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Abstract: While significant strides have been made in understanding cancer biology, the enhancement
in patient survival is limited, underscoring the urgency for innovative strategies. Epigenetic modifica-
tions characterized by hereditary shifts in gene expression without changes to the DNA sequence play
a critical role in producing alternative gene isoforms. When these processes go awry, they influence
cancer onset, growth, spread, and cancer stemness. In this review, we delve into the epigenetic and
isoform nuances of the protein kinase, doublecortin-like kinase 1 (DCLK1). Recognized as a hallmark
of tumor stemness, DCLK1 plays a pivotal role in tumorigenesis, and DCLK1 isoforms, shaped by
alternative promoter usage and splicing, can reveal potential therapeutic touchpoints. Our discussion
centers on recent findings pertaining to the specific functions of DCLK1 isoforms and the prevailing
understanding of its epigenetic regulation via its two distinct promoters. It is noteworthy that all
DCLK1 isoforms retain their kinase domain, suggesting that their unique functionalities arise from
non-kinase mechanisms. Consequently, our research has pivoted to drugs that specifically influence
the epigenetic generation of these DCLK1 isoforms. We posit that a combined therapeutic approach,
harnessing both the epigenetic regulators of specific DCLK1 isoforms and DCLK1-targeted drugs,
may prove more effective than therapies that solely target DCLK1.
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1. Introduction

Modern curative treatments for cancer have yet to substantially improve overall sur-
vival, especially for cases with widespread metastatic disease. Even with groundbreaking
advances in genomics, proteomics, and technology, we urgently need innovative platforms
to revolutionize cancer therapy. The complexity of the processes and regulatory mecha-
nisms leading to cancer is still not fully understood, especially regarding the relationship
between genetics and epigenetics in the context of tumor development in specific organs.
Traditionally, cancer has been viewed as the result of uncontrolled cell growth due to the
activation of oncogenes and the deactivation of tumor-suppressing pathways [1]. However,
new findings suggest that cancer-causing processes might start even before these genetic
changes occur. Environmental factors like radiation, toxins, infections, and inflammation
can cause early changes at the DNA level, even before mutations in oncogenes become
evident [2,3]. These changes include alterations in DNA methylation due to reactive oxygen
species (ROS) [4], inflammatory cytokines [5], and DNA repair mechanisms [6]. All these
factors can influence the activity of genes that suppress or promote tumor growth (Figure 1).
Moreover, epigenetic changes, which are alterations that do not change the DNA sequence
but affect gene expression, are pivotal in forming cancer stem cells (CSCs). These cells are
implicated in tumor diversity, resistance to treatment, recurrence, immune system evasion,
and metastasis [7,8]. With the help of advanced molecular techniques, we now see an
even more complex landscape of genetic and epigenetic interactions driving cancer. A
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particular point of interest in this landscape is genes that have isoforms, or variants, that
can either promote or suppress tumor growth depending on which version is active. An ex-
ample of this is the gene doublecortin-like kinase-1 (DCLK1), a well-recognized marker for
CSCs [9–11] that is linked with aggressive cancer types and resistance to treatment [12,13].
DCLK1 has multiple isoforms, and recent research suggests that they might have contrast-
ing roles in cancer and other diseases [14]. Furthermore, these isoforms may be modulated
via differential DNA methylation [15]. In this review, we delve deeper into the epigenetic
regulation of such genes, focusing on DCLK1 and its isoforms. We explore how changes
in its DNA methylation can influence which isoform is produced. We also advocate for
the exploration of treatments that target these epigenetic changes in combination with
isoform-specific therapies as a potential new avenue in cancer treatment.
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Figure 1. Exposure to environmental insults, such as irradiation or inflammation, alter DNA methy-
lation and gene isoforms to promote cancer. (A) Several genes have been identified as having
alternative promoters, Promoteralpha and Promoterbeta, with the upstream promoter located near
CpG-islands that are the target of DNA methylation. Expression may be primarily from the upstream
promoter, but this does not preclude expression from the downstream promoter, which may reflect
the homeostatic balance of the individual isoforms and their roles. (B) Upon various environmental
exposures, the DNA methylation of the upstream promoter is hypermethylated at nearby CpG sites
resulting in the inhibition (arc with crossbar) of the promoter. This may directly or indirectly result in
an increase in expression from the downstream promoter, which may affect tumorigenesis via the
imbalance between the isoforms and their relative functions. Created with BioRender.com (accessed
on 10 October 2023).

2. Epigenetics and Cancer Progression

Epigenetics studies how gene activity changes without altering the DNA sequence.
This field has shed light on the vital role these changes play in cancer’s development and
progression. This discussion focuses on modifications resulting in alternative gene forms,
primarily through DNA methylation and histone modifications.

2.1. DNA Methylation in Cancer

DNA methylation involves adding a methyl group to the carbon 5 position of the cyto-
sine ring, usually in a CpG context, and this modification often regulates gene activity [7,16].
In cancer, research into the DNA methylome, the genome-wide mapping of the DNA
methylation of cytosine residues, revealed a central anomaly: a reduction in methylation
throughout the genome (hypomethylation) yet increased methylation (hypermethylation)
at many gene promoter regions [17,18]. Global DNA hypomethylation was one of the
first epigenetic alterations identified in cancer cells and results in the aberrant activation
of proto-oncogenes, thus contributing to carcinogenesis [17,19]. In contrast, promoter
hypermethylation often leads to the transcriptional silencing of tumor suppressor genes,
contributing to cancer progression [18]. Both of these outcomes result from the observation
that DNA methylation generally leads to the repression of gene expression via the direct
inhibition of transcription factor binding or through the recruitment of proteins known as
methyl-CpG-binding domain (MBD) proteins, which further recruit chromatin remodeling
proteins that compact the DNA and limit accessibility for transcription [20].
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Key proteins involved in this methylation process include DNA methyltransferases
(DNMTs), which add methyl groups, typically leading to gene silencing [21]. Specifically,
DNMT1 maintains existing methylation patterns, while DNMT3A and DNMT3B handle
new methylation [22]. Overactivity in these enzymes can cause the abnormal methylation
patterns seen in cancer. Additionally, MBD proteins recognize and bind to methylated
DNA, often causing gene repression [23], while ten-eleven translocation (TET) proteins can
initiate DNA demethylation, with their imbalance linked to several cancers [24].

2.2. Interplay between Histone Modifications and DNA Methylation

Histone modifications play a crucial role in gene regulation by altering chromatin
structure and function [25]. For example, adding acetyl groups (acetylation) to histones
often activates genes [26]. Meanwhile, adding methyl groups (methylation) can activate
or inhibit genes, depending on the specific location. For example, the trimethylation
of histone H3 at lysine 4 (H3K4me3) is often associated with active promoters, while
trimethylation at lysine 27 (H3K27me3) is linked with gene repression [27]. This interplay
between DNA methylation and histone modifications is sometimes referred to as the
“epigenetic code” (reviewed in Kong et al. [28]). While DNA methylation can influence
the histone modification state, the reverse is also true: histone modifications can affect the
DNA methylation pattern. One of the best studied interactions on the influence of histone
methylation on DNA methylation is the methylation of histone H3 at lysine 9 (H3K9me),
which leads to further DNA methylations and gene silencing [29]. Additionally, another
modification, H3K27me3, can lead to gene silencing and is typically seen in DNA regions
that are also hypermethylated [30].

Lysine demethylases (KDMs) are enzymes that remove methyl groups from histones,
influencing DNA methylation in cancer. For instance, KDM1A removes such groups
from H3K4, generally associated with gene activation [31]. This enzyme works with
DNMTs, potentially directing them to specific DNA regions, leading to methylation and
gene silencing [32]. Other KDMs can erase marks that typically inhibit gene activity,
promoting gene expression, and when these enzymes are disrupted or mutated, it can
result in cancer [33].

2.3. Regulation of Alternative Promoters through Epigenetics

Alternative promoters play a crucial role in gene expression, often producing multiple
transcripts from a single gene. The choice of promoter can be influenced by various
factors like cellular environment, development stages, and external conditions [34,35]. This
variability enables genes to produce protein isoforms that can have differing, or even
contrasting, functions [36]. Many regulatory mechanisms, from epigenetic modifications
like DNA methylation to cellular signaling, guide this process [37–39]. The misregulation
of these processes can result in diseases, including cancer.

In human tissues, DNA methylation showcases the dynamic nature of promoter
regulation [40]. In the context of cancer, changes in DNA methylation at promoter sites can
lead to a diversity of gene isoforms and even serve as potential disease markers [41–44],
with differences in the chromatin structure at alternative promoters likely responsible
for the dysregulation observed in cancers [45]. Often, one promoter is rich in CpG sites,
while another is not. The CpG-deficient sites often undergo demethylation, leading to
gene activation [44]. Ensuring methylation maintenance is essential for proper promoter
regulation. For example, the absence of DNMT3B, a protein linked to methylation issues in
cancer, can trigger the unwanted activation of alternative promoters [46–48].

2.4. Epigenetics and Alternative Splicing

Alternative splicing, influenced by promoter usage, results in various gene
isoforms [49,50]. The pattern of DNA methylation can impact this splicing, directing
the creation of specific gene versions. Any change in methylation near splicing sites can
alter the binding patterns of the splicing machinery, leading to varied outcomes [51]. His-
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tone modifications also play a role; for instance, methylation-induced changes in chromatin
structure can affect the transcription process and splicing decisions. The acetylation of
histones opens the chromatin, which can influence the recognition of splice sites [52,53].
Overall, the speed of RNA polymerase II and the assembly of spliceosomes are affected by
these epigenetic changes, altering splicing results [54]. In summary, epigenetics—especially
DNA methylation and histone changes—profoundly affect cancer development. These
mechanisms regulate gene activity without changing the DNA structure, either activating
cancer-causing genes or silencing those that suppress tumors. Through alternative promot-
ers and splicing, they drive the creation of diverse gene forms that could influence cancer’s
progression.

3. Gene Isoforms in Cancer: A Double-Edged Sword

Gene regulation becomes more intricate due to alternative promoters, leading to
diverse protein isoforms that significantly sway cell behavior. This phenomenon, known
as promoter choice, results in the creation of unique mRNA and protein isoforms. These
isoforms can sometimes perform contrasting functions [34]. Cancer development relies
on the balance between oncogenes, which promote cell growth, and tumor suppressors,
which restrain uncontrolled cell division. Notable oncogenes include MYC, KRAS, and
EGFR, while TP53, BRCA1/2, and PTEN are well-known tumor suppressors [1,55]. This
balance is foundational to understanding cancer’s molecular nature and shapes the design
of therapies targeting these proteins [56].

Tumorigenesis is multi-faceted, characterized by both genetic and epigenetic changes
that lead to unregulated cell growth. One pivotal component in this complex landscape is
gene isoforms, which are various forms of the same gene. Surprisingly, some genes can
yield isoforms that act as both oncogenes and tumor suppressors. For instance, members of
the p53 family, TP63 and TP73, produce TAp63/TAp73, which resemble tumor suppressors,
and ∆Np63/73, which might have oncogenic properties [57,58]. Similarly, the RASSF1 gene
presents RASSF1A as a tumor suppressor and RASSF1C with potential oncogenic roles [59].
The regulation of these isoforms can be influenced by epigenetic modifications, introducing
another layer of intricacy in their roles in cancer [8].

One key protein, DCLK1, known to regulate CSCs, is gaining attention in cancer
research (reviewed by Chhetri et al. [60]). It is linked to the self-renewal and tumorigenic
abilities of CSCs in various cancers [61–63]. Epigenetic mechanisms, like DNA methylation
and histone modifications, can regulate the expression of DCLK1 and the stem-like prop-
erties of CSCs, affecting tumorigenesis and treatment responses [64]. A growing body of
evidence suggests that DCLK1 is a marker for CSCs and a promising target for therapies
aiming to halt tumor recurrence and metastasis [65–67]. The presence of alternative pro-
moters complicates gene regulation, resulting in a plethora of protein isoforms pivotal in
cancer development. This intricate dance between oncogenes and tumor suppressor genes
is central to the molecular essence of cancer and is invaluable for therapeutic development.

4. Epigenetic Regulation of Alternative Isoforms in Cancer

Gene isoforms can function as either oncogenes or tumor suppressors, based on their
context and differential expression. Epigenetic regulation, notably DNA methylation and
histone modifications, often governs the expression of these isoforms. Examples include
RASSF1, TP73, and DCLK1 genes [68].

4.1. RASSF1

RASSF1 plays a key role in cell cycle regulation and has implications in various
cancers. The gene yields two main isoforms, RASSF1A and RASSF1C, through alternative
promoter usage [59,69]. RASSF1A, a known tumor suppressor, is often silenced in many
malignancies [70]. Additionally, the RASSF1 promoter methylation status serves as a
diagnostic and prognostic marker in breast, lung, and ovarian cancer [71–73]. On the other
hand, RASSF1C is believed to have oncogenic potential [59]. Importantly, the two isoforms
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differ in a protein domain that influences their role in apoptosis and cellular proliferation.
The RASSF1 5′ promoter responsible for RASSF1A contains a CpG island, which, when
hypermethylated, leads to transcriptional silencing of the gene [69], while, in contrast, the
downstream promoter that generates RASSF1C is less frequently methylated.

The fundamental difference between RASSF1A and RASSF1C is that RASSF1A con-
tains a protein kinase C domain lacking in RASSF1C [59]. One consequence is that RASSF1C
does not associate with death receptor complexes the same way as RASSF1A, leading to
the inhibition of apoptosis and promotion of the upregulation of proliferation and invasive
phenotypes [74]. Thus, these divergent roles are due to the absence of a single domain that
is important in regulating physical interactions [75,76].

4.2. TP63/TP73

This theme of one isoform lacking a functional domain that determines its role in
cancer is also seen in the TP63/TP73 gene that also has multiple gene isoforms that play
a crucial role in multiple cellular functions including differentiation, proliferation, and
apoptosis. Both TP63 and TP73 resemble the well-studied p53 tumor suppressor gene but
exhibit structurally and functionally distinct isoforms arising from alternative promoters
and extensive alternative splicing [77]. In both TP63 and TP73 gene isoforms, the upstream
promoter (P1) drives the transcription of full-length or transactivating (TA) isoforms, which
have a similar structure to p53 and encompass transcriptional activation, DNA binding,
and oligomerization domains [57]. The TA isoforms often function as tumor suppressors,
promoting cell cycle arrest and apoptosis. On the other hand, the alternative internal
promoter (P2) drives the expression of N-terminally truncated (∆N) isoforms that lack the
transcriptional activation domain and act in a dominant-negative manner, inhibiting the
function of TA isoforms and promoting tumorigenesis [57]. Furthermore, CpG methylation
within the P1 promoter region has been reported, resulting in transcriptional repression of
the TA isoforms [78,79].

4.3. DCLK1

DCLK1 presents several isoforms due to alternative promoters and mRNA processing.
Although their specific roles in cancer are yet to be fully understood, DCLK1.4 seems to be
particularly crucial. Unlike TP63/TP73 where loss of the transcriptional activation domain
allows for a dominant negative effect, DCLK1 is not known to form multimers; however,
DCLK1 may be more like RASSF1 in that the different isoforms interact with different
complexes to modulate their activity. DCLK1 is associated with CSCs [9–11] and promotes
characteristics linked with aggressive cancer [12,13]. DCLK1 kinase inhibitors have shown
promise in reducing tumorigenesis [80–82]. However, antibodies directed against a non-
kinase extracellular domain also showed significant effects on tumor progression [83,84].
These results suggest that DCLK1 may also have alternative domains present in distinct
isoforms that define its role in cancer progression.

DCLK1 was first described as a brain-specific protein with similarity to the previously
identified doublecortin (DCX) gene [85–88]. Both DCLK1 and DCX have a pair of domains
required for tubulin binding and microtubule assembly [89,90]. However, DCLK1 also
has a domain resembling the Ca2+/calmodulin-dependent protein kinase indicating addi-
tional functionality [87,91]. The DCLK1 locus generates several isoforms using alternative
promoters and alternative mRNA processing (Figure 2) [14]. Interestingly, DCLK1 can be
proteolytically processed into a shorter form lacking the microtubule binding domains,
indicating a possible functional difference between DCX-containing and non-DCX frag-
ments of the protein [92,93]. Moreover, DCLK1 isoforms are differentially expressed and
localized in developing mouse brains [94]. This study also showed that DCLK1 isoforms
were generated via transcription, indicating regulation by distinct promoters. Furthermore,
a study using isoform-specific antibodies found that the different isoforms tended to ac-
cumulate in different locations, suggesting that localization is important for distinctive
functions [95]. Given that different DCLK1 promoters generate unique isoforms and that
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these isoforms have altered functional domains, it is likely that the DCLK1 isoforms have
unique functions.
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alternative RNA splicing. All the four main isoforms contain the kinase domain (green) and its
autoregulatory domain (AID) shown in red. Isoforms DCLK1.1 and DCLK1.2 (often referred as
DCLK1-L) both contain the microtubule binding domains (DCX, shown in blue) yet differ in their
C-terminal domains due to alternative RNA processing (yellow versus orange). From the downstream
promoter, two isoforms (sometimes referenced as DCLK1-S) are generated also with distinct C-termini
from alternative RNA processing, providing a further means of functional regulation. A short
sequence at the N-terminus unique to the two downstream promoter products is shown in grey.
Created with BioRender.com (accessed on 10 October 2023).

DCLK1 is transcribed from two distinct promoters [14,15]. The 5′ most promoter,
termed the alpha-promoter (DCLK1alpha), produces two full-length transcripts encod-
ing proteins that contain both the microtubule-binding doublecortin domains and the
Ca2+/calmodulin-dependent protein kinase domain, often referred to as DCLK1-long
(DCLK1-L). However, alternative processing, whereby a specific exon is either retained or
skipped, distinguishes DCLK1-L into two isoforms that differ in their C-termini [14]; we
refer to DCLK1-L with the exon retained as DCLK1.1 and the variant with the exon skipped
as DCLK1.2. Because the alternative processing leads to a change in the respective open
reading frame, DCLK1.2 is longer than DCLK1.1 and is different in its final C-terminal
sequence, providing a way to distinguish between these two isoforms (Figure 2). Fur-
thermore, the expression of DCLK1.1 and DCLK1.2, being driven by the same promoter,
at least transcriptionally, is coordinated. Studies in colorectal, pancreatic, gastric, and
lung cancers have indicated that this promoter may be epigenetically silenced through
hypermethylation [13,15,96,97]. In cases of DCLK1alpha promoter silencing, DCLK1 is still
observed due to a second promoter, termed the beta promoter (DCLK1beta), present down-
stream of the DCLK1alpha promoter and located in an intron. This DCLK1beta promoter
produces transcripts that are translated into proteins lacking the microtubule-binding
domain and are termed DCLK1-short (DCLK1-S) [14,98]. The same potential for alterna-
tive splicing as in DCLK1-L occurs in DCLK1-S [98], and we refer to these two isoforms
as DCLK1.3 (retained exon) and DCLK1.4 (skipped exon). Furthermore, DCLK1.4 was
independently isolated in rats as the candidate plasticity gene (CPG16) supporting the
conclusion that the DCLK1beta promoter and its products are biologically relevant [91]. The
DCLK1beta promoter lacks prominent CpG islands with which to be silenced and appears
that it may be regulated by NF-kBp65 [15] and FOXD3 [99]. Furthermore, the DCLK1beta
promoter is also regulated by lymphoid enhancer-binding factor (LEF1) [100]. However,
it remains unclear whether promoter usage regulates the alternative splicing or that the
alternative splicing itself is subject to regulation to generate these DCLK1 isoforms.

Numerous studies have implicated the high expression of DCLK1 with poor prognosis
and that the inhibition of DCLK1 via a variety of methods suggests that targeting DCLK1
is a viable strategy for cancer therapy [60]. Recent work has focused on the role of different
isoforms of DCLK1 in cancer progression. Unfortunately, most of these studies did not
distinguish between the various DCLK1 isoforms (see Kalantari et al. [101]). What is
identifiable is that DCLK1 modulates several pathways important in cancer progression,
such as the epithelial-to-mesenchymal transition (EMT), cancer stemness, inflammation,
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and metastasis. Furthermore, the overexpression of DCLK1.2 was seen to increase cancer
aggressiveness in PDAC and that targeting DCLK1.2’s unique C-terminal domain could
inhibit tumorigenesis [102]. It has also been linked to tumor immunosuppression via
M2-macrophage polarization [103]. An important caveat to these types of overexpression
studies with kinases is that these studies represent unfettered kinase activity that may
obscure the subtle aspects of kinase regulation [104].

Knockdown studies and DCLK1 kinase inhibitor studies have shown improvements
in reducing tumorigenesis and modulating the tumor microenvironment [105]. However,
most of these studies are broad-spectrum, affecting all isoforms of DCLK1 as they all retain
the kinase domain, raising the question of whether dysregulated or overactive DCLK1
kinase is the root cause. Interestingly, treatments targeting the C-terminal domain of
DCLK1.2 and DCLK1.4 show significant effects on cancer progression, suggesting that the
C-terminal domain is important [84]. It is not uncommon for kinases to be regulated by a
C-terminal domain and, indeed, a C-terminal autoinhibitory domain (AID) common to all
isoforms was identified that regulates DCLK1 autophosphorylation [104,106]. However, an
antibody CBT-15 against the unique C-terminal domain of DCLK1.2/DCLK1.4 outside of
the AID domain in the intrinsically disordered domain could inhibit tumor progression,
indicating the existence of other regulatory domains [83,84].

Recent work has focused on the oncogenic role of the DCLK1-S isoform [99,107].
DCLK1.4 is detected in CSCs, suggesting a role in their formation and/or maintenance [95,100].
Furthermore, the inhibition of DCLK1.4 transcription via the DCLK1beta promoter through
blocking LEF-1 diminishes cancer stemness [100]. DCLK1.4 also induces the EMT, a key
property related to the increased aggressiveness of cancer and immune suppression [108,109].
DCLK1 regulates inflammation in both human and murine colitis with DCLK1.2 and
DCLK1.4 showing differential regulation [68]. Additionally, these changes were correlated
with a decrease in FoxD3, an inhibitor of the DCLK1beta promoter, suggesting that DCLK1.4
upregulation acts to promote inflammation, a known driver of tumorigenesis, and that the
balance between DCLK1.2 and DCLK1.4 is important. In colorectal cancer, DCLK1.4 was
shown to promote cancer stemness and aggressiveness, consistent with its overexpression
relative to DCLK1.2 [9,15]. This was dependent on the DCLK1 phosphorylation of XRCC5
and the co-option of the inflammatory tumor microenvironment (TME) [9]. Given the
results that DCLK1.4 isoform overexpression is highly oncogenic, while DCLK1.2, through
its silencing, fits the definition of a tumor suppressor, the restoration of DCLK1.2/DCLK1.4
balance most importantly appears to be vital for blocking cancer progression.

5. The Interplay of Gene Isoforms, Epigenetics, and Cancer Stem Cells

Epigenetic regulation holds a key role in the dynamics of CSCs, a subset of cells within
tumors responsible for tumor initiation, progression, therapy resistance, and relapse [7,8].
This regulation, primarily through DNA methylation and histone modifications, influences
the balance between CSC self-renewal, differentiation, and oncogenic potential, making it
vital in the cancer context [110]. In CSCs, a range of gene isoforms under the control of their
specific epigenetic environments are produced [111]. For example, CD44, a protein linked
to CSCs, has various isoforms influenced by DNA methylation. When hypermethylated,
there is a shift from expressing the standard CD44s isoform to the CD44v variant, which is
associated with a more aggressive cancer type [112,113].

DCLK1 is another key gene impacted by epigenetic modifications. The DCLK1 locus
shows methylation of the cytosines in CpG islands overlapping the alpha promoter in mul-
tiple cancers, including colon cancers [13,15,96,114]. This methylation results in silencing
of the alpha-promoter and inhibits the expression of the DCLK1-L isoforms. However,
increased DCLK1 expression is observed in colon cancers, suggesting that transcription
from the beta-promoter and upregulation of the DCLK1-S isoforms are vital for cancer
progression [15]. This silencing of one promoter may be necessary for the increased activity
of the downstream promoter, thus emphasizing the role of epigenetic controls in isoform
generation.
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Lysine demethylase 3A (KDM3A), a histone demethylase, is an epigenetic modulator
that plays a significant role in multiple cellular processes and is implicated in the regulation
of gene isoforms. By modifying histone H3, KDM3A can impact gene transcription and
potentially alternative splicing. KDM3A demethylates histone H3 on lysine 9 (H3K9),
enhancing gene transcription [115]. While its specific role in alternative splicing and
isoform regulation is still unclear, it is known that alterations in histone modifications, such
as those catalyzed by KDM3A, can influence the splicing machinery and impact the balance
of gene isoforms [52]. In cancer, KDM3A is often overexpressed and associated with poor
prognosis [116]. Interestingly, KDM3A also appears to regulate specific DCLK1 isoforms,
suggesting a deeper connection between histone modifications and isoform control [117].
With KDM3A being a promising therapeutic target, its inhibitors are currently under
development (reviewed in Das et al. [118]).

In summary, the synergy between gene isoforms and epigenetics is fundamental in
CSC behavior and therapy resistance. Insights into their dynamics, such as the differential
expression of CD44 and DCLK1 isoforms or the regulatory role of KDM3A, can provide
potential therapeutic strategies for more effective cancer treatments.

6. The Future of Cancer Treatment: Isoform-Specific Therapies and Epigenetic Modulation

Cancer therapeutics has undergone a paradigm shift over the last few decades, moving
from generalized cytotoxic agents toward more targeted therapies including those directed
at the epigenome [119]. A promising avenue in this realm is the targeting of specific gene
isoforms and using compounds that modulate epigenetic changes to favor certain isoforms
(Figure 3). Many proteins possess various isoforms, each with unique cellular roles. For
example, the phosphatidylinositol-3-kinase (PI3K) protein, vital in cell growth and division,
has several isoforms [120]. Some of these become aberrant in certain cancers, making
them potential therapeutic targets. The FDA-approved PI3K inhibitor, Idelalisib, which
targets a specific PI3K isoform, has shown efficacy against blood cancers [121]. Likewise,
trastuzumab targets an overexpressed isoform in particular breast cancers [122]. A chal-
lenge in this therapeutic strategy is the structural similarities between protein isoforms,
which might result in unintended side-effects. Yet, technological advancements allow for
better-targeted drugs. For instance, certain strategies are in development to specifically
target the oncogenic RASSF1C isoform [123]. In the case of DCLK1, all isoforms retain the
active kinase domain, so targeting that domain will affect all isoforms. Thus, several drugs
have been either repurposed or directly developed to target the DCLK1 kinase domain
(Table 1). However, a DCLK1-isoform-specific treatment would be more useful in that
it could target only the isoforms that are involved in cancer stemness and progression.
Currently, no inhibitors of the microtubule binding domain exist. Therefore, we developed
a strategy to target the unique C-terminal domain of the DCLK1.4 and DCLK1.2 isoforms,
which are implicated in cancer progression, to provide for a more direct isoform-specific
treatment method [84]. We generated antibodies that target the unique C-terminal domain
of DCLK1.2/DCLK1.4. These antibodies along with the chimeric antigen receptor T-cells
(CAR-T) created from them bind to a distinct epitope present only in these isoforms and
have demonstrated the ability to kill cancer cells and prevent the growth of cancerous
tumors in animal models, as shown in our study [83] (see Table 1). Additionally, we con-
firmed that this C-terminal domain is located on the cell’s exterior because we observed
antibody binding to living cell surfaces, which aligns with other research. However, the
mechanism by which DCLK1 is positioned on the cell surface is uncertain due to the
absence of a known transmembrane domain.
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Figure 3. Proposed model for combined epigenetic drug therapy along with DCLK1 targeted inhibi-
tion of cancer stemness to restore homeostasis. Epigenetic inhibitor drugs, preferably with minimal
side-effects, are used to oppose the epigenetic marks, inhibiting the expression of tumor suppressors
and oncogene-opposing isoforms. Simultaneously, the inhibition of DCLK1, either isoform-specific
(CBT-15/511) or in general, by targeting the kinase activity (DCLK1-IN-1) is used to block cancer
stem cells that promote chemoresistance. Created with BioRender.com (accessed on 10 October 2023).

Table 1. Known DCLK1 inhibitors and their targeted domain.

Drug Target Type Reference

XMD-17-51 Kinase Domain Small molecule Yang et al., 2021 [124]

DCLK1-IN-1 Kinase Domain Small molecule Ferguson et al., 2020 [82]

Ruxolitinib Kinase Domain Small molecule Jang et al., 2021 [125]

XMD8-92 Kinase Domain Small molecule Sureban et al., 2014 [126]

LRRK2-IN-1 Kinase Domain Small molecule Weygant et al., 2014 [127]

CBT-15/CBT-511 Unique C-terminus of
DCLK1 isoforms 2/4

Monoclonal
antibody/CAR-T Sureban et al., 2019 [83]

The regulation of gene isoforms through epigenetic modulation offers another thera-
peutic angle. Specifically, targeting the methylation responsible for repressing the upstream
promoter may aid in restoring the balance between the gene isoforms. Such therapies may
take the form of inhibition of the DNA methylases involved in maintaining the methylation
status directly, i.e., DNMT1, or the histone modifications that control the local chromatin
structure to promote demethylation. Major drawbacks on using such therapies are the lack
of locus specificity, resulting in global and non-chromatin effects; i.e., the targets for these
compounds are often essential proteins, like DNMT1 or KDM1 (Table 2). As such, these
drugs are not used alone but are often used in combination with other drugs (reviewed in
Majchrzak-Celińska et al. [128] and Sahafnejad et al. [129]). As such, natural compounds
like curcumin, resveratrol, and epigallocatechin-3-gallate are highly prospective drugs that
can influence epigenetic shifts, favoring tumor suppressor isoforms (Table 2).

Table 2. Potential epigenetic drugs for restoring isoform balance.

Drug Target FDA Approved Reference

Azacitidine DNMT1 Yes Kaminskas et al. [130]

Decitabine DNMT1 Yes Erdmann et al. [131]

Zebularine DNMT1 No Balch et al. [132]

Monobenzone KDM1 No Ma et al. [133]

Epigallocatechin gallate Broad No Li et al. [134]

BioRender.com


Int. J. Mol. Sci. 2023, 24, 16407 10 of 17

Table 2. Cont.

Drug Target FDA Approved Reference

Curcumin Broad No Sultana et al. [135],
Mohamadian et al. [136]

Resveratrol Broad No Chatterjee et al. [137]

Curcumin from turmeric influences DNA methylation and histone modifications to
induce the hypomethylation of DNA, leading to the reactivation of tumor suppressor
genes [138] and altering cell proliferation and apoptosis [139]. These effects of curcumin on
epigenetic processes show promise for a role in cancer therapeutics; however, curcumin has
shown mixed effects in cancer studies. While curcumin reduced the expression of DCLK1
overall, a subset of cells was resistant, and resistance was abrogated through simultaneous
knockdown of DCLK1 [140]. This result suggests that while curcumin was effective in
reducing DCLK1 levels, DCLK1 total expression is not the leader but the balance of isoforms
may act as the driving force.

In addition to curcumin, there are several other compounds, many of which are natu-
rally occurring, that are known to regulate epigenetic modifications and are being studied
for their potential use in cancer therapy. For example, other natural compounds, like resver-
atrol, EGCG, sulforaphane, genistein, and quercetin, have all demonstrated potential in
modifying epigenetic processes, thereby influencing cancer cell behavior [138,139]. Resver-
atrol, found in grapes, red wine, and berries, has been shown to affect various epigenetic
processes [141–143]. EGCG [134], a major active component of green tea; sulforaphane [144],
found in cruciferous vegetables; genistein [145], a soy isoflavone; and quercetin [146], a
flavonoid found in many fruits and vegetables, have all shown potential anticancer ac-
tivity by affecting epigenetic processes via regulation of DNA methylation and histone
modification in cancer cells.

A significant challenge in epigenetic cancer therapy is chemoresistance, often at-
tributed to the properties of cancer stemness [147,148]. To overcome this, a combined
approach targeting both CSCs and epigenetic alterations may be effective. DCLK1 is a rec-
ognized marker essential for cancer stemness [9,11,67,80,100,149–151]. Therefore, therapies
that target DCLK1, either broadly using DCLK1 kinase inhibitors or more precisely with
isoform-specific treatments, alongside epigenetic drug therapy, could offer a promising
strategy to reestablish the balance between oncogene and tumor suppressor isoforms in
cancer.

The intersection of isoform-specific targeting and epigenetic modulation holds im-
mense potential for future cancer therapies. Therapies aimed at restoring the expression of
tumor suppressor isoforms or inhibiting oncogenic isoforms could provide novel strategies
for treating cancer [152]. The challenge, however, lies in the targeted delivery and specificity
of such interventions. By profiling the epigenetic landscape of a patient’s tumor, one may be
able to predict disease course, resistance patterns, and optimal therapeutic strategies [129].
As we deepen our understanding of the relationship between gene isoforms, epigenetics,
and CSCs, the potential for tailored treatments grows. Profiling the epigenetic attributes
of a patient’s tumor might enable predictions about the disease’s progression, therapeutic
resistance, and most effective treatments.

The future of cancer treatment is veering toward tailored approaches, leveraging the
power of isoform-specific drugs, as demonstrated by drugs like Idelalisib, and epigenetic
modulators, such as curcumin and resveratrol, hold promise. It is the nuanced targeting of
specific protein isoforms that stands out as a transformative approach in cancer treatment.
As research continues in this direction, the hope for more personalized and effective
treatments becomes increasingly tangible.
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7. Conclusions

Epigenetics plays a pivotal role in governing gene isoforms and has steered scien-
tific interest toward combined therapies that employ isoform-specific drugs alongside
epigenetic modulators. Emerging evidence indicates that CSCs exhibit a heightened sus-
ceptibility to epigenetic alterations. Therefore, a dual-pronged approach targeting both
the unique isoforms and the overarching epigenetic landscape could revolutionize cancer
treatments. DCLK1, an alternative promoter gene implicated in tumorigenesis, exemplifies
the challenges and opportunities in this domain. Despite its multiple isoforms, the kinase
domain remains consistent, hinting that the diverse functions might hinge on specific
localization or kinase activity regulation. Consequently, modulating the balance of DCLK1
isoforms might be more efficacious than targeting a particular isoform. However, targeting
a specific isoform might be necessary. Encouragingly, recent research that zeroes in on the
distinct C-terminus of some DCLK1 isoforms has shown potential in countering cancer
traits. This suggests that strategies pivoting away from the kinase domain could bear fruit.
Yet, a consistent preference for a single DCLK1 isoform across all cancers remains elusive.
This inconsistency underscores the need for a deeper dive into the distinct roles of each
DCLK1 isoform.
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