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Maria Leśniak 1, Justyna Lipniarska 1, Patrycja Majka 1, Monika Lejman 2,† and Joanna Zawitkowska 3,*,†

1 Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology,
Medical University of Lublin, 20-093 Lublin, Poland; marialesniak68@gmail.com (M.L.);
justyna.lipniarska@gmail.com (J.L.); patrycja_majka@wp.pl (P.M.)

2 Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
monika.lejman@umlub.pl

3 Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin,
20-093 Lublin, Poland

* Correspondence: joannazawitkowska@umlub.pl
† These authors contributed equally to this work.

Abstract: Venetoclax is a strongly effective B-cell lymphoma-2 inhibitor (BCL-2) with an ability to
selectively restore the apoptotic potential of cancerous cells. It has been proven that in combination
with immunotherapy, targeted therapies, and lower-intensity therapies such as hypomethylating
agents (HMAs) or low-dose cytarabine (LDAC), the drug can improve overall outcomes for adult
patients with acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and multiple
myeloma (MM), amongst other hematological malignancies, but its benefit in pediatric hematology
remains unclear. With a number of preclinical and clinical trials emerging, the newest findings suggest
that in many cases of younger patients, venetoclax combination treatment can be well-tolerated,
with a safety profile similar to that in adults, despite often leading to severe infections. Studies aim
to determine the activity of BCL-2 inhibitor in the treatment of both primary and refractory acute
leukemias in combination with standard and high-dose chemotherapy. Although more research is
required to identify the optimal venetoclax-based regimen for the pediatric population and its long-
term effects on patients’ outcomes, it can become a potential therapeutic agent for pediatric oncology.
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1. Introduction
1.1. Apoptosis

Apoptosis is a major form of programmed cell death, which is very important for
the development and functioning of multi-cellular organisms. It regulates cell number,
the removal of structures, and tissue sculpting and also protects against pathogens [1].
Apoptosis deregulation can lead to many diseases—cancer, autoimmune diseases, viral
infections, or neurodegenerative disorders [2].

Caspases play a key role in the mechanism of apoptosis as they are both the initiators
(caspase-8, -9, and -10) and executioners (caspase-3, -6, and -7) of the process. There are
two main pathways by which caspases can be activated—the intrinsic (mitochondrial)
pathway, initiated by microenvironmental disturbances, and the extrinsic (death receptor)
pathway, activated by disturbances of the extracellular microenvironment [3]. The intrinsic
pathway is initiated by, among others, genetic damage, oxidative stress, endoplasmic
reticulum stress, hypoxia, or mitotic defects. This pathway is the result of increased
mitochondrial penetrability and the release of proapoptotic molecules that normally reside
in the mitochondrial intermembrane space into the cytoplasm [4].
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1.2. B-Cell Lymphoma 2 (Bcl-2) Protein Family

The B-cell lymphoma 2 (Bcl-2) protein family regulates mitochondrial apoptosis. The
members of the Bcl-2 family are classified into three subgroups, depending on the com-
position of typical BH (Bcl-2 Homology) domains, listed from BH1 to BH4, and their
involvement in apoptosis regulation [5]. The BH1 and BH2 domains of Bcl-2 are needed
for dimerization with proapoptotic proteins. The BH3 domain is of primary importance
for the interaction between proapoptotic and antiapoptotic proteins and is present in all
family members. The amino-terminal BH4 domain is mainly found in the antiapoptotic
Bcl-2 family members [6].

The proteins are categorized into:

• Antiapoptotic, e.g., BCL-2, BCL-XL, BCL-W, and MCL-1;
• BH3-only (proapoptotic), e.g., BIM, BID, PUMA, NOXA, BIK, and BAD;
• Pore-forming or ‘executioner’ (proapoptotic), e.g., BAX, BAK, and BOK.

Subfamily categorization is based on the BH and transmembrane domains, anti- or
proapoptotic function status, and pore-forming ability [7,8].

The translocation of proapoptotic proteins BAX and BAK induces mitochondrial outer
membrane permeabilization and cytochrome c release, followed by caspase activation
(Figure 1). BH3-only proteins BID and BIM promote mitochondrial permeabilization via
the activation of BAX and BAK, while BH3 proteins BAD, BIK, and PUMA bind and
oppose the activation of antiapoptotic proteins. In contrast, antiapoptotic proteins prevent
BAX/BAK-dependent mitochondrial outer membrane permeabilization via both the direct
inactivation of BAK and BAX and via the sequestration of BH3-only proteins [9–11]. The
proapoptotic proteins promote the mitochondrial release of cytochrome-c, whereas the
antiapoptotic proteins regulate apoptosis by blocking this release. The delicate balance
between these two groups determines whether a cell survives or dies [4]. Antiapoptotic
proteins are often exploited by tumor cells to avoid death, thus playing an important role in
carcinogenesis and in the acquisition of resistance to various therapeutic agents. Therefore,
antiapoptotic proteins represent attractive targets in cancer therapy [12].

1.3. Bcl-2 Inhibitors

In recent years, work has been carried out to selectively target Bcl-2 proteins by
creating BH3 mimetics that bind to hydrophobic grooves of the pro-survival proteins with
high affinity. As a result, a number of Bcl-2 inhibitors have been developed [13].

The first highly selective Bcl-2 inhibitor, ABT-737, and its clinical derivative navitoclax
(ABT-263) target BCL-2, BCL-W, and BCL-XL. Navitoclax is a BH3 mimetic drug which
binds strongly to the BH3 domain of BCL-2 antiapoptotic members. Navitoclax binds to the
BH3 binding groove of BCL-2 proteins located in the cytoplasm, causing the displacement
of proapoptotic BH3-only protein BIM from BCL-2. The release of BIM causes apoptosis.
Navitoclax alone successfully treats small-cell lung cancer and acute lymphocytic leukemia,
whereas in combination therapy for solid tumors, it enhances the therapeutic effect of other
chemotherapeutic agents [14–16].

Another advancement was the discovery of obatoclax (GX15-070). It is a less selective
Bcl-2 inhibitor that antagonizes BCL-2, BCL-XL, BCL-W, and MCL-1. Obatoclax is a
synthetic indole bipyrrole derivative of bacterial prodiginines. It is a small-molecule
inhibitor of the antiapoptotic proteins of the Bcl-2 family [17–19]. Several phase I and
II clinical trials have shown its only modest efficacy in the treatment of solid tumors
and hematological malignancies [20]. Obatoclax may be more effective when used in
combination with other anticancer therapeutics [21].

The next innovation was the development of venetoclax (VTX; ABT-199). It is a highly
selective oral Bcl-2 inhibitor with high affinity to BCL-2 and lower affinity to BCL-W and
BCL-XL—a molecule crucial for platelet survival. VTX shows activity in BCL-2-dependent
hematologic malignancies, especially in chronic lymphocytic leukemia (CLL) [13,22]. The
maximum plasma concentration is reached 5–8 h post-dose, and the elimination half-life
ranges between 17 and 41 h after a single oral dose. Bioavailability is increased by food,
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and it is primarily metabolized via the CYP3A pathway and through the hepatic/fecal
system [23].
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Figure 1. Bcl-2 protein family regulates mitochondrial apoptosis via intrinsic pathway initiated by
toxic factors, genetic damage, or oncogene activation. The interaction between antiapoptotic and
pro apoptotic Bcl-2 proteins prevents cell death. Activated BH3-only proteins bind to antiapoptotic
proteins, located in outer mitochondrial membrane (OMM), resulting in release of pore-forming
effector proteins BAX and BAK, which cycle between OMM and cytosol. Activated BH3-only proteins
can also directly activate BAX and BAK. The translocation of BAX and BAK induces mitochondrial
outer membrane permeabilization (MOMP) and cytochrome c release, followed by formation of
apoptosome and caspase activation. Caspase cascade causes destruction of apoptotic cells.

This review describes the role of VTX in the modern treatment of pediatric hematologic
malignancies, especially AML and ALL. We show the most recent clinical studies using
VTX as a therapeutic option in independent and combined treatment. We also discuss
emerging VTX resistance and possible therapeutic solutions.

1.4. Venetoclax in Adult Hematology

VTX has been successfully granted approval by the U.S. Food and Drug Adminis-
tration (FDA) as a treatment option for previously untreated patients with CLL or small
lymphocytic lymphoma (SLL), with or without 17p deletion, in combination with obin-
utuzumab [24,25], as well as for newly diagnosed acute myeloid leukemia (AML) pa-
tients who are 75 years or older, or who have comorbidities precluding intensive induc-
tion chemotherapy in combination with azacitidine, decitabine, or low-dose cytarabine
(LDAC) [26] (Table 1).

In relapsed and refractory AML patients, the efficacy and safety of VTX monother-
apy were first explored in a phase II study, which showed low efficacy with an overall
response rate (ORR) of 19% [27], whereas VTX combination AML therapies with DNA
methyltransferase inhibitors (DNMTis) or LDAC demonstrated promising results [28]. In
a study of 145 patients over 60 years, VTX in combination with DNMTis was associated
with complete remission (CR) or complete remission with incomplete hematologic recovery
(CRi) in 67%, with a median overall survival of 17.5 months [29]. In 82 patients over
60 years receiving VTX in combination with LDAC, the CR/CRi rate was 54%, and the
median overall survival (OS) was 10.1 months [30]. Despite those promising responses,
primary resistance and clonal evolution leading to adaptive resistance remains an impor-
tant theme in AML. Recent studies have illustrated the complex and polyclonal nature of
resistance to targeted therapeutics [31]. TP53 mutations are especially related to inferior
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response rates, shorter disease response, and higher minimal residual disease positivity in
newly diagnosed AML patients treated with a combination of VTX and decitabine [32].

In view of its beneficial efficacy and tolerable toxicity profile, VTX has become a
therapeutic option for the management of de novo and relapsed refractory CLL, demon-
strating durable responses regardless of adverse prognostic features such as deletion (del)
(17p) [33–35]. In a cohort of 158 patients, mainly with relapsed and refractory (RR) CLL with
del (17p), treatment with VTX established promising tolerability and durable responses,
including an ORR of 77%, undetectable minimal residual disease (uMRD) in peripheral
blood (PB) of 30%, and estimated 24-month progression free survival (PFS) of 50% [36].
Retrospective data from 683 patients with CLL, treated with ibrutinib, idelalisib, or VTX
after ibrutinib therapy failure, demonstrated better outcomes in those treated with VTX
(ORR 79%) versus idelalisib (ORR 46%). Furthermore, in the case of kinase inhibitor (KI)
failure, alternate KI or VTX therapy appears superior to chemoimmunotherapy varia-
tions [37]. Combination therapy with anti-CD20 monoclonal antibodies (mAbs) and other
small molecules in CLL has been the subject of interest in order to achieve deeper and more
durable responses and allow for fixed-duration therapy [33,38].

Table 1. Venetoclax (Venclexta®) FDA approval history.

Date Approval References

11 April 2016
For the treatment of patients with CLL with a 17p

deletion, as detected with an FDA-approved test, who
have received at least one prior therapy

[39]

8 June 2018
In combination with rituximab for the treatment of

people with CLL or SLL, with or without a 17p deletion,
who have received at least one prior therapy

[24]

21 November 2018

Accelerated approval to venetoclax, in combination with
azacitidine or decitabine or low-dose cytarabine for the
treatment of newly diagnosed AML in adults who are
age 75 years or older, or who have comorbidities that
preclude the use of intensive induction chemotherapy

[40]

15 May 2019 In combination with obinutuzumab for previously
untreated patients with CLL or SLL [25]

16 October 2020

Full approval of venetoclax in combination with
azacitidine, decitabine, or low-dose cytarabine (LDAC)

for the treatment of newly diagnosed AML in adults
75 years or older, or who have comorbidities that

preclude the use of intensive induction chemotherapy

[26]

For many patients, especially those with high-risk disease, VTX-based therapy is better
tolerated and more effective than traditional chemoimmunotherapy.

Moreover, there is the novel Bcl-2 inhibitory compound lisaftoclax (APG-2575) that is
currently undergoing clinical evaluation upon FDA permission [41] and has been granted
four Orphan Drug Designations (ODDs) by the FDA for the treatment of patients with
AML, CLL, Waldenström macroglobulinemia (WM), and multiple myeloma (MM) [42].

2. Pediatric AML

Regardless of significant advances in the treatment of AML and the continuous ex-
pansion of new treatment regiments, there is a group of patients who are unqualified
or impervious to intensive induction chemotherapy, resulting in a poor prognosis and
restricted therapeutic options [43,44]. Children with relapsed or refractory acute myeloid
leukemia have poor treatment outcomes and overall survival. Despite relapse preven-
tion being the aim of initial therapy, around 30% of pediatric AML patients will later
develop bone marrow relapse, with an overall survival of less than 40% [45]. Since it
has been proven that some AML blast cells display high levels of BCL-2 protein, mainly
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amongst chemotherapy-resistant patients [46–49], antiapoptotic proteins are seen as a
promising therapeutic target. Despite encouraging results being reported for VTX usage
both in monotherapy and in combination therapies in clinical studies of adult patients with
AML [27,49,50], not much is known about VTX administration and efficacy in younger
patients. Due to the fairly low incidence of childhood cancers, conducting a pediatric
clinical study faces many limitations including a small sample size, heterogeneous cohort,
lack of a control group, short duration of follow-up, and occurrence of disease progression
during single-agent studies.

2.1. Clinical Studies in Relapsed/Refractory AML

VTX is currently the subject of many ongoing phase I/II clinical trials to estimate the
virtue and tolerability of this agent in this population (Table 2). The most notable study to
date was carried out by Karol and colleagues. They aimed to ascertain the tolerance of VTX
in combination therapy with standard and high-dose chemotherapy in pediatric patients
with relapsed/refractory AML or ambiguous lineage leukemia. The conducted phase I
dose escalation study (NCT03194932) proposed the safety and activity of BCL-2 inhibitor
in combined therapy. A total of 36 patients were given VTX in 28-day cycles at 240 mg/m2

or 360 mg/m2, in combination with cytarabine, with or without intravenous idarubicin.
The recommended phase II dose was established at 360 mg/m2. The overall response
was observed in 69% of the 35 patients assessed after the first cycle, with a notable 70%
complete response rate among the 20 patients treated at the recommended phase II dose.
Among the patients, 66% developed febrile neutropenia and 16% developed invasive fungal
infections. The findings also highlight the need for such a treatment combination evaluation
in newly diagnosed patients with high-risk AML [51]. These encouraging data prompted
a study by Place et al. to establish the dose-limiting toxicity, pharmacokinetics, and
preliminary efficacy of VTX monotherapy in an open-label, global phase I two-part study
(EudraCT 2017–000439–14; NCT03236857) amongst pediatric and young adult patients
(AYA) with relapsed/refractory malignancies. During part 1, younger patients with any
relapsed/refractory tumor type who had no available curative options were enrolled.
Participants were given VTX daily with a two- or three-day dose ramp up to 800 mg, weigh
and age-adjusted, over the course of 9 months. After the first assessment, patients may
have received VTX in combination with chemotherapy, beginning at week 4 in patients
with hematologic malignancies. During part 2, patients with relapsed/refractory acute
lymphoblastic leukemia (ALL), AML, non-Hodgkin’s lymphoma (NHL), or neuroblastoma
were enrolled in four cohorts; the outcomes are yet to be presented [52].

Table 2. Venetoclax-based AML therapies in pediatric population in ongoing registered clinical trials.

NCT Study Intervention/
Treatment Phase Condition/

Disease Study Start
Estimated/

Actual
Enrollment

Study Group

04161885

A Study Evaluating
Safety and Efficacy of

Venetoclax in
Combination With
Azacitidine Versus

Standard of Care After
Allogeneic Stem Cell

Transplantation in
Participants With

Acute Myeloid
Leukemia

VTX;
AZA III AML 26 February

2020
424

participants
12 years

and older
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Table 2. Cont.

NCT Study Intervention/
Treatment Phase Condition/

Disease Study Start
Estimated/

Actual
Enrollment

Study Group

03941964

A Study of the
Effectiveness of
Venetoclax in

Combination With
Azacitidine or

Decitabine in an
Outpatient Setting in
Patients With Acute
Myeloid Leukemia

Ineligible for
Intensive

Chemotherapy

VTX;
AZA;
DEC

III AML 15 August
2019

60
participants

12 years
and older

02250937

Venetoclax and
Sequential Busulfan,

Cladribine, and
Fludarabine

Phosphate Before
Donor Stem Cell

Transplant in Treating
Patients With Acute

Myelogenous
Leukemia or

Myelodysplastic
Syndrome

VTX;
BUS;

CLAD;
FLU

II

AML and
myelody-
splastic

syndrome

27 October
2014

116
participants

2 years to
70 years

04029688

A Study Evaluating
the Safety, Tolerability,
Pharmacokinetics and
Preliminary Activity

of Idasanutlin in
Combination With

Either Chemotherapy
or Venetoclax in the

Treatment of Pediatric
and Young Adult
Participants With

Relapsed/Refractory
Acute Leukemias or

Solid Tumors

VTX;
CYT;
FLU;
TOP;
IDA;
CYC

I, II

AML, ALL,
neuroblas-
toma, and

solid
tumors

27 January
2020

183
participants

0 years to
30 years

04000698

Personalized Targeted
Preparative Regimen

Before T-depleted
Allogeneic HSCT in

Children With
Chemoresistent Acute

Leukemias

Preparative
chemother-
apy before
allogeneic

HSCT

III

Refractory
AML and
refractory

ALL

15 October
2019

25
participants

0 years to
25 years

03844048

An Extension Study of
Venetoclax for Subjects
Who Have Completed

a Prior Venetoclax
Clinical Trial

VTX III

CLL, AML,
MM, non-
Hodgkin’s
lymphoma,
ALL, and

cancer

6 September
2019

550
participants

Children,
adults,

and older
adults



Int. J. Mol. Sci. 2023, 24, 16708 7 of 26

Table 2. Cont.

NCT Study Intervention/
Treatment Phase Condition/

Disease Study Start
Estimated/

Actual
Enrollment

Study Group

03826992

Venetoclax Combined
With Vyxeos for

Participants With
Relapsed or Refractory

Acute Leukemia

VTX;
VYX I Leukemia 27 December

2018
21

participants
1 year to
39 years

AZA—azacitidine, DEC—decitabine; BUS—busulfan; CLAD—cladribine; FLU—fludarabine; CYT—cytarabine;
TOP—topotecan; IDA—idasanutlin; CYC—cyclophosphamide; VYX—Vyxeos.

2.2. Other Studies on Venetoclax Combination Therapies in AML

Apart from those early-phase trials, the available literature discussing VTX in pedi-
atric/AYA patients with hematologic malignancies contains a couple of single-institution
reports [53–59] (Table 3) or multicenter retrospective analyses [60–66].

Table 3. Case series reporting results on the use of venetoclax in the treatment of myeloid malignancies
in children.

Age/Sex of
Patients Disease Intervention/

Treatment Therapy Effect Adverse Events References

12 years/
Male

Relapsed pediatric
mixed-phenotype

acute leukemia
VTX + AZA

Unfulfillment of the
second HSCT

criterion;
blast escalation; and
death after 8 months

post-relapse

Febrile
neutropenia and
lung aspergillosis

Gonzales et al. [53]

17 months/
female

CBFA2T3/GLIS2
relapsed acute

megakaryoblastic
leukemia

VTX + AZA

MRD negative
remission after one

cycle; sustained
through six cycles

Neutropenia Mishra et al. [54]

5 years/
male

NUP98-
NSD1+/FLT3-ITD+

acute myeloid
leukemia

VDAH;
VDA

Proceeded to an
allogeneic HSCT; in
remission 301 days

post-transplantation

No information Wen et al. [55]

3 years/
male

Refractory
NUP98-NSD1 fusion

acute myeloid
leukemia

DCAG + VTX

Proceeded to an
allogeneic HSCT; in
remission 6 months
post-transplantation

No information Xu et al. [56]

16 years/
male

Relapsed acute
myeloid leukemia in

Shwachman–
Diamond syndrome
arising from MDS

VTX + AZA

Partial bone marrow
response; AML

progression; and
death from

multi-organ failure

Diarrhea,
peripheral edema,

urticarial rash
gingivostomatitis,

and sepsis

Naviglio et al. [57]

3 years/
male

Acute myeloid
leukemia with

myelodysplasia-
related

changes

VTX + AZA

Proceeded to an
allogeneic HSCT; in
remission 18 months
post-transplantation

Myelosuppression Wen et al. [58]
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Table 3. Cont.

Age/Sex of
Patients Disease Intervention/

Treatment Therapy Effect Adverse Events References

5 years/
female

NPM1-mutated
donor-derived

MDS/AML in a
patient with Fanconi

anemia

VTX + AZA
Proceeded to an HSCT;
in remission 1.5 years
post-transplantation

Neutropenia,
subdural

hematoma, and
pulmonary

infection

Ma et al. [59]

AZA—azacitidine; VDAH—venetoclax, dasatinib, cytarabine, and homoharringtonine; VDA—venetoclax,
dasatinib, and azacitidine; DCAG—decitabine, aclacinomycin, cytosine arabinoside, and granulocyte colony-
stimulating factor.

Recent studies support the usage of VTX-containing regimens in myeloid malignancies,
especially as a linking therapy for allogeneic hematopoietic stem cell transplantation
(HSCT) [60–63]. Niswander et al. analyzed 37 pediatric patients with relapsed/refractory
acute leukemias, including many with high-risk cytomolecular genetic features treated
with VTX in combination with hypomethylating agent (HMA) with or without CD33
antibody gemtuzumab ozogamicin. The median minimal residual disease (MRD) level
was 0.5%, with 14 patients (n = 12 AML) achieving a CR with MRD-negative remission
(38% of 37 treated patients). Patients’ responses to the regimen were typically achieved
within one cycle of therapy or not at all. Successful remission induction was HSCT-
enabling for 11 patients with AML [61]. A multicenter retrospective analysis evaluated VTX
with HMA azacitidine or decitabine, or with a combination of cytotoxic agents, such as
cytarabine, fludarabine, idarubicin, or doxorubicin, in 31 pediatric patients with high-risk
myeloid malignancies who had received previous lines of therapy. The median dose of
350 mg/m2 VTX was administered daily within a median of two cycles. The response rate
was satisfying, with an overall response rate of 71% and a CR of 51.6%. Twenty patients
received allogeneic HSCT at a median time of 3.3 months from the start of treatment and
were alive at the end of follow-up (7.7 months) [62]. Moreover, a retrospective report
from Children’s Hospital Colorado by Winters et al. on the use of azacitidine (AZA)/VTX
combination among six patients with AML revealed that all responders achieved minimal
residual disease negativity and three of them proceeded to HSCT [63].

The most common adverse events (AEs) found were a prolonged depletion of all
blood cell lines, especially neutropenia, and severe blood, pulmonary, and skin infections,
including bacteriemia, which are consistent with other published data on VTX in pediatric
patients with acute leukemias [65,66]. The overall response rate was comparable to that
seen in heavily pretreated adult patients with AML who received similar VTX combination
therapies [50]. Most patients received maximal benefit within one to two cycles of VTX-
based therapy, and all durable responses were followed by HSCT, indicating those regimens
are likely to become a bridge therapy for allogeneic hematopoietic stem cell transplantation
rather than a definitive therapy.

2.3. Genetic Sensitivity and Resistance to Venetoclax

With acute myeloid leukemia being a molecularly heterogeneous disorder, genetic
lesions have been linked to particular clinical features, therapy response, and patients’
outcomes, leading to improvements in risk stratification. There are favorable (RUNX1-
RUNX1T1, CBFB-MYH11, NPM1, and CEBPA bZIP) and unfavorable (MECOM, DEK-
NUP214, KMT2A, NUP98, FLT3/ITD, WT1, monosomy 7, monosomy 5, and TP53) pediatric
genetic markers that are being used to guide practitioners through patients’ manage-
ment [67,68]. Amongst the available data discussing clinical experience with VTX in
children, the most recurrent structural rearrangements or sequence variants observed were
KMT2A rearrangements, FLT3 alterations, and NPM1 mutations; many patients who ob-
tained CR had a particular molecular subtype of the malignancy or a cancer predisposition
syndrome [51,60–66]. It is important to establish which molecular subtypes of pediatric
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malignancies might display specific VTX vulnerability, despite no evident mechanistic links
to BH3 mimetic responses. KMT2A is a frequently rearranged gene in leukemias [69,70],
mostly in pediatric and infant AML [71,72]. Maseti and colleagues identified eight pedi-
atric patients with KMT2A rearrangements, six of whom achieved CR and one of whom
achieved a partial response (PR) [62]. During another study, in a cohort of 17 relapsed
patients with KMT2A, 40% (n = 6) achieved CR/CRi after a median of one cycle of a VTX-
including regimen [65]. Preclinical data suggest a significant antiapoptotic dependence
and responsiveness to VTX in in vitro models of KMT2A-rearranged myeloid and B-cell
lymphoblastic leukemia [73,74]. The combination of VTX with novel KMT2A-r identified
drugs, such as I-BET151, sunitinib, or thioridazine, drastically decreases leukemic cell
count, which provides a rationale for targeting the mitochondrial pathway as a strategy to
sensitize resistant AML to VTX [74]. Moreover, initial results from a retrospective adult
KMT2A-rearranged cohort presented a high response rate with VTX and HMA combined
therapy [75]. Recent studies concerning adult AML showed increased responses to VTX
amongst NPM1- [29,76–78], IDH1/2-, TET2-, and relapsed or refractory RUNX1-mutated
patients, compared to the other cases [77,78]. Therapy for older patients with NPM1+
AML was associated with CR rates > 85% and an OS of 80% after a median follow-up of
1 year [78]. Somatic mutations of the NPM1 gene are found in less than 10% of pediatric
AML patients, much rarer than in adults [79,80]. Trabal et al. identified six patients with
mutation profiles, including NPM1, IDH1/2, or TET2 mutations; three of those children
achieved CR/Cri [65]. As of yet, there are no data specific for children regarding markers
of VTX sensitivity.

On the contrary, adult AML patients displaying FLT3, TP53, RAS, or PTPN11 muta-
tions, monocytic AML, or AML cases pretreated with HMAs showed decreased receptivity
to VTX-based therapies [50,77,81]. During the study by Karol and colleagues, not one of
the five patients with FLT3 alterations responded to treatment [51]. The FLT3-tyrosine
kinase receptor is vital for normal hematopoietic development. Present in around 30%
of cases, somatic activating mutations in this gene are among the most frequent somatic
alterations in pediatric AML [82,83]. FLT3-internal tandem duplication mutations have
been linked to VTX resistance in some experimental models [84]. Gilteritinib, a highly
specific inhibitor of FLT3 mutations, has been certified as a single-agent treatment of re-
lapsed or refractory AML in the United States and Europe [85]. There are emerging clinical
trials combining VTX with a tyrosine kinase inhibitor for relapsed and refractory FLT3+
patients with AML that have demonstrated efficacy [86]. Testing FLT3 signaling first might
be beneficial when identifying a targeted AML population who might respond well to this
innovative treatment approach. Further to this, VTX was not efficient in two cases of infant
AML with GLIS fusions [66], which are correlated with a highly refractory phenotype in
pediatric AML subtypes [87,88]. Newly released preclinical data supported VTX resistance
in murine models of CBFA2T3–GLIS2 pediatric acute megakaryoblastic leukemia, but the
models displayed sensitivity to navitoclax, a BCL-XL inhibitor, hinting at a potential path
for targeting this high-risk infant leukemia [89].

Additional studies are needed to establish if these mutational profiles can guide
clinicians on how and when to incorporate VTX into treatment strategies.

3. Pediatric ALL

Every year, more progress is made in the treatment of patients with ALL. This is due
to the fact that it is the most common childhood cancer, as well as the development of
technology and the latest therapy models. The five-year survival rate in patients with
de novo ALL has increased in recent years to over 90%, but for patients with relapsed or
recurrent ALL, the prognosis is not so favorable, and each subsequent relapse, especially
one in which complete remission has not been achieved, brings less hope for recovery [90].
This state of affairs spurs increasing efforts to find new treatments for these patients.

As an imbalance between cell production and cell degradation is typical for cancer, the
key in anticancer therapy is to direct pathological cells to the programmed death pathway.
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VTX, a well-absorbed oral drug, acts by activating the mitochondrial path of apoptosis.
Apart from the effect on pathological cells, another research aim was to check whether VTX
has a cytotoxic effect on healthy cells. No harmful effects on normal PB cells were noted
either in monotherapy [91,92] or in combination with other drugs [91,93].

3.1. Comprehensive Treatment with Venetoclax

In a retrospective study by Gibson et al. involving pediatric and AYA patients with
relapsed or recurrent hematologic malignancies, including ALL and lymphoblastic lym-
phoma (LBL), VTX was used as an addition to conventional cytotoxic chemotherapy.
Patients received various combinations of cyclophosphamide, vincristine, dexamethasone,
doxorubicin, methotrexate, cytarabine, decitabine, nelarabine, pegylated asparaginase, flu-
darabine, idarubicin, etoposide, gemtuzumab, and rituximab. VTX doses ranged between
100 and 400 mg per day. A total of 61% of patients responded with complete remission. In
this study, combination therapy with VTX proved its effectiveness in both first-diagnosed
pediatric T-ALL and RR, as well as T-cell LBL [94].

A retrospective observation made by Marinoff et al. showed the efficiency of VTX
combined with hypomethylating drugs and chemotherapy in B-ALL patients as well.
However, a limitation of that study was that the cohort primarily consisted of relapsed
and refractory patients, 70% of whom had received three or more prior lines of therapy.
Moreover, the study showed that special attention should be paid to significant side effects
such as infections, which were more serious when VTX was combined with conventional
chemotherapeutic agents such as vincristine, fludarabine, or cytarabine compared to the
combination of VTX with hypomethylating agents such as azacitidine, cytarabine, and
decitabine [66]. In addition to infectious side effects, almost 90% of patients presented
substantial thrombocytopenia. Most common AEs reported in other studies were severe
neutropenia, hyperbilirubinemia, sepsis, aspartate aminotransferase elevation, and dissem-
inated intravascular coagulation [94]. Moreover, as the duration of VTX therapy increased,
the thrombocytopenia and neutropenia periods expanded [95]. A similar relationship
occurred when increasing the dosage of VTX, despite it not being statistically significant
during later observations [95].

The effect of combined therapies with VTX in B-cell ALL seems to exceed the effec-
tiveness of VTX in T-cell ALL. Pullarkat et al., in the evaluation of both pediatric and adult
patients with relapsed or recurrent disease after using a combination of VTX, navitoclax,
and chemotherapy, noted that the estimated median OS was longer in patients with B-cell
ALL than T-cell ALL (9.7 months versus 6.6 months) [96]. It is difficult to determine whether
this is solely the effect of VTX due to the fact that, in most clinical trials, VTX is used in
combination with other substances to intensify therapy. In another study, after a dosage of
VTX (100 mg/kg/for 21 days) in most of the tested pediatric ALL xenografts, an objective
response and delay in the development of the disease were achieved. In this case, the
treatment contributed to the prolongation of event-free survival (EFS) in B-cell ALL as
opposed to T-cell ALL [97]. In a study conducted by Diamanti et al., VTX used in vitro
proved to be efficient in most of the samples tested, except for CD34−/CD19− cells, but
the in vitro study showed its lack of effectiveness in T-cell ALL. It is important to note that
lower BCL-2 expression was observed in T-cell ALL patients, and some authors consider
this phenomenon to be a possible cause of lower sensitivity in these patients to VTX [98].
However, the available literature has data on a more successful effect of VTX on T-cell ALL
as, in the already-mentioned study by Gibson et al., VTX showed its efficacy in both T-cell
ALL and T-cell LBL, where 77% of the patients achieved CR or CRi [94].

It is hard to clearly assess the effectiveness of VTX on specific types of leukemia due
to the small number of studied groups of patients, the genetic diversity of patients, and the
different treatment regimens used. Table 4 shows data comparing VTX usage in B-cell ALL
and T-cell ALL (Table 4).
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Table 4. Patient disease characteristics, concurrent therapy, response, and toxicity [66,94].

Patient
Number Diagnosis Age/Sex Treatment Combined

with VTX
Best

Response Adverse Events

1 Relapsed
B-cell ALL 20/F VCR/PEG/DEX CR

Paronychia,
thrombocytopenia,

anemia, and
neutropenia

2 Relapsed
B-cell ALL 27/M FLAG PD

Sepsis,
thrombocytopenia,

anemia, and
neutropenia

3 Relapsed
B-cell ALL 15/F VCR/PEG/DEX CR

Sepsis,
thrombocytopenia,

anemia, and
neutropenia

4 B-cell ALL 21/F CVD CRi Febrile neutropenia and
thrombocytopenia

5 B-cell ALL 18/M CVD NR Thrombocytopenia and
neutropenia

6 B-cell ALL 11/M CVD NR Myelosuppression and
hyperbilirubinemia

7 B-cell ALL 20/F HyperCVAD and RUX NR Thrombocytopenia

8 B-cell ALL 6/F CVD NR
Thrombocytopenia,

sepsis, and
hyperbilirubinemia

9 T-cell LBL 12/M HyperCVAD and DEC NR Thrombocytopenia

10 T-cell LBL 20/M DEC CR
Febrile neutropenia,
thrombocytopenia,
and coagulopathy

11 T-cell LBL 20/M HyperCVAD and NEL CR Sepsis and
pancreatitis

12 T-cell LBL 20/F HyperCVAD, NEL,
and PEG CR Thrombocytopenia

and neutropenia

13 T-cell LBL 21/M HyperCVAD, NEL,
and FLAG CR Thrombocytopenia

14 T-cell LBL 21/F CYT, IDA, and PEG CR
Febrile neutropenia,

sepsis,
and myelosuppression

15 T-cell ALL 21/M NEL, ETO, CYC,
and DEC NR

Pneumonia,
sepsis,

thrombocytopenia,
and hyperbilirubinemia

16 T-cell ALL 19/M HyperCVAD CR
Thrombocytopenia,

sepsis,
and hyperbilirubinemia

17 T-cell ALL 17/M HyperCVAD CRi Febrile neutropenia
and thrombocytopenia

18 ETP T-cell ALL 19/M FLAG, CYT, GEM,
and MTX CR Thrombocytopenia

and neutropenia
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Table 4. Cont.

Patient
Number Diagnosis Age/Sex Treatment Combined

with VTX
Best

Response Adverse Events

19 T-cell ALL 18/M HyperCVAD NR Thrombocytopenia and
neutropenia

20 T-cell ALL 21/M HyperCVAD, NEL,
and PEG CR Febrile neutropenia and

thrombocytopenia

21 T-cell ALL 22/M NEL, PEG, and GEM CR None

CR—complete remission; PD—progressive disease; NR—no response; CRi—complete remission without blood
count recovery; VCR—vincristine; PEG—pegaspargase; DEX—dexamethasone; FLAG—fludarabine; CVD—
cyclophosphamide, vincristine, and dexamethasone; HyperCVAD—hyper-fractioned cyclophosphamide, vin-
cristine, dexamethasone, doxorubicin, methotrexate, and cytarabine; RUX—ruxolitinib; DEC—decitabine; NEL—
nelarabine; CYT—cytarabine; IDA—idarubicin; ETO—etoposide; CYC—cyclophosphamide; GEM—gemtuzumab;
MTX—methotrexate.

Brown et al. paid particular attention to VTX increasing the effectiveness of azacitidine
in xenografts of neonatal ALL with KMT2A rearrangements in a randomized controlled
trial. Despite each of these agents having a positive antileukemic effect on its own, it was
their combination that proved to be the best option for targeting leukemia stem cells. This
highlights the importance of VTX in new therapies, especially in cases of infantile leukemia,
which is more aggressive, with event-free survival being much lower than in older children
with ALL [99].

Currently, most research focuses on the use of VTX in polytherapy, which will bring
more spectacular effects in the fight against cancer, especially in severe cases. Combining
VTX, which is a BCL-2-specific inhibitor, with navitoclax, a pan-Bcl-2 inhibitor [98], seems
to not only maximize the effectiveness of treatment but also increase clinical tolerance.
These conclusions were reached by researchers assessing pediatric and adult patients
with relapsed/refractory acute lymphoblastic leukemia or lymphoblastic lymphoma in a
multicenter, phase I study (NCT03181126). The study evaluated the safety and preliminary
efficacy of VTX with low-dose navitoclax and chemotherapy in 47 patients, 12 of whom
were under 18 years of age. The results indicated the validity of combining VTX with
low doses of navitoclax in patients with B-cell acute lymphoblastic leukemia, T-cell acute
lymphoblastic leukemia, and lymphoblastic lymphoma. The simultaneous inhibition of
BCL-2 and BCL-XL led to a reduction in thrombocytopenia and other side effects induced
by navitoclax, which ensured treatment effectiveness [96].

There are reports suggesting that BH-3 mimetics are not sufficient in the treatment of
childhood leukemias and combining BH-3 mimetics with inhibitors of survival pathways
is not a dispensable option [98]. It was proven that the usage of VTX alone, despite a
positive response, left leukemic blasts in the liver and spleen and positive minimal residual
disease in the bone marrow of mice at the end of therapy [100]. Therefore, a substance
that enhances the action of VTX was sought. Researchers identified dinaciclib, which is
an inhibitor of cyclin-dependent kinases 1, 2, 5, 9, and 16 showing synergy with VTX,
obtaining a 97% inhibition of the growth of leukemic cells in hypodiploid ALL [100]. Such
results are promising, but further research in this direction is needed.

Recently, another substance, i.e., a receptor of the tyrosine kinase inhibitor MRX-2843,
was discovered, showing synergy with VTX. Combining MRX-2843 with BCL-2 inhibitor
showed positive effects in early T-precursor ALL (ETP ALL). This type of leukemia is
associated with a high rate of treatment failures. The intensity of action increased in
direct proportion to the doses of drugs. Nevertheless, when these substances were used in
monotherapy, MRX-2843 showed better effects in ETP ALL [101].

Despite being less effective in monotherapy, VTX should be considered as an agent that
intensifies the action of other substances supporting the treatment of hematological cancers.
In addition to the dose, different methods of administering VTX with other substances
should be considered combinatorial. Richter et al. compared the co-incubation of the new
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drug MK-2206 with VTX to the administration of one ingredient after the other. In this
case, the most satisfactory effect was achieved when VTX was administered second [91].
Such dependencies may occur when other substances are used; therefore, it is important to
expand research in this direction.

3.2. Venetoclax in Current Clinical Trials

Numerous studies are currently underway assessing the effectiveness of VTX in
ALL. Information about ongoing research is summarized in Table 5. Unfortunately, the
exact results have not been published yet, but we are hereby looking forward to them,
because they may clarify the real benefits of VTX usage in new therapies and influence new
treatment options for patients with ALL.

Table 5. Venetoclax-based ALL therapies in pediatric population in clinical trials.

NCT Study Intervention/
Treatment Phase Condition/

Disease Study Start
Estimated/

Actual
Enrollment

Study
Group

03236857

A Study of the Safety and
Pharmacokinetics of

Venetoclax in Pediatric and
Young Adult Patients With

Relapsed or Refractory
Malignancies

VTX;
chemotherapy I

AML, ALL,
non-

Hodgkin’s
lymphoma,

and
neuroblas-

toma

8
November

2017

143
participants

0 years to
25 years

04029688

A Study Evaluating the
Safety, Tolerability,

Pharmacokinetics and
Preliminary Activity of

Idasanutlin in Combination
With Either Chemotherapy
or Venetoclax in Treatment

of Pediatric and Young
Adult Participants With

Relapsed/Refractory Acute
Leukemias or Solid Tumors

IDA;
VTX;
and

chemother-
apy

I, II

AML, ALL,
neuroblas-
toma, and

solid tumors

27 January
2020

183
participants

0 years to
30 years

05386576

Venetoclax in Combination
With

Asparaginase-Containing
Pediatric-Inspired

Chemotherapy in Adult
Patients With Newly

Diagnosed Acute
Lymphoblastic Leukemia

VTX I ALL 16 June
2022

12
participants

18 years to
60 years

03181126

A Phase 1 Dose Escalation,
Open-Label Study of

Venetoclax in Combination
With Navitoclax and

Chemotherapy in Subjects
With Relapsed/Refractory

Acute Lymphoblastic
Leukemia or

Relapsed/Refractory
Lymphoblastic Lymphoma

VTX;
NAV; and

chemotherapy
I ALL and LL

27
November

2017

69
participants

4 years
and older
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Table 5. Cont.

NCT Study Intervention/
Treatment Phase Condition/

Disease Study Start
Estimated/

Actual
Enrollment

Study
Group

05660473

Pediatric-inspired Regimen
Combined With Venetoclax
for Adolescent and Adult

Patients With de Novo
Philadelphia

Chromosome-Negative
Acute Lymphoblastic

Leukemia

VTX;
chemotherapy II

Precursor cell
lymphoblas-

tic
leukemia-

lymphoma

31 October
2022

100
participants

14 years to
60 years

05740449

International Proof of
Concept Therapeutic
Stratification Trial of

Molecular Anomalies in
Relapsed or Refractory

HEMatological
Malignancies in Children,

Subprotocol A:
Decitabine/Venetoclax and

Navitoclax in Pediatric
Patients With Relapsed or
Refractory Hematological

Malignancies

DEC;
VTX;

and NAV
I, II

Relapsed/
refractory

ALL

1 October
2023

26
participants

1 year to
21 years

05745714

International Proof of
Concept Therapeutic
Stratification Trial of

Molecular Anomalies in
Relapsed or Refractory

HEMatological
Malignancies in Children,

Subprotocol C Ruxolitinib +
Venetoclax +

Dexamethasone +
Cyclophosphamide and
Cytarabine in Pediatric

Patients With Relapsed or
Refractory Hematological

Malignancies

RUX;
VTX;

DEXA;
CP;

and Ara C

I, II
Relapsed/
refractory

ALL

1 October
2023

26
participants

1 year to
21 years

05751044

International Proof of
Concept Therapeutic
Stratification Trial of

Molecular Anomalies in
Relapsed or Refractory

HEMatological
Malignancies in Children,
Sub-protocol B Dasatinib +

Venetoclax +
Dexamethasone +

Cyclophosphamide and
Cytarabine in Pediatric

Patients With Relapsed or
Refractory Hematological

Malignancies

DAS;
VTX;

DEXA;
CP;

and Ara C

I, II
Relapsed/
refractory

ALL

1 October
2023

26
participants

1 year to
21 years
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Table 5. Cont.

NCT Study Intervention/
Treatment Phase Condition/

Disease Study Start
Estimated/

Actual
Enrollment

Study
Group

05157971

Study Combining
Venetoclax With a

Pediatric-Inspired Regimen
for Newly Diagnosed

Adults With B Cell Ph-Like
Acute Lymphoblastic

Leukemia

VTX;
Pred;
and

chemother-
apy

I BALL and
Ph-like ALL

17 March
2022

Six
participants

18 years to
54 years

VTX—venetoclax, IDA—idasanutlin, NAV—navitoclax, DEC—decitabine, RUX—ruxolitinib, CP—cyclophosphamide,
DEXA—dexamethasone, Ara C—cytarabine, DAS—dasatinib, Pred—prednisone.

3.3. Other Studies on Venetoclax Combination Therapies in ALL

In addition to the above analyses aimed at assessing the validity of VTX usage in
contemporary treatment options, there are also case reports on the effectiveness of VTX in
combination therapy for pediatric patients with lymphoid malignancies (Table 6) [97–99].

Table 6. Case series reporting results on the use of venetoclax in the treatment of lymphoid malignan-
cies in children.

Age/Sex of
Patients Disease Intervention/

Treatment Therapy Effect Adverse Events References

15 years/
male

Chronic
myelomonocytic

leukemia with
germline GATA2

mutation

VTX + DEC

Proceeded to a
myeloablative,

haploidentical peripheral
blood stem cell (PBSC)

transplantation; in
remission 1 year

post-transplantation

Nausea,
neutropenia,
anemia, and

thrombocytopenia

Molina et al.
[102]

11 years/
male

Relapsed blastic
plasmacytoid
dendritic cell

neoplasm

CVAD + VTX

Proceeded to an allogeneic
HSCT; in remission

200 days
post-transplantation

Pneumonia, febrile
neutropenia, and

bacteremia

Abla et al.
[103]

16 years/
male

t(17;19) acute
lymphoblastic

leukemia
VTX + NAV

Proceeded to an allogeneic
HSCT; septic shock at day

+ 10; and death by
multi-organ failure

Neutropenia,
thrombocytopenia,

and diarrhea

Gottardi et al.
[104]

DEC—decitabine; CVAD—cyclophosphamide, vincristine, doxorubicin, dexamethasone alternating with
methotrexate, and cytarabine; NAV—navitoclax.

4. The Mechanisms of Venetoclax Resistance and Future Strategies

There are many known resistance mechanisms to VTX, such as dependencies on other
antiapoptotic Bcl-2 family members, BCL-2 and BAX gene mutations, changes within the
tumor microenvironment, mitochondrial metabolic reprogramming, and TP53 pathway
dysfunction. It is vital to comprehend such mechanisms in order to design reasonable
treatment regiments.

It has been proven that persistent VTX exposure leads to the upregulation of different
pro-survival Bcl-2 family members, such as BCL-XL, MCL-1, and BCL2-A1 [27,48,76,105–107],
which have been found to be overexpressed in many hematologic malignancies and other
cancers [108,109]. Such proteins are responsible for the sequestration of BIM, which leads
to apoptosis inhibition [105,110]. Moreover, VTX treatment resulted in the heightening of
MCL-1 protein’s half-life, implying that the association with BIM plays a role in stabilizing
Bcl-2 family member proteins [105]. Preclinical studies demonstrated increased levels of
MCL-1 and BCL-XL and decreased levels of BCL-2 in VTX-resistant cell lines in comparison
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with sensitive cell lines both from lymphoid [111] and myeloid [48,112] malignancies. Addi-
tionally, after VTX treatment, MCL-1 amplification and overexpression were observed [106].
A study by Niu et al. revealed that incorporating cytarabine or daunorubicin upon VTX
treatment resulted in increased DNA damage and a better reduction in MCL-1 levels in
AML cell lines than during VTX monotherapy [105]. Moreover, azacitidine correlates
with MCL-1 downregulation, which may be the reason for the synergistic outcomes upon
combining azacitidine or decitabine and VTX [29,113]. The pharmacological inhibition
of BCL-XL, MCL-1, and BCL2-A1 proteins brings back sensitivity to VTX in resistant
cells [106,114], which provides a rationale for the further investigation of selective Bcl-2
family member inhibitors as potential therapeutic agents. Toxicity is a restraining factor
for BCL-XL inhibitor application due to the reliance on BCL-XL for platelet survival [115].
Despite having a high affinity to BCL-2, BCL-XL, and BCL-W [14], the clinical use of navi-
toclax (ABT-263) has been restricted by the on-target toxicity of thrombocytopenia [115].
Another study revealed that treatment with the BCL-XL-specific inhibitor WEHI-539 in
mouse models led to the lowering of erythrocyte levels and hemoglobin [116]. Among
the Bcl-2 family of proteins, MCL-1 protein levels were consistently elevated in virtually
all patients with newly diagnosed AML [117]. A study by Teh et al. revealed that the
concurrent targeting of BCL2 and MCL1 was associated with long-term survival in AML
mouse xenografts, in contrast to targeting a subset of proteins alone [118]. Recently, a
selection of MCL-1 inhibitors has been developed, many of which are currently undergoing
clinical evaluation: S63845 [119], S64315 [120], AZD5991 [121], AMG-176 [122], and AMG-
397 [123]. Furthermore, there are other drugs, such as murine double minute-2 (MDM2),
mitogen-activated protein kinase (MEK), or cyclin-dependent kinase 9 (CDK9) inhibitors,
that are being investigated for the possible indirect inhibition of MCL-1 [124,125]. Addi-
tionally, AML patients’ samples display a differential expression of BCL2-A1 in resistant
cells [76,126], which suggests a potential for synergy between BCL-2 and BCL2A1 inhibitors
in selective AML subsets [126].

Acquired BCL-2 mutations, in particular those occurring in the drug binding site, may
lead to altered VTX efficacy and to side effects. Several mutations have been identified
among VTX-resistant patients with lymphoid malignancies [127–130]. The G101V mutation
is a de novo acquisition mutation, in contrast to pretreatment samples [131], that diminishes
the merging of VTX with BCL2 by 180-fold and leads to the outgrowth of blast cells in
the presence of the drug in vitro in CLL patients [128]. Nevertheless, among patients with
G101V mutations, it is only a cause of part of their resistance to VTX [128]. It is assumed that
resistance to VTX depends on multiple, parallel, acquired BCL2 mutations [132]. Tausch
et al. identified a second unreported BCL2 mutation, D103Y, in one of patients with VTX-
refractory CLL [129]. As opposed to the G101 mutation, which prompts BCL-2 to maintain
the ability to bind to the BH3 motifs in the regulatory protein, the D103 mutation is part of
the BH3 binding pocket of BCL2 [128,129]. With the previous data of acquired resistance to
VTX due to Phe104 mutations [133], the Phe104Ile mutation was detected in a patient with
relapsed/refractory follicular lymphoma (FL) treated with BCL-2 inhibitor, which lessened
the binding of VTX to BCL-2 by approximately 40-fold [127].

The fairly frequently reoccurring mechanism of treatment resistance in lymphoid
malignancies, especially CLL, which is clinically sensitive to VTX monotherapy [33–35],
is the previously mentioned BCL-2 mutation. On the contrary, in myeloid malignancies,
where VTX combination therapies are much more applicable, more wide-ranging patterns
of resistance have been discovered. Acquired BAX mutations that either disrupted protein
expression or its proapoptotic function led to adaptive resistance to BCL-2 inhibitors in
AML patients who relapsed after VTX-combined therapies [134]. Such genetic changes were
rarely detectable in patients who relapsed upon conventional chemotherapy [134]. VTX is
able to induce apoptosis in cells with the normal BAK gene, on the contrary to cells that
lack BAX, suggesting a significance of the BAX gene in VTX-induced apoptosis [135,136].
A study by Moujalled et al. discovered resistance to both BCL-2 and MCL-1 (S63845)
inhibitors amongst cells with BAX mutations [134]. Another study similarly presented
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resistance to BCL-2 and the BCL-2/BCL-XL (AZD-4320) inhibitor, but sensitivity to the
MCL-1 inhibitor (AZD-5991) [135]. Moreover, several BAX mutations have been identified
amongst VTX-resistant CLL patients [137,138].

There are few VTX-resistance mechanisms connected to the tumor microenvironment.
The activation of the B-cell receptor (BCR) by a BCL-2 inhibitor [139], as well as initializing
the extracellular-signal-regulated kinase (ERK) pathway via the activation of extracellular
receptors by ABT-737 [140], leads to the upregulation of MCL-1 protein. Moreover, the
CD40L/CD40-mediated stimulation of CLL blasts by activated T-cells in the lymph node
microenvironment prompts increased antiapoptotic protein expression (MCL1, BCL-XL,
and BFL-1) [106,141,142]. In contrast to MCL-1, the knockdown of BCL-XL greatly al-
tered the sensitivity of leukemic cells to VTX after CD40 stimulation [106]. Anti-CD20
monoclonal antibodies such as GA101 [143] or rituximab [144], the c-Abelson tyrosine
kinase (c-Abl) inhibitors imatinib or dasatynib [144], or Bruton’s tyrosine kinase (BTK)
inhibitors [145] induce non-apoptotic cell death in CD40-stimulated CLL cells and, in turn,
restore VTX sensitivity.

A study by Kuusanmäki et al. showed a connection between VTX sensitivity and
the degree of AML cell differentiation. Blasts proved to be highly sensitive to BCL-2
inhibition, whereas monocytes and granulocytes showed resistance. Cells with the French–
American–British (FAB) subtype M4/5 AML were characterized by the highest resistance
to VTX, which can be associated with the lowest expression of BCL-2 and the strongest
expression of MCL-1 and BCL2-A1. An inverse relationship was observed among FAB-M0
cells. Additionally, researchers found that resistant blasts were sensitive to either MEK
and/or Janus kinase (JAK) inhibitors. Therefore, a way to counteract VTX resistance may
be the additional use of a MEK inhibitor or a JAK inhibitor [146]. Similar conclusions about
the connection between the increase in reluctance with the degree of cell differentiation
were reached by Pei et al. Moreover, their univariate analysis showed that gender and the
presence of RAS pathway mutations were also associated with VTX + AZA resistance. It
was also noted that leukemic cells at different developmental stages consist of separate
mechanisms to mediate energy metabolism, and in monocytic AML MCL-1, reliance shows
its importance. Therefore, AML cells can switch from BCL-2 to MCL-1 dependence to drive
energy metabolism as cells obtain a higher developmental state. In summary, the authors
point out that MCL-1 inhibition may be one of the strategies to counteract resistance to the
used treatment and the subject of further research [147].

Another mechanism of VTX resistance is mitochondrial metabolic reprogramming.
The TP53 mutation in leukemic stem cells disturbed mitochondrial homeostasis by impair-
ing the effector function of BAX/BAK and hindered BCL-2 expression, which decreased
the target of VTX [135]. An abnormal overexpression of components of the AMP-activated
protein kinase (AMPK)/protein kinase A (PKA) pathway was observed in the CLL cell
line OCI-Ly1 with an amplification of 1q23, which resulted in resistance to VTX [111].
After using a genome-wide CRISPR knockout screen to find genes that, upon inactivation,
restored sensitivity to VTX in an AML cell line with acquired resistance, Sharon et al. found
that gene inactivation involving mitochondrial translation sensitized resistant AML cells.
The combined use of drugs which target the mitochondrial respiratory chain can further
enhance the anti-AML effect of VTX [148].

Genomic instability is a different mechanism of possible VTX resistance. TP53 biallelic
mutations were commonly described in patients with both primary and adaptive resistance
to VTX-based therapies [149]. Moreover, the acquisition of new TP53 mutations during the
course of AML therapy has been reported [150]. Preclinical studies demonstrated resistance
to both BCL-2 and MCL-1 inhibitors in TP53-mutated cells and xenograft models [151],
which could be restored by the concurrent inhibition of both Bcl-2 family members [152].
Such findings suggest that combining VTX with an MCL-1 inhibitor could be an alternative
to bypass resistance associated with TP53 mutation. There are new drugs being investigated,
such as eprenetapopt (APR-246), that reactivate the mutant p53 protein and target cellular
redox balance, in order to bring back apoptosis in TP53-mutated cancer cells. Combined
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results of two parallel phase II trials combining APR-246 with AZA showed the combination
to be well tolerated, with high response rates in m TP53 MDS/AML [153]. There is an
ongoing phase I clinical trial (NCT04214860) testing the combination of APR-246, AZA,
and VTX.

As mentioned previously, FLT3-ITD or PTPN11 mutations that result in the activation
of intracellular signaling pathways correlate with VTX resistance [50,77,81,84]. Moreover,
such mutations were acquired by a subset of AML patients during disease relapse, which
indicated that these mutations are linked to secondary VTX resistance [84]. Studies have
shown that FLT3-ITD or PTPN11 mutations cause an elevation of BCL-XL and MCL-1
protein levels [154–156], which may explain the resistance mechanism. The MCL-1 protein
escalation, as well as BAD and BIM suppression, is a result of the activation of different
downstream signaling events involving the phosphoinositide 3-kinase (PI3K)/protein ki-
nase B (AKT)/mechanistic target of rapamycin (mTOR) and MEK/ERK pathways, and sig-
nal transducers and activators of transcription 5 (STAT5), leading to cytokine-independent
cell survival and proliferation [157]. A study by Yoshimoto et al. demonstrated a reduction
in MCL-1 protein levels in FLT3-ITD MV4-11 AML cells after incubation with STAT5 small
interfering RNA (siRNA), which highlights the importance of FLT3-STAT5 for MCL-1
expression [156]. The suppression of FLT3-STAT5 with the multikinase inhibitor olverem-
batinib (HQP1351) caused FLT3-ITD mutant AML cell growth reduction. A combination of
the BCL-2 inhibitor APG-2575 with HQP1351 resulted in the downregulation of MCL-1,
which led to the strengthening of APG-2575-induced apoptosis [158]. Moreover, the ad-
dition of the small-molecule FLT3 inhibitor quizartinib upon VTX treatment prompted
more durable responses in mice FLT3-ITD+ mutant xenograft MV-4–11 cells than either
agent alone [84]. Combining FLT3 inhibitors with VTX could be a useful strategy to over-
come BCL-2 inhibitor resistance between FLT3-mutated AML patients and to prevent the
appearance of FLT3-mutated subclones in patients with no detectable FLT3 mutation.

There are no data specific for pediatric populations regarding the mechanism of
VTX resistance and markers of VTX response. Therefore, populations of patients with
unsatisfying treatment response or disease progression upon BCL-2 inhibition should be
further studied in both preclinical models and in clinical trials.

5. Conclusions

In summary, targeting the apoptosis pathway by inhibiting Bcl-2 family proteins
with VTX in combination with established drugs in the treatment of leukemia is a highly
promising strategy to improve survival and reduce treatment-related toxicities for a specific
subgroup of AML or ALL pediatric patients. Based on the latest data, such regimens can be
used both as an emergency therapy in the case of treatment-resistant leukemias and, most
importantly, as a bridge therapy if it is necessary to perform an allogeneic hematopoietic
stem cell transplant. Despite infectious complications being the most common adverse
events, treatment can be well-tolerated. The overall response rate is comparable to that
seen in heavily pretreated adult patients who received similar VTX combination therapies.
It is crucial to determine markers of VTX response, as there are no data specific for pedi-
atric populations, whereas genetic variants/lesions associated with VTX sensitivity or its
reduction from adult studies are not frequent or applicable in children. Further studies are
needed to identify the various mechanisms of VTX resistance and methods of overcoming
them. International cooperation in the form of multicenter studies is necessary to gather
larger, homogenous research groups to identify an optimal VTX-based regimen for the
pediatric population and long-term effects on patients’ outcomes.
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literature for the manuscript. M.L. (Maria Leśniak), J.L. and P.M. wrote the original draft of the
manuscript; P.M. was responsible for preparing the figures; M.L. (Maria Leśniak) and J.L. were
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