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Abstract: Isolated pancreatic metastases of renal cell carcinoma (IsPMRCC) are a rare manifestation
of metastatic, clear-cell renal cell carcinoma (RCC) in which distant metastases occur exclusively in
the pancreas. In addition to the main symptom of the isolated occurrence of pancreatic metastases,
the entity surprises with additional clinical peculiarities: (a) the unusually long interval of about
9 years between the primary RCC and the onset of pancreatic metastases; (b) multiple pancreatic
metastases occurring in 36% of cases; (c) favourable treatment outcomes with a 75% 5-year survival
rate; and (d) volume and growth-rate dependent risk factors generally accepted to be relevant for
overall survival in metastatic surgery are insignificant in isPMRCC. The genetic and epigenetic causes
of exclusive pancreatic involvement have not yet been investigated and are currently unknown.
Conversely, according to the few available data in the literature, the following genetic and epigenetic
peculiarities can already be identified as the cause of the protracted course: 1. high genetic stability of
the tumour cell clones in both the primary tumour and the pancreatic metastases; 2. a low frequency of
copy number variants associated with aggressiveness, such as 9p, 14q and 4q loss; 3. in the chromatin-
modifying genes, a decreased rate of PAB1 (3%) and an increased rate of PBRM1 (77%) defects are
seen, a profile associated with a favourable course; 4. an increased incidence of KDM5C mutations,
which, in common with increased PBRM1 alterations, is also associated with a favourable outcome;
and 5. angiogenetic biomarkers are increased in tumour tissue, while inflammatory biomarkers are
decreased, which explains the good response to TKI therapy and lack of sensitivity to IT.

Keywords: renal cell carcinoma; isolated pancreatic metastases; genetics; epigenetics; seed and
soil mechanism

1. Introduction

The occurrence of isolated pancreatic metastases of clear-cell renal cell carcinoma
(isPMRCC) is rare in the clinical course of clear-cell renal cell cancer (ccRCC). In this
entity, the pancreas itself becomes—either definitively or for many years—the sole and
only organ site of synchronous or metachronous distant metastases of a ccRCC. If the
isolated occurrence of pancreatic metastases (PM) in ccRCC is to be regarded as ex-
tremely unusual, the clinical course reveals further peculiarities: (a) In metachronous
PM, an unusually long interval from RCC surgery to the occurrence of the PM: from
855 case reports, a mean duration of 9.6 years could be calculated [1], while large institu-
tional reports (N > 20) indicate a time span of 6.9 to 11.2 years (median 9.0 years) [2–17],
with the longest reported interval being 36 years [18]; (b) The high frequency of multi-
ple occurrences of PM: Of 733 casuistic observations, 36.4% concerned multiple PM [1].
This is confirmed in single and multicentre reports with values of 19% to 70% (median
37%) [2,4,6,8,10,12–14,16,17,19,20], with a reported maximum of 15 foci [21]; (c) The unusu-
ally protracted and favourable clinical course for metastatic ccRCC: For the spontaneous
course [22], a 3-year survival rate of 56% was calculated for the few reported, untreated
patients (N = 19 [16,23–34]). In operated patients, a 5-year survival rate of 75.7% could
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be determined from 421 case reports [22], and in the single and multicentre reports, the
corresponding values are 50–88% [3,4,6–15,19,20,35–40] with a median of 72%. Finally, in
patients treated with antiangiogenetic vascular endothelial growth factor receptor tyrosine
kinase inhibitors (TKI) [41], a result not significantly different from the operative results was
determined [42]; (d) Volume and growth-rate-dependent risk factors generally accepted to
be relevant for overall survival (OS) in metastatic surgery are insignificant in isPMRCC [22]:
In four large (N > 150) compilations of case reports, singular vs. multiple occurrences, size
and number of PMs, as well as synchronous vs. metachronous occurrence and interval
to PM occurrence, were not prognostically relevant [22,32,43,44]. An identical lack of
prognostic relevance of these risk factors was reported in five large (N > 20) institutional
reports [4,8,10,13,14] that analysed exclusively isPMRCC observations.

This overall favourable outcome cannot be explained by the single organ involvement
per se, but is a specific feature of the isPMRCC, as evidenced by the significantly worse
outcome of single organ metastases of the ccRCC in other organs. In a recent study on
the impact of single organ metastases on the course of ccRCC, the median survival time
of isPMRCC was three times longer than that of single organ metastases in other organs
(8.8 vs. 2.8 years; p < 0.001) [45].

Numerous studies have so far dealt with this disease, partly in the form of case studies,
or in the form of institutional experience reports, of which 1470 observations were reported
by 2022 [1], to which 259 isPMRCC have since been added [2,3,45–56], bringing the total
number to 1729.

The aim of this review is, therefore, to compile the genetic and epigenetic mechanisms
that have become known so far, to be effective in the occurrence of this special metastatic
RCC (mRCC) entity.

2. Genetic Characteristics and Peculiarities of the isPMRCC
2.1. Clear-Cell RCC Genome

The genome of the ccRCC was deciphered as early as 2013 [57]. It is characterized by
the biallelic absence or functional inactivation of the VHL tumour suppressor gene localized
at 3p25 and the frequent inactivation of chromatin-modifying genes, such as PBRM1, BAP1
and SETD2 [58] (Table 1).

The protein encoded by the VHL gene (pVHL) mediates its tumour-suppressive ef-
fect by binding to and mediating the proteasomal degradation of the hypoxia-inducible
factor HIFα [59,60]. Under physiological conditions, HIFα subunits are unstable and are
regulated by cellular oxygen content [61]. The loss or inactivation of VHL with consecutive
inactivation of pVHL, therefore, leads to the activation and enrichment of HIF despite
normoxic conditions and irrespective of the cellular oxygen availability and triggers the
subsequent up-regulation of numerous HIF target genes. The activation of these HIF
target genes is crucial for the formation and progression of ccRCC due to their role in
promoting angiogenesis, tumour cell survival, proliferation and progression. HIFα con-
sists of the subunits 1α and 2α, both of which are involved in ccRCC initiation [60,62].
During further ccRCC progression, however, HIF1α expression (located at chromosome
14q23 [63,64]) is lost in 30–40% since it can act as a tumour suppressor during the pro-
gression of ccRCC [60,64]. However, HIF2α acts as an oncoprotein in ccRCC. Due to the
behaviour of HIF, two forms of ccRCC can be distinguished: Those in which HIF1α and 2α
are overexpressed, and those in which only HIF2α is overexpressed and which are associ-
ated with enhanced cell proliferation and unfavourable prognosis [60]. HIF2α-triggered
target factors include VEGF-α [60,65], TGF α/EGFR [66], c-Myc [60,67,68], cyclin D1 [69,70],
SLC7A5-mTorC1 [60,71,72], GLUT1 [73,74], antioxidant enzymes [75], mitochondrial bio-
genesis factors [76], GAS6/tyrosine kinase AXL [77] and CXCR4/SDF1 [78], which control
critical biological activities such as tumour angiogenesis, cell-autonomous proliferation,
increasing glycolysis, resistance to oxidative damage, endoplasmic reticulum stress and
metastatic ability [60,67–81].
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Further frequently altered genes in ccRCC are chromatin-modifying genes: polybromo-
1 (PBRM1), BRCA1 associated protein 1 (PAB1), SET domain containing 2 histone-lysine N-
methytransferase (SETD2), located on the same 3p chromosomal region [82–84], and less fre-
quently, lysine demethylase 5C (KDM5C) located on the X chromosome [85] and telomerase
reverse transcriptase (TERT) promoter located on chromosome 5p [86,87]. The frequency of
detectable VHL defects is estimated to be up to 90% [58,86,88–90]. In contrast, the incidence
of the other altered driver genes is significantly lower: PBRM1 52.6–26.4%, SETD2 35–7.6%,
BAP1 31–7.5%, KDM5C 16–3.8%, TERT 14–12.2% and mTor 13–5.7% [58,84,86,88,89,91–94].
It was soon recognised that these gene alterations are associated with a different tumour
biology, and thus, have an influence on the course of the disease and the outcome [90,95].
PBRM1 is the most frequently mutated gene after VHL [84,92] and mutations acquired in
this gene largely do not overlap with loss of function mutations in BAP1 [58,88,90,92,96].
PBRM1 mutations are associated with improved outcome in ccRCC [95,97] and do not
correlate with decreased survival [88], whereas the absence of mutations of PBRM1 resulted
in worse outcome [90]. KDM5C mutations have also been associated with improved clinical
outcome in clinical reports [88,94]. In particular, the concurrent mutations of PBRM1 and
KDM5C define a subgroup with increased angiogenesis associated with favourable progno-
sis, as Santos reports [95]. The similar effects of PBRM1 and KDM5C mutations on outcome
are consistent with the observation that the vast majority of up- and downregulated genes
after suppression of PBRM1 or KDM5C were shared [98]. Conversely, PAB1 mutations
in ccRCC have proved to be a driver of aggressiveness and correlated with reduced out-
come [58,84,88–90,92,99–102]. PAB1 mutations further tended to be associated with mTOR
mutations [92]. TERT and TP53 were also identified as gene mutations associated with a
poor prognosis [58,86,90,99]. However, these gene changes are generally relevant to the
occurrence and course of RCC, but none of these changes can be considered specific to the
occurrence of metastases, let alone isPMRCC.

Table 1. Altered driver genes in ccRCC, metastatic RCC and isPMRCC.

Altered Genes References

Clear cell RCC
VHL Gen [57,58,82,88]
Chromatin modifying genes: e.g., PBRM1, BAP1, SET2, KDM5C [83,86,88,89,92,94]
Further driver genes: e.g., pTEN, TERT, p53 [86,89,92–94,99]

Metastatic RCC
Loss of 9p, 14q
Number of somatic copy number variants in primary ↑
metastatic potential ↑: low ITH 1 and high SCNA 2 in primary

[63,103,104]

isPMRCC

9p loss missing
Number of somatic copy number variants ↓
chromatin-modifying genes: PBRM1 ↑, BAP1 ↓, KDM5C ↑
High genetic stability, constrained evolutionary process

[50,91,103]

↑ increased, ↓ decreased, 1 intratumoural heterogeneity, 2 somatic copy number alterations.

2.2. Genetic Profile of Metastatic ccRCC

For the question of possible genetic characteristics of the isPMRCC, studies that specif-
ically investigated genetic alterations that control and influence the metastatic behaviour
of the RCC are therefore more relevant. Such a study was conducted and presented for
the first time in 2018 by Turajlic [103]. In this groundbreaking analysis of 575 primary and
335 metastatic biopsies across 100 patients with metastatic ccRCC, the authors were able to
identify three genetic changes that shape the metastatic behaviour of the RCC: 1. the loss of
9p21.3 and less pronounced 14q31.2 are hallmark genomic alterations at the beginning of
the metastasis process; 2. the metastasis potential of RCC is reduced by low intratumoural
heterogeneity and a small proportion of somatic copy-number alterations; and 3. distinct
patterns of metastasis are caused by punctuated and branched evolution (Table 1).
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2.3. Genetic Profile of isPMRCC

So far only three publications have been presented in which this particular problem is
addressed [50,91,103]. On the one hand, this is an inevitable consequence of the extreme
rarity of isPMRCC, but on the other hand, it is also due to the fact that techniques such
as next-generation sequencing have only been developed and used in recent years [82]
(Table 1).

(a) In the already cited work of Turajlic [103], among the 100 patients, there were also
three isPMRCC observations, whose genetic profile was analysed and presented
in detail for the first time. The isPMRCC showed an independent genetic profile
characterized by the absence of 9p loss and a significantly lower genome instability
index: Despite a 15-year and 8-year interval between primary ccRCC and clinical
manifestation of PM, only one additional driver mutation was observed in two cases
(mTor and SETD2, respectively) and in the third case, even after 17 years, there was
no additional driver event to prove.

(b) Based on the improved prognosis of multiorgan metastases of ccRCC with concurrent
PM compared to cases without PM, as shown by Grassi [105], and since repeatedly
confirmed [11,91,97,106–110], Singla and colleagues in 2020 focused on the question
of genetic characteristics of PM in mRCC [91]. (Their study group included 31 pa-
tients, but only a subgroup of just 10 (32%) met the isPMRCC criteria. However,
the larger group (68%) experienced PM with simultaneous extrapancreatic multi-
organ metastases of the ccRCC, which needs to be considered when assessing the
relevance of the results for the specific isPMRCC topic discussed here because the
detailed differences in metastasis behaviour between the two groups (single organ
vs. multi-organ metastases) and the very special clinic of the isPMRCC (9.5 years
metastasis-free interval until occurrence of PM and 75% 5-year survival rate, Section 1)
make some genetic/epigenetic differences at least possible). In their extensive, merito-
rious study, Singla and colleagues were able to document genetic changes associated
with less aggressive disease pathways: a low frequency of copy number variants
associated with aggressiveness, such as 9p, 14q and 4q loss [63,103,104]. Further-
more, the authors found a low rate of PAB1 (3%) and a high rate of PBRM1 defects
(77%)—changes associated with a less aggressive disease course [96,111]. Similarly,
no driver mutation could be detected in TERT, which is associated with an aggressive
disease course in RCC [86]. In contrast, KDM5C—after VHL and PBRM1—was the
third most common gene mutation in the studied material with a frequency of 24%.
As already pointed out above (Section 2.1), the concurrent occurrence of PBRM1 and
KDM5C mutations is again a sign of a favourable course [95]. The high frequency of
KDM5C mutations differs from metastatic ccRCC without PM in two respects. On the
one hand, the value of 24% is the highest reported frequency so far [84,88,89,92]. On
the other hand, in non-isPMRCC studies, KDM5C was only the fifth most common
mutation [58,84,88,89,92,94]. As a further important characteristic of PMRCC, these
authors also stress the unusual genetic stability of tumour cells, as limited diversifica-
tion was observed both in the primary tumours leading to PM and in the subsequent
PM themselves. The authors concluded that tumours and metastases from patients
with PM are consistent with a constrained evolutionary process.

(c) Finally, Lou presented in 2023 an isPMRCC [50] that showed in the next-generation
sequencing, three gene mutations (VHL, PTEN, KDM5C), a low tumour mutation
burden and a microsatellite stable status. The fact that of the chromatin-modifying
factors, only KDM5C was mutated is striking, as it further confirms Singla’s result of
an increased frequency of KDM5C mutations (Figure 1).
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The observations made so far at the isPMRCC can be summarised by three charac-
teristics (Table 1): 1. a lower number or absence of copy number variants associated with
increased aggressiveness (e.g., 9p, 14q, 4q); 2. an evolutionary profile characterized by the
rare occurrence of mutations associated with aggressive pathways, such as BAP1 and TERT,
and the increased occurrence of beneficial gene mutations, such as PBRM1, leading to a
specific genetic profile that is further accentuated by the increase in KDM5C mutations
observed in two of the three studies; and 3. high genetic stability.

Further evidence for the high genetic stability of this entity is provided by reports of
subsequent tumour progression after isPMRCC therapy, which occurred in 43% of 288 case
reports after a median interval of 29.8 months [106], and 15.3% of these appeared as further
isPMRCC in the pancreas remnant [2,20,30,46,56,112–120]. In institutional communications,
the incidence of newly isolated PM is estimated to be between 9% and 62% (median
27%) [2–4,7,9,10,12,45,112,113].

3. Epigenetics of isPMRCC
3.1. The Impact of a “Seed and Soil Mechanism” in isPMRCC

While the above-cited genetic studies have been able to identify several factors that are
at least co-responsible for the unusually favourable outcome, the question of the causes of
the sole and exclusive single-organ involvement of the pancreas (organotropism) remains
unanswered at present. Due to the exclusive rarity of the isPMRCC, no working group has
yet specifically investigated this issue.

The theory that innate or acquired direct lymphatic or venous vascular connections
between the kidney and pancreas are responsible for the occurrence of PM [23,24,121–128]—
initially derived from a few individual cases—was refuted by the results of later more
extensive studies. A high importance of this mechanism would imply that left-sided
RCCs should preferably lead to metastases in the near pancreatic tail and corpus, whereas
right-sided RCCs should preferably metastasize in the near pancreatic head. In other
words, this local metastasis mechanism should inevitably result in a dependence of the
localization of metastases in the pancreas from the side of the primary RCC. However, as
our working group demonstrated for the first time in 2006 and was shown subsequently
in increasingly large literature compilations [1,106,120], the PMs are independent of the
ccRCC side, being evenly distributed over the pancreas. This even distribution has now
been confirmed and documented in numerous institutional studies [3,10,13,14,31,129–133].
However, to the best of our knowledge, the well-documented even distribution can only
be explained by a systemic hematogenic metastasis pathway. The fact, in turn, that after
systemic hematogenic tumour cell dissemination in all organs, manifest metastases occur
only in the pancreas is then only conceivable if the embolized tumour cells have a special
affinity for the pancreas. This means that the phenomenon of the isolated occurrence of PM
is obviously based on an exclusive “seed and soil” mechanism (SSM), which allows the
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growth of embolized tumour cells only and exclusively in the pancreas while in all other
organs, the formation of metastases is impeded [134,135].

The SSM [136–138] was identified and described by Paget as early as 1889 [139].
This SSM explains that the distribution pattern of metastases is not a uniform, random
pattern. On the contrary, the individual primary tumour entities are assigned preferred
host organs because the definitive metastatic settlement is the result of absolutely necessary
multistage cascade-like interactions of cancer cell properties (seed) with those of the host
organ (soil). Each host organ places different demands on embolized cancer cells. The
growth of embolized tumour cells to clinically manifested metastases is therefore only
possible in organs in which the corresponding characteristics of the host and tumour cell
exactly match each other because the blockage of a single stage of this complex process can
make metastasis formation impossible [140–142]. In the majority of cases, SSM leads to a
relative advantage or disadvantage of metastasis formation in potential host organs. In
the case of isPMRCCs, however, a highly specific SSM is present, which allows metastasis
formation solely in the pancreas but absolutely prevents it in all other organs. However, this
“absolute” effective SSM is able to explain the lack of meaningfulness of metastasis volume
and growth-rate-dependent risk factors for OS mentioned at the beginning of this section.
All these risk factors are only an expression of the magnitude of the risk that further occult
micrometastases are already present outside the pancreas at the time of PM surgery, leading
later to tumour progression. However, since the exquisite SSM does not allow embolized
tumour cells to survive outside the pancreas—or, as is equally conceivable, that forces the
embolized tumour cells definitively, or at least for many years, into a dormant, non-growth
state [143–145]—this risk is or tends to be zero and the risk factors must remain ineffective.

3.2. Epigenetics and SSM in isPMRCC

Epigenetic markers, based on DNA-methylation, histon modifiers and micro RNA
expression jointly control gene expression in RCC [146]. In RCC, for example, aberrant
promoter methylation in more than 200 genes and more than 120 deregulated miRNA
were reported as early as 2017 [146,147]. DNA methylation plays a significant role in
the regulation of gene expression, e.g., gene promoter methylation, that silences its cor-
responding gene expression. In 2019, Nam reported that the gene signature related to
DNA methylation differs between primary RCC and RCC metastases, as it was found, that
metastatic tumours often demonstrated more pronounced changes compared to primary
tumours, e.g., in metabolism-related HK2 and SZC16A3 [148]. Several HIF-target genes
were hypomethylated with increased expression in metastatic RCC, including ADM, TN-
FAIP6, CAV1, HK2 and ALDOC. Conversely, promoter hypermethylation with silencing
of the corresponding genes was identified, e.g., in the gene encoding estrogen-related
receptor γ—an activator of transcription—with the strongest reduction noted in metastatic
RCC. These results provide evidence that in relation to DNA methylation, metastatic RCC
has a specific pattern compared to the primary RCC. Micro-RNA in turn, to give another
example, control cancer metastasis, because of their ability to inhibit target genes involved
in different steps of cancer metastasis cascade, e.g., EMT, migration and metastasis settle-
ment [149–156]. In addition, it was demonstrated that the miRNA profile differs between
metastatic and non-metastatic RCC [157–159], just as it is influenced by the location of
metastases in RCC [160].

For the metastatic RCC (mRCC), a specific pattern regarding DNA methylation or
miRNA profile is documented in the literature. However, to the best of our knowledge, no
epigenetic study has so far been presented for the extremely rare isPMRCC. This makes it
currently impossible to compare epigenetic changes in isPMRCC with other RCC entities.
Therefore, it remains completely open whether and which specific epigenetic changes are
characteristic of the occurrence of isPMRCC.

The exact cause(s) of the highly specific SSM in the isPMRCC has not yet been in-
vestigated and explained due to the rarity of this entity. Therefore, at present, only those
epigenetic mechanisms that have been identified as triggering organotropism in more
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frequent and, therefore, better-investigated tumour entities can be put up for discussion
(Table 2): (a) the premetastatic niche; (b) the chemokine receptor/ligand mechanism;
(c) the effects of metabolic adaptation; (d) the immuno-surveillance; and (e) the impact of
micro-RNA (miRNA)

(a) The premetastatic niche (pMN) is the result of the ability of tumours to manipulate a
host organ prior to the formation of metastases in such a way that a special microenvi-
ronment is created that allows the subsequent successful metastasis settlement, by
inflammation, immunosuppression, enhanced angiogenesis, vascular leakiness and
extracellular remodelling [142,161–163]. Since the formation of pMN results from
the interaction of primary tumour-derived components (tumour-derived secreted
factors including VEGF, TNF-α, TGF-β, G-CSF and tumour-derived extracellular
vesicles (EV) like, exosomes, microvesicles containing a variety of proteins, mRNAs,
miRNAs and signalling molecules) with tumour-mobilised bone-marrow-derived
cells (MDSC, TAM) and the local microenvironment [163–175], this is associated with
organotropism, which is a characteristic of pMN [163]. In the ccRCC, the formation of
a pMN in the lung was described in 2011 [175]. However, pMN formation of RCC in
the pancreas has not been reported;

(b) Successful chemokine receptor/ligand reaction is a necessary requirement for the
activation of numerous signal-transforming pathways. These are critical in the early
metastatic process [176,177]. Signalling between chemokines and their receptors regu-
lates tumour cell settlement in host organs e.g., by recruitment of MDSCs, TAMs, Tregs
and tumour-associated neutrophils into distant secondary sites, and thus, supporting
the formation of the premetastatic niche [162,163], or in supporting cancer by stepwise
activating the pluripotency regulator transcription factors OCT4, NANOG and SOX2,
whose activation helps cancer cells in attaining stemness properties [176,178]. Thus,
they are considered critical regulators of self-renewal and pluripotency that mediate
tumour proliferation, differentiation, metastasis and prognosis [176,179,180]. With
RCC, CXCL6/7- and CXCL12-mediated activation of CXCR1/2 and CXCR4 is docu-
mented [176,179,181]. Since the chemokine receptor is specific to the tumour cell and
the ligand is specific to a host organ, a successful interaction will only take place in
those tissues where the receptor and ligand exactly match each other. This inevitably
leads to organotropism in metastasis formation. The effect of this mechanism on
metastatic behaviour was demonstrated early in breast cancer: e.g., breast cancer cells
express high levels of CXCR4 and CCR7, which are responsible for metastasis settle-
ment in LN, lung, liver and bone marrow, as these organs are rich in corresponding
ligands CXCL12 and CCL21 [182,183];

(c) The impact of metabolic adaptation
At the stage of early, avascular growth, micrometastases pass through a critical phase,
as the supply with energy carriers is limited by diffusion alone [136], e.g., 85–100 µm
away from tumour vessels, hypoxic cells are already detectable [184]. Therefore, those
cell clones will preferably be able to survive this stage and are able to optimally utilize
all the locally available energy carriers by bypassing metabolic barriers by metabolic
adaptation, so that the tumour cells acquire a metabolic signature adopted for survival
at a particular metastatic site [185,186]. Here again, a successful interaction between
a host organ that provides the energy carriers and the tumour cells that can utilize
the energy carriers is a necessary prerequisite for metastasis formation–i.e., an SSM
mechanism, which again, triggers organotropism in metastasis. In the case of the isPM-
RCC in particular, however, an additional metabolic mechanism has to be considered.
Rapid tumour growth is usually accompanied by increased metabolism, which affects
the microenvironment. Critical blood flow with hypoxia, but especially the Warburg
effect (aerobic glycolysis as part of tumour-specific metabolic reprogramming despite
the presence of oxygen and functionating mitochondria) leads to increased glycolysis
in the tumour with the accumulation of acidic lactic acid [187,188]. As a result, the
tumour cells modify the microenvironment to an acidotic pH [187,189,190]. This, in
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turn, gives an advantage to tumour cell clones that are adopted to acidic pH values
as low pH reinforces the metastatic potential of tumour cells by relaxing cell–cell
contact, by degrading extracellular matrix, by fostering tumour cell migration and
by suppression of anti-tumour immunity [188,191–193]. In the case of slow-growing
isPMRCC, however, acidosis caused by rapid tumour growth cannot be of particular
importance. On the contrary, the isolated growth of cells in the pancreas at least sug-
gests the presence of cell clones that are well adapted to an alkaline environment. This
would inevitably lead to an organotropism in the pancreas that is characterised by an
alkaline environment, whereas in extrapancreatic organs, the formation of metastases
is impeded [1];

(d) Immuno-surveillance
The importance of the immune system in mRCC was early assumed by the rarely
observed phenomenon of metastases spontaneous regression [194–197], also in the
pancreas [25], as the cause of which spontaneous changes in the immune system
were correctly assumed. The ability to evade the immune system through specific
inhibitory signalling pathways such as T-lymphocyte-associated protein 4 (CTLA-4)
and programmed cell death protein-1 pathways (PD-1/PD-L1) is a fatal hallmark of
tumours [100,198,199]. This knowledge led to the development of immunotherapy
(IT) with the use of monoclonal AK (anti-PD-1 nivolumab and anti-PD-L1 avelumab)
and monoclonal AK against CTLA-4 (ipilimumab). Since blockade of the immune
system also plays an important role in the progression of mRCC, IT is generally
effective in advanced ccRCC [200,201]. It is, therefore, all the more remarkable that
in Singla’s study, IT was found to be ineffective in PM of the ccRCC, whereas TKI
therapy was effective [91]. This unexpected result could be explained and supported
by the behaviour of biomarkers. While angiogenetic markers were elevated (e.g.,
enrichment of endothelial cells, low frequency of macrophages, B cells, T cells, natural
killer cells and neutrophils and marked BPRM1 loss), inflammatory markers remained
low, making ccRCC with PM appear to belong to the angiogenetic non-inflammatory
subtype of mRCC [202,203]. This leads to the conclusion that in ccRCC with PM,
the tumour cells are recognized as “foreign” and fought against, so an additional IT
does not bring benefit. Of course, it remains unknown why of all things and why
only in one single organ, the pancreas, the immune defence is ineffective, and thus,
triggers an organotropism. Conversely, the high presence of angiogenetic biomarkers
in isPMRCC shows the high importance of angiogenetic mechanisms in this entity
and explains the high sensitivity to TKI treatment [41,42,91,201,204–208];

(e) Importance of miRNA
miRNAs are a class of small (16–22 nucleotides [209]) non-coding regulatory RNAs
that negatively regulate the expression of target genes by translational repression or
degradation of mRNA [151,156,160,210,211]. They are involved in carcinogenesis as
they are associated with the activation of proto-oncogenes or inactivation of suppres-
sor genes [156,209]. miRNAs are also able to regulate cancer metastasis due to their
ability to inhibit numerous target genes involved in different steps of cancer metastatic
cascade [151,156], such as EMT [151,156], migration, settlement and proliferation of
embolized tumour cells [156,159,212]. The so-far discovered varieties of miRNAs
with altered and disturbed expression in RCC, which regulate carcinogenesis but
also the different steps of the cancer metastatic cascade [150,152,153,155,159,209], are
certainly accompanied by a large number of heterogenous tumour cells. This favours
the formation of metastases as this increases the likelihood of “matching” cancer cells
reaching a potential host organ. Furthermore, it was demonstrated that the miRNA
profile differs between non-metastatic and metastatic RCC [157,159,160] and that there
is also a dependence of the miRNA profile from the host organs affected by metas-
tasis [160]. These results may indicate an interrelation between the miRNA profile
and the ability to metastasize in different host organs in mRCC, which could cause
organotropism in metastatic settlement. The fact that an SSM triggered by the profile
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of miRNAs (transported by EV to the potential premetastatic sites, see Section 3.2 (a)
can in principle occur is documented in the literature, at least for more common and,
therefore, better-researched tumour entities such as breast cancer metastases [213,214].

Table 2. Mechanisms leading to organotropism in metastasis settlement.

Mechanism References

Pre-metastatic niche [142,161–163]
Chemokine receptor mechanism [176–181]

Metabolic adaptation of tumour cells [185–192]
Differences in Immunosurveillance [194–204]

Micro-RNA profile [151–160,210,214,215]

4. Conclusions

In isPMRCC, research in recent years has uncovered numerous genetic and epigenetic
mechanisms that can explain the unusually protracted and favourable course and the
specific response to drug therapy: e.g., high genetic stability, low frequency of copy number
variants, a profile of chromatin modifying genes alterations associated with favourable
course [PBRM1 ↑, PAB1 ↓) and affiliation to the angiogenetic subtype. Whether our increas-
ing knowledge of the genetic and epigenetic characteristics of the exquisitely rare isPMRCC
will help to show a relationship of radiomic features with genetic mutations status as
VHL, PBRM1, PAB1, KDM5C, SETD2 or expression of miRNA [215–221], will have to be
shown in future studies; this also applies to the influence of therapy outcomes by external
factors [222]. However, such studies are hampered by the rarity of isPMRCC, as meaningful
collectives are only possible through large multi-institutional studies or extensive literature
compilations. The extremely unusual behaviour of the isPMRCC leads to the conclusion
that further hitherto undiscovered biological mechanisms are involved. Therefore, inves-
tigations of this unusual entity may be useful in the therapeutic debate, which currently
revolves around the optimal use of angiogenesis inhibition and IT in mRCC [91]. However,
the cause of the isolated occurrence of PM in isPMRCCs is still unknown. The uniform,
long-term constant clinical course suggests at least that the phenomenon of isPMRCC is
also based on uniform pathomechanisms. Therefore, genetic studies appear appropriate to
clarify the mechanisms that cause the exclusive occurrence of pancreatic metastases and
trigger their absence in all other organs. This could both lead to a better understanding of
the complex metastatic process and help achieve the goal: to hamper the metastatic process.
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