is underscored by the fact that RIG-I-defective cells of
the hepatocyte lineage (viz. Huh-7.5) allow robust HCV growth, and is routinely used in
laboratory cell cultures.

An important molecular mechanism of RIG-I activation entails ubiquitylation, a major
form of the post-translation of proteins that is ubiquitously present in living cells and is
stringently regulated [29]. In ubiquitylation, which comprises a series of complex reactions,
a highly conserved small protein named ubiquitin (Ubq) is covalently attached to specific
target proteins, resulting in diverse changes in the properties of the target. The process
comprises three sequential biochemical steps, the final one of which attaches the Ubq
moiety and is catalyzed by ‘E3 ubiquitin ligases’. In the case of RIG-I, a predominant
ligase is the tripartite motif-containing protein 25 (TRIM25) [30]. Subsequently, at least two
other E3 ubiquitin ligases were also found to be involved in RIG-I ubiquitylation, namely,
Mex3c and Riplet (also known as Reul) [31–33]. Thus, all three ligases are essential for
RIG-I-dependent innate immunity, further attesting to the fine control of RIG-I and its
strategic importance in viral immunity. Nonetheless, several other PRRs may also play a
role; TLR3, for instance, possibly because it recognizes some of the same double-stranded
regions that are also recognized by RIG-I [34–36].

2.1.3. PRRs for DNA PAMPs and Their Cross-Talk with PRRs for RNA PAMPs

In mammals, double-stranded DNA is localized in the nucleus but not in the cy-
tosol. Cytosolic DNA may occur from the loss of nuclear or mitochondrial integrity
under several stress conditions, such as apoptosis or virus infection. A recently discov-
ered cytosolic enzyme, cGAS (cyclic GMP–AMP synthase) binds to foreign DNA, lib-
erated in the cytosol by infecting pathogens, which activates cGAS through allosteric
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changes. This leads to the synthesis of 2′,3′ cyclic GMP–AMP (cGAMP), a second mes-
senger molecule that acts as an agonist of STING (stimulator of interferon genes), also
known as TMEM173/MPYS/ERIS/MITA. Activated STING, residing on the endoplasmic
reticulum (ER) membrane, functions downstream of MAVS and upstream of TBK1 and
IKKε, eventually leading to the activation of IRF3 and NF-κB [37]. Although the cGAS–
STING pathway was discovered as a DNA-activated pathway, several lines of evidence
have indicated its noncanonical role in response to RNA viruses, including flaviviruses
and its cross-talk with the RNA-activated pathway [38]: (i) STING directly interacts with
RIG-I and MAVS [39,40]; (ii) cells or mice deficient in cGAS and/or STING support the
higher growth of several RNA viruses [41–43]; (iii) undue mitochondrial stress may release
mitochondrial DNA into the cytoplasm [44], which can then activate cGAS, and this may
conceivably happen in cells infected with Flaviviridae viruses, such as HCV [45]. It thus
stands to reason that the RNA viruses, including HCV, would also evolve ways to suppress
the cGAS–STING pathway, as we will see later (Section 3).

2.2. Interferon Response
2.2.1. The JAK–TYK2–STAT Signaling Pathway

IFN itself is not an antiviral; rather, it triggers the so-called ‘IFN response pathway’ that
has been extensively reviewed [46]. In this phase of innate immunity, type-I IFN is secreted
and binds to specific receptors on the target cell membrane, which activates the so-called
JAK–STAT (Janus kinase/signal transduction and transcription activation) pathway [47,48],
so named because the Tyr kinases JAK and TYK2 eventually phosphorylate STAT1 and
STAT2 [49,50]. These two STAT proteins form a complex with IRF9 [46,51,52], and the
heterotrimeric complex, named ISGF3 (IFN-stimulated gene factor 3) translocates to the
nucleus, where it binds to the IFN-stimulated regulatory element (ISRE) sequences [53] in
the promoters of ISGs (IFN-stimulated genes) and induces the transcription of the ISGs.

2.2.2. HCV-Relevant IFN-Stimulated Genes (ISGs)

The functions of most of the ~450 ISGs remain unknown, but many possess broad
antiviral properties. Comprehensive screening analyses of ISGs, using the overexpression
of recombinant ISGs, as well as knockdown by RNA interference (RNAi), have estab-
lished that each virus is inhibited by multiple ISGs [54–60]. Some of the major ISGs that
inhibit HCV have been reviewed recently [61]. They include tripartite motif-containing
56 (TRIM56), viperin, and the DExD/H box helicase (DDX60), 2′,5′-oligoadenylate (2-5A)
synthetase (OAS), RNA-dependent protein kinase (PKR), MxA, and proteins of the IFIT
(IFN-induced proteins with tetratricopeptide repeat motifs) family, including the trans-
membrane IFITM proteins [62–65]. The ISGs target specific steps in the viral life cycle to
inhibit the virus. IFITM1, for example, interacts with CD81 and occludin, two coreceptors
of HCV, which disrupts virus entry into the host cell [65]. OAS is an enzyme that catalyzes
the synthesis of 2-5A; the binding of 2-5A to latent RNase L activates the latter, which then
cleaves all single-stranded cellular and viral RNA. This leads to autophagy and apoptosis
of the cell [66], which abrogates virus growth. At the same time, some of the product RNA
fragments induce the production of IFN-β in the proper cellular context, amplifying antivi-
ral innate immunity [67]. Activation of the PKR catalytic function proceeds through dsRNA
binding, dimerization, and autophosphorylation. PKR-mediated phosphorylation inhibits
the translation factor eIF-2α, which blocks protein synthesis, and hence viral replication, as
reviewed recently [68].

2.2.3. HCV-Relevant IFN-Effector Genes (IEGs)

In parallel studies, genome-wide functional screening using gene-specific small inter-
fering RNAs (siRNAs) [58,69] identified over one hundred host genes that mediated the
anti-HCV effect of IFN-α in hepatocytes. In these screening procedures, the hepatoma cells
were first transfected with siRNAs incubated with IFNα and then infected with HCV to
identify the siRNAs that rescued virus growth. Intriguingly, a large percentage of these
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genes were nontranscriptionally induced, and therefore, they were not IFN-stimulated
genes (ISGs), but could be designated as interferon-effector genes (IEGs). While the mech-
anisms of their IFN-effector role are very likely novel, the IEGs are diverse in nature
and participate in cellular housekeeping functions, such as metabolism, post-translational
modification, and RNA spliceosome assembly. Examples include: glucokinase regulator,
histone acetyl transferase, asparagine-linked glycosyl transferase, and protein phosphatase
3 [69]. A large group of ISGs comprised the members of the U4/U6.U5 tri-snRNP, a major
component of human spliceosome complex B and C, suggesting that the alternative splicing
of cellular mRNA is important in the HCV–host interaction. As noted earlier [58], this may
not be unique to HCV, since many known antiviral ISGs, such as many isoforms of OAS
and MxA, are also generated by alternative splicing. In any case, it is currently unknown
if or how HCV can suppress the ISGs, whereas there is substantial information on the
HCV-mediated suppression of the classical IFN signaling factors, including the ISGs, as
described below (Section 3).

To summarize Section 2, IFN induction in the HCV-infected cell occurs predominantly
by the recognition of viral RNA by RIG-I, followed by activation of the RIG-I through
post-translational modifications and conformational alterations, docking of the activated
RIG-I to mitochondrial MAVS, and the eventual activation of transcription factors that
promote IFN gene induction (Figure 2). The IFN, thus produced, acts on IFN-responsive
cells to induce multiple ISGs, many of which have broad-spectrum antiviral functions.
Thus, viral infection itself triggers the synthesis of antiviral ISGs of the cell as a cellular
defense mechanism.

3. IFN Suppressor Proteins of HCV and the Mechanisms of Suppression

Currently, IFN conjugated with polyethylene glycol (PEG) (for enhanced stability
in the body), known as pegylated IFN (PEG-IFN), often combined with ribavirin, which
is another broad-spectrum antiviral, constitute the standard of care therapy for hepatitis
C [70]. Even with this therapy, however, ~80% of HCV patients fail to clear the virus and
develop a chronic hepatitis that may persist for decades and, as mentioned earlier, may
lead to the serious complications of cirrhosis of the liver and resultant scarring, sometimes
transitioning to liver cancer (hepatocellular carcinoma or HCC) [71]. IFN-resistant chronic
HCV also presents a major hurdle in the global eradication of HCV, which affects ~2%
of the human population. The incomplete efficacy of IFN is largely explained by studies
over the last two decades showing that HCV infection can suppress the IFN pathways in
cell cultures as well as in mouse models [72–74], indicating the evolution of viral counter-
defense to suppress the cellular antiviral response. Naturally, much attention has been paid
to the mechanisms of such suppression.

Cumulative evidence has revealed that the nonstructural proteins of HCV, perhaps
with the exception of the RNA-dependent RNA polymerase (NS5B) and the NS1 (p7)
glycoprotein, contribute to IFN suppression to one extent or another. In the following
subsections, these IFN suppressor proteins and their diverse mechanisms of suppression
are presented in detail.

3.1. NS3/NS4A Protease Complex

Being a protease complex, the NS3/NS4A pair of HCV (Figure 1) is primarily involved
in the cleavage of the viral polyprotein at specific junction sequences; this occurs in both a cis
and trans fashion, and in a highly orchestrated, apparently nonrandom, order. Due to this
cardinal role of NS3/4A in the early step of viral gene expression, the biochemistry as well
as structure of both proteins have been investigated in detail [75]. The cleavage of the NS3–
NS4A junction in the precursor polypeptide is catalyzed by NS3 acting in the cis, leading to
the liberation of NS3, following which, the NS3–NS4A complex cleaves NS4A–NS4B, NS4B–
NS5A, and NS5A–NS5B junctions in the trans [6,76–80]. The chymotrypsin-like serine
protease activity of NS3 resides in the amino-terminal one-third, which is also responsible
for self-cleavage at the carboxy terminal sites of NS3 [81,82]. However, NS3 requires NS4A
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for optimal activity [80,83], and perhaps not unexpectedly, the two polypeptides have a
natural affinity for each other to form a heterodimer, as demonstrated with the recombinant
proteins [80]. Determination of the cocrystal structure of NS3 in complex with the NS3-
activating domain of NS4A revealed and predicted several aspects of the function and
regulation of the holoenzyme [75,84,85].

NS3/4A is by far the most dominant player in the suppression of IFN induction,
as well as IFN response, documented in the infected cells in culture and in the liver,
which is largely due to its ability to proteolytically cleave the relevant signaling proteins.
To start with, NS3/4A targets the E3 ubiquitin ligase Riplet (Section 2.1) and inhibits the
polyubiquitination of RIG-I, and inhibits the downstream function of the latter [31]. Some of
the earliest studies showed that NS3/4A cleaves mitochondrial MAVS, the central docking
protein in the IFN-induction pathway [21,86–88]. NS3/4A localizes on multiple organellar
membranes, one of which is mainly involved in MAVS cleavage; this structure has been
named the “Mitochondria-associated endoplasmic reticulum membrane” (MAM) [89].
In either case, MAVS is a pragmatic target for suppression, since, as described earlier
(Section 2.1), RIG-I is the primary PRR for the RNA PAMPs of HCV, and the resultant signal
from RIG-I is channeled through MAVS (Figure 2).

NS3/4A also cleaves TRIF, the adaptor of the TLR3 signaling cascade, thereby inhibit-
ing the TLR3-triggered activation of IRF3 and NF-κB [90,91], and reducing the transcription
of several IFN genes and proinflammatory genes, such as tumor necrosis factor-alpha
(TNF-α). However, subsequent studies have shown that TRIF cleavage by NS3/4A may
not be as extensive as that of MAVS [92]. In other words, MAVS cleavage is the overriding
mechanism by which NS3/4A suppresses IFN induction (Figure 2).

The cleavage sequences, preferred by NS3/4A, have been established by several
pioneering studies that are well in agreement with one another and with antiprotease drug
development strategies [7,78,82,93,94]. An alignment of the cleavage sites (Figure 3, panel
A) reveals a consensus of (D/E)XXXXC(A/S), where X is any amino acid residue, and
the cleavage occurs after the conserved Cys (shaded). In extending our knowledge of the
cleavage sequences of NS3/4A, a recent study using a recombinant NS3/NS4A complex
demonstrated their ability to cleave a number of cellular proteins of the IFN pathway,
namely, IKKα, IKKβ, IKKε, and TBK1 [95]. Characterization of the fragments by MALDI-
TOF and LC-MS/MS (matrix-assisted laser desorption/ionization time-of-flight; liquid
chromatography–triple quadrupole mass spectrometry) revealed discrete sites of cleavage
in each, with significant similarity to the HCV-derived consensus, including the conserved
Cys (Figure 3B). Although these results have not been pursued further, they clearly indicate
a potentially larger substrate repertoire of NS3/NS4A that extends to host-cell proteins.
The biological relevance of such seemingly inconsequential cleavages is not known.

3.2. NS2

Less studied than NS3/NS4A, NS2 also displays protease activity that cleaves TBK1/IKKε,
leading to the subversion of IRF3 phosphorylation and IFN-β gene induction [96]. Like
NS3/4A, NS2 also inhibits expression from MAVS-dependent promoters; however, unlike
NS3/4A, NS2 does not cleave MAVS, and must inhibit its target promoters by a different
mechanism [88]. It is notable that, like NS3/4A, the NS2 protein inhibits several other
cellular and viral promoters, such as CCL5/RANTES, CXCL10/IP-10, and the thymidine
kinase gene of herpes simplex virus, the mechanisms of which also remain unknown [88,97].
In either case, NS3/4A and NS2 are not functionally redundant, but work together and
keep a tight rein on the IFN pathway.

The role of NS2 in viral polyprotein cleavage presents a novel mechanism of regu-
lation, which we will very briefly mention here. This is primarily because NS3 can form
a protease complex not only with NS4A but also with NS2. However, while NS3/4A
cleaves at four downstream sites in the polyprotein, as described in Section 3.1, the NS2/3
protease mediates a single cleavage at the NS2–NS3 junction. In the NS2/NS3 protease,
the catalytic triad resides in NS2, and is stimulated by the cofactor domains of NS3 that



Int. J. Mol. Sci. 2023, 24, 16100 7 of 16

require Zn+2 [98,99]. Thus, in both NS3/4A and NS2/3, the protease activity requires a
composite surface of domains contributed by two polypeptides, of which NS3 is common
to both complexes [100,101]. However, since there is no report of any role of NS2/3 in IFN
suppression, we will not discuss it any further.
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dine kinase gene of herpes simplex virus, the mechanisms of which also remain unknown 

[88,97]. In either case, NS3/4A and NS2 are not functionally redundant, but work together 

and keep a tight rein on the IFN pathway. 

The role of NS2 in viral polyprotein cleavage presents a novel mechanism of regula-

tion, which we will very briefly mention here. This is primarily because NS3 can form a 

protease complex not only with NS4A but also with NS2. However, while NS3/4A cleaves 

Figure 3. NS3/4A cleavage sequences. IKK-alpha: NP_001269; IKK-beta: NP_001547; IKK-epsilon:
AAF45307. All HCV junction sequences have been described in the GenBank submission of the
polyprotein sequence, CAB53095.1 [82]. Other sites are from published papers, as follows: IKK
isoforms and TBK [95], MAVS [21], Riplet [32], and TRIF [90]. When there are multiple cleavage
sites in a polypeptide, they are serially numbered; thus, the three sites in IKKε are denoted as IKKε1,
IKKε2, and IKKε3. When at least three amino residues of conservative properties are aligned, they
are shown in bold. The two asterisks mark the invariant C (Cys) residue.

3.3. NS4B

The nonstructural 4B (NS4B, p27) protein is overall hydrophobic, with multiple roles
in HCV replication and host–virus interaction [102]. Briefly, NS4B exhibits NTPase and
RNA-binding activities, regulates the RNA-dependent RNA polymerase (RdRP) activity of
NS5B, affects the function of the endoplasmic reticulum, and modulates viral as well as
host translation. A distinctive role of NS4B, facilitated by its amphipathic domain, is the
generation of the “membranous web”, which is a novel intracellular membrane structure.
This structure acts as a scaffold on which viral replication and assembly occurs. Some of
these functions may cross-feed one another, such as the RNA-binding property may be
important for NS4B to engage the elongating RdRP (NS5B) copying the RNA template.
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Several investigators have reported the suppression of the STING–TBK1 axis (Figure 2)
by NS4B [103–105]. NS4B directly binds STING and blocks the interaction between STING
and MAVS, which is required for robust IFN-β activation. Expression of recombinant NS4B
suppressed residual IFN-β activation by an NS3/4A-cleaved MAVS, suggesting that the
cooperation between NS3/4A and NS4B results in a strong suppression of IFN-β induction.

3.4. NS5A

A direct role of NS5A in HCV replication has not been proven, although evidence of
its affinity for the 3′ ends of the HCV plus- and minus-strand RNAs has promised to shed
light on this aspect [106], perhaps involving a direct interaction with the RdRP (NS5B), as
was proposed for NS4B (Section 3.2). NS5A is known to assist the HCV replicative complex
and virion assembly in partnership with the C protein (Section 3.4). RNA aptamers selected
for their affinity to different domains of NS5A inhibit HCV RNA replication and infectious
virus production in cell cultures [107]. The total interaction network of NS5A actually is
much larger, as it associates with nearly two dozen host proteins involved in a multitude
of cellular functions, such as apoptosis, cell-cycle control, and stress response, much of
which has been detailed in a comprehensive review [108]. This best-studied property
of NS5A is its facilitation of virus growth indirectly by suppressing specific signaling
steps of the IFN pathways through multiple mechanisms elaborated in Section 2. Indeed,
NS5A was the first HCV protein implicated in the suppression of IFN, evidenced from the
investigations of patients with chronic infection by HCV of genotype 1b [109]. Since then, a
large number of publications have reported various aspects of this suppression, of which a
few representative ones will be discussed here in no particular order. Early studies revealed
an approximately 40-amino-acid region at the center of the NS5A polypeptide that appeared
to be associated with the sensitivity of HCV to the antiviral effects of IFN; this sequence
was, therefore, named the “Interferon Sensitivity-Determining Region” (ISDR) [109–111].
Later studies showed that this role of ISDR may not be relevant in the long-term response
to IFN [112,113].

Several researchers have shown that NS5A interferes with the TLR–MyD88 signaling
axis in cultured macrophages [114], as well as in mouse liver [115], by directly binding to
MyD88. Various members of the TLR family are activated by cognate ligands; thus, TLR2,
TLR4, TLR7, and TLR9 are activated upon the binding, respectively, of PGN (peptidoglycan,
a bacterial polymer), LPS (lipopolysaccharide of bacterial origin), R-837 (imiquimod, a
synthetic imidazoquinoline amine analog to guanosine), and mCpG (mouse CpG dinu-
cleotide). In mouse macrophage cell lines expressing recombinant NS5A, the induction of
a key marker, i.e., interleukin-6 (IL-6), was inhibited. Similar inhibition was seen when
the protease(s) NS3 or NS3/4A were expressed, as expected (Section 3.1), and also when
NS4B was expressed. In one mechanistic study [116], NS5A was shown to inhibit IKKε,
thereby reducing the phosphorylation and activation of IRF3, and, therefore, IFN-β synthe-
sis (Figure 2). Lastly, NS5A affects a few members of the IFN response pathway. Specifically,
it inhibits IFN-induced STAT1 phosphorylation and ISG synthesis [117,118], the molecular
mechanism of which is unknown. NS5A also inhibits the protein kinase activity of PKR, an
ISG [110,119,120]. Mutations within NS5A, including those within the ISDR (see above),
can disrupt the NS5A–PKR interaction, which may contribute to the reduced IFN sensitivity
of the ISDR-mutant HCV. Further studies showed that the repression of the PKR function
by NS5A is mainly due to the abrogation of PKR dimerization and the resultant inhibition
of its kinase activity and loss of PKR-mediated eIF-2α phosphorylation.

However, PKR–NS5A interaction is much more complex and intersects multiple other
pathways [121]. Several lines of evidence point to a role of PKR as a pro-HCV agent,
related to the ubiquitin-like protein ISG15, which is another interferon-stimulated gene
product. In one mechanism, early in infection, ISG15 prevents the TRIM25-mediated
ubiquitination of RIG-I (Section 3.1), and hence its docking to MAVS, which suppresses IFN
induction. Later in the infection, the PKR-catalyzed phosphorylation of eIF2α shuts down
cellular cap-dependent translation, whereas the IRES-dependent HCV translation continues



Int. J. Mol. Sci. 2023, 24, 16100 9 of 16

largely unabated [122–124]. Activation of PKR may also shut down the translation of other
ISGs in the IFN-treated cell. Some apparent discrepancy between different studies on the
PKR–HCV interaction that used an HCV replicon-based assay ex vivo (cell culture) were
likely due to different genotypes of HCV [125–127]. Thus, the effect of this ISG in HCV
replication appears to be a balance between its pro- and antiviral functions. NS5A also
physically associates with p51 and regulates the p53-dependent p21/WAF1 promoter [128],
a property that is shared by several other HCV proteins, such as NS3 and core protein
(Sections 3.1 and 3.5).

A regulatory mechanism has emanated from the discovery that the post-translational
phosphorylation of NS5A at specific Ser residues by multiple cellular kinases play an
important role in HCV replication [129–132]. If this phosphorylation is also found to regu-
late the IFN suppression function of NS5A, it will certainly open multiple new directions
of investigation.

3.5. Core Protein, C

In its role as a major structural protein of the virion, the C protein of HCV forms
the viral nucleocapsid and possesses both RNA- and lipid-binding activities, allowing it
to interact with genome RNA as well as the virion envelope, respectively, a hallmark of
enveloped RNA viral nucleocapsids. The C protein also promotes the localization of the
virus replicative complex to the lipid droplets (LDs) and cell membranes, which is essential
for virion assembly and budding. In addition, the C protein brings NS5A to the LDs
and for the production of infectious progeny virus particles [133–137]. The amphipathic
and multidomain structure of the core protein in fact allows it to interact with a variety
of cellular proteins and intracellular structures, which in turn influences the activity of
other HCV proteins that directly suppress IFN [138–142]. Through such interactions with
various host functions, the C protein also regulates cellular apoptosis, indirectly promoting
chronic-IFN-resistant chronic HCV [139–141]. Several of them also lead to the suppression
of a range of immune responses via direct or indirect mechanisms (Section 2).

The C protein was shown to inhibit both the TLR- and RLR-mediated IFN response
pathway in dendritic cells, which was associated with increase in unphosphorylated (inac-
tive) STAT1 [143]. The C protein also represses IRF1 (IFN regulatory factor 1), a secondary
transcription factor of the IFN system that also binds to the ISRE sequences and induces the
transcription of several antiviral ISGs and immunomodulatory genes (Section 2.2), such as
OAS and the interleukins IL-12 and IL-15 [144]. Repression of IRF1 by the C protein occurs
at the transcriptional level and requires the STAT-1 and NF-κB consensus sequences on the
IRF-1 promoter; however, the molecular structure of the protein–DNA complex remains
unknown [144]. Recombinant C protein was also shown to repress the transcription of
several other cellular and viral promoters, namely p53, p21/WAF1/Cip1/Sid1, c-myc, and
the long terminal repeats (LTRs) of Rous sarcoma virus and human immunodeficiency virus
type 1 [145–147]. For the p21/WAF1 promoter, the repressive activity is regulated by the
protein kinase A-mediated phosphorylation of a specific Ser residue of the C protein [148].

In a parallel mechanism, the C protein induces expression of the suppressors of
cytokine signaling (SOCS) [149], which downregulates IFN-induced STAT-1/3 phosphory-
lation, leading to reduced IFN signaling and the eventual loss of expression of several ISG
mRNAs, such as MxA and 2′,5′-OAS [150]. Thus, the C protein in this mechanism uses the
SOCS proteins to suppress the IFN response pathway to promote HCV persistence. Some
of these multifaceted mechanisms of the IFN-subversive role of the C protein have been
described in comprehensive review [151], which the readers may consult.

We note that there is no definitive evidence of an IFN-suppressive role of the HCV NS1
protein [152]. A few early reports of the inhibition of TLR3-dependent IFN induction by the
NS1 proteins of WNV and YFV in cell culture [153,154] could not be reproduced in a more
recent study [155]. The NS1 proteins of the Flaviviridae family are also very diverse in the
primary structure, making it unlikely that the NS1 of HCV will be functionally comparable
to those of WNV or YFV. Finally, there is also no report that the E glycoproteins (E1, E2)
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of HCV suppress IFN; therefore, these three proteins (NS1, E1, E2) (Figure 2) were not
elaborated in this section.

A summary of the molecular targets of the IFN-suppressor proteins of HCV is pre-
sented below in tabular form (Table 1); a mechanistic summary is presented in Section 4.

Table 1. IFN-suppression proteins of HCV and their molecular targets.

HCV Protein Target Cell Protein

NS3/NS4A Binds to Riplet (E3 ubiquitin ligase), resulting in inhibition of RIG-I

Cleaves MAVS

Cleaves TRIF

NS2 Cleaves TBK1/IKKε

Inhibits MAVS-dependent promoters; mechanism unclear

Binds to STING; blocks STING–TBK1 interaction

NS5A Binds to MyD88

Inhibits STAT2 phosphorylation

Inhibits PKR by preventing PKR dimerization

C Increases the ratio of unphosphorylated: phosphorylated STAT1

Induces the expression of SOCS, lowers STAT1/3 phosphorylation
Due to space constraints, only those cellular proteins that physically interact with the cognate HCV protein are
shown. In other words, when downstream proteins are inhibited as a result of this direct interaction upstream, it
was described earlier, but not included in this table.

4. Mechanism-Based Summary of IFN Suppression by HCV and Unanswered
Questions

A review of the IFN suppression by HCV proteins, as detailed in Section 3, reveals
several biochemical mechanisms that can be classified into a few representative types:

(i) Proteolytic cleavage, such as the cleavage of many substrates by NS3/4A, and that
of TBK1/IKKε by NS2.

(ii) Inhibition of an enzyme: The kinase activity of IKKε is inhibited upon NS5A-
binding [116].

(iii) Binding and sequestration: NS4B-binding to STING blocks STING–MAVS interac-
tion, and NS5A sequesters MyD88. NS5A-binding to the N-terminal 488 amino acids of
STAT1 also inhibits IFN-induced STAT1 phosphorylation, and hence ISG expression [127].
The C protein binds to membrane structures and proteins, acting as an adaptor between
them. It also appears to have DNA-binding properties, by virtue of which it engages
consensus sequences at the IRF1 promoter and represses IRF1 transcription [144].

One of the most fascinating questions to answer in the future—and perhaps also the
most intractable—is how the suppressors interact with such a broad repertoire of proteins
and substrates, and yet maintain substantial amounts of specificity of interaction. The
repertoire often includes other viral proteins, such as the interaction of NS3 with NS4A,
NS2 with NS3, and C, NS4B, and NS5A with the viral replicative complex (mainly NS5B).
Related to this question is how the multiple interactions evolved over time, and in what
order, while maintaining both the viral and the cellular interactions. It is conceivable that
these studies will minimally require sequence information of multiple isolates of the virus,
their time of appearance, the rate of mutation of the different sites, and mapping of the
interacting domains. Clinically, a better knowledge of the suppressors may allow rational,
structure-based drug design to inhibit them [156], which should help resolve the chronic
HCV cases.
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