
Citation: Chou, H.-D.; Shiah, S.-G.;

Chuang, L.-H.; Wu, W.-C.; Hwang,

Y.-S.; Chen, K.-J.; Kang, E.Y.-C.;

Yeung, L.; Nien, C.-Y.; Lai, C.-C.

MicroRNA-152-3p and MicroRNA-

196a-5p Are Downregulated When

Müller Cells Are Promoted by

Components of the Internal Limiting

Membrane: Implications for Macular

Hole Healing. Int. J. Mol. Sci. 2023,

24, 17188. https://doi.org/10.3390/

ijms242417188

Academic Editor: Hiroshi Tomita

Received: 20 October 2023

Revised: 29 November 2023

Accepted: 1 December 2023

Published: 6 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

MicroRNA-152-3p and MicroRNA-196a-5p Are Downregulated
When Müller Cells Are Promoted by Components of the
Internal Limiting Membrane: Implications for Macular
Hole Healing
Hung-Da Chou 1,2,3,4 , Shine-Gwo Shiah 1,4 , Lan-Hsin Chuang 3,5, Wei-Chi Wu 2,3 , Yih-Shiou Hwang 2,3 ,
Kuan-Jen Chen 2,3 , Eugene Yu-Chuan Kang 2,3 , Ling Yeung 3,5, Chung-Yi Nien 1,* and Chi-Chun Lai 2,3,5,*

1 Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan;
hungda.chou28@gmail.com (H.-D.C.); davidssg@nhri.edu.tw (S.-G.S.)

2 Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan 33305,
Taiwan; weichi666@gmail.com (W.-C.W.); yihshiou.hwang@gmail.com (Y.-S.H.);
cgr999chiayi@yahoo.com.tw (K.-J.C.); yckang0321@gmail.com (E.Y.-C.K.)

3 College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; lanhsin.chuang@gmail.com (L.-H.C.);
lingyeung@gmail.com (L.Y.)

4 National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
5 Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
* Correspondence: joey.nien@g.ncu.edu.tw (C.-Y.N.); chichun.lai@gmail.com or ccl404@cgmh.org.tw (C.-C.L.)

Abstract: Müller cells play a critical role in the closure of macular holes, and their proliferation and
migration are facilitated by the internal limiting membrane (ILM). Despite the importance of this
process, the underlying molecular mechanism remains underexplored. This study investigated the
effects of ILM components on the microRNA (miRNA) profile of Müller cells. Rat Müller cells (rMC-1)
were cultured with a culture insert and varying concentrations of ILM component coatings, namely,
collagen IV, laminin, and fibronectin, and cell migration was assessed by measuring cell-free areas in
successive photographs following insert removal. MiRNAs were then extracted from these cells and
analyzed. Mimics and inhibitors of miRNA candidates were transfected into Müller cells, and a cell
migration assay and additional cell viability assays were performed. The results revealed that the
ILM components promoted Müller cell migration (p < 0.01). Among the miRNA candidates, miR-194-
3p was upregulated, whereas miR-125b-1-3p, miR-132-3p, miR-146b-5p, miR-152-3p, miR-196a-5p,
miR-542-5p, miR-871-3p, miR-1839-5p, and miR-3573-3p were significantly downregulated (p < 0.05;
fold change > 1.5). Moreover, miR-152-3p and miR-196a-5p reduced cell migration (p < 0.05) and
proliferation (p < 0.001), and their suppressive effects were reversed by their respective inhibitors.
In conclusion, miRNAs were regulated in ILM component-activated Müller cells, with miR-152-3p
and miR-196a-5p regulating Müller cell migration and proliferation. These results serve as a basis for
understanding the molecular healing process of macular holes and identifying potential new target
genes in future research.

Keywords: microRNA; macular hole; internal limiting membrane; Müller cells; miR-152-3p;
miR-196a-5p

1. Introduction

Idiopathic full-thickness macular hole (FTMH) is a vision-threatening condition among
older individuals [1–3]. Despite its relatively small average diameter of 400 µm, the fact
that its critical location is at the fovea, which is responsible for central vision, renders
FTMH capable of inducing permanent visual impairment if left unattended [3]. Although
the precise pathophysiology of FTMH remains incompletely understood, it is believed to
involve vitreous degeneration and abnormal traction in the vitreomacular interface [4].
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Studies have suggested that the Müller cells in the fovea are key contributors to the
formation of FTMH [4,5]. Müller cells, the primary glial cell type in the retina, play a crucial
role in providing structural and metabolic support to the neurosensory retina [6,7]. During
the initial stages of macular hole development, the “foveola Müller cell cone” experiences
traction and detaches from the parafoveal Müller cell wall. A full-thickness hole is formed
when the foveola Müller cell cone is fragmented, resulting in a break in the outer retinal
layers [5].

Most FTMHs necessitate surgical intervention, typically through vitrectomy, to allevi-
ate vitreous tractions. The primary closure rate after vitrectomy was reported to be 79–95%
for large macular holes. The success rate of this procedure can be further enhanced by
harvesting an internal limiting membrane (ILM) flap to cover the hole [8–10]. The ILM
is believed to act as a scaffold, facilitating the proliferation and migration of Müller cells
and promoting Müller cell activation to enhance MH closure [11]. The main components
of the ILM include collagen IV, laminin, and fibronectin [12]. In the in vitro model, the
ILM components have been indicated to enhance the survival, proliferation, and migra-
tion of mammalian Müller cells [11,13], which are critical in the healing process of the
macular hole [14,15]. Consequently, our interest lies in further characterizing Müller cells,
particularly when influenced by the components of the ILM.

MicroRNAs (miRNAs) constitute a class of small, noncoding RNAs of approximately
22 nucleotides in length. These miRNAs target mRNA by binding to its 3′untranslated
region (3′UTR) through miRNA seed sequences (typically 6–8 nucleotides long). Most
miRNAs play roles in posttranslational gene regulation through translational repression or
mRNA degradation [16]. Since their discovery in the early 1990s, miRNAs have emerged
as key players involved in a wide array of biological processes. miRNA dysregulation has
been observed in various diseases, including cancer, cardiovascular diseases, diabetes, and
neurodegenerative diseases [17–21]. The highly conserved nature and small size of miRNAs
have made them potential targets for investigation and therapeutic interventions [22,23].

Ocular studies have reported the involvement of miRNA in vitreoretinopathies, en-
compassing conditions such as retinal detachment, macular holes, macular degeneration,
and diabetic retinopathy [24–27]. The structural integrity of the retina was also significantly
affected by changes in miRNA [28]. However, to the best of our knowledge, the specific
role of miRNA in Müller cell migration and proliferation remains unexplored. Therefore,
this study aimed to elucidate the miRNA profile of Müller cells when stimulated by ILM
components and to explore the associated cellular and molecular functions underlying
these processes.

We identified 10 regulated miRNAs, and through miRNA mimic and inhibitor trans-
fection assays, we demonstrated that both miR-152-3p and miR-196a-5p exert inhibitory
effects on Müller cell migration and proliferation. Notably, the suppressive actions of these
miRNAs were effectively reversed by their respective inhibitors. MiR-152-3p has been
reported to regulate cellular proliferation, invasion, and extracellular matrix expression by
targeting forkhead box protein F1 (FOXF1) in keloid fibroblasts [29]. In the eyes, miR-152-3p
upregulation was observed in the retina and choroid during the vasoobliteration phase in
the oxygen-induced retinopathy model [30]. Furthermore, miR-152-3p was found to be
regulated in the vitreous humor of eyes with neovascular age-related macular degener-
ation [31]. As for miR-196a-5p, it has been implicated in targeting forkhead box protein
O1 (FOXO1) and has been associated with various cancers [32–35]. In lens epithelial cells,
miR-196a-5p upregulation reduced the level of oxidative stress-induced apoptosis [36]. By
identifying these miRNAs, we provide supplementary information on the regulation of
Müller cells and provide a foundation for further research in this context.

2. Results
2.1. Effect of ILM Components in Müller Cell Migration

To assess the effect of varying concentrations of ILM components on the stimulation
of the Müller cells, a lower concentration (collagen IV, 10 µg/cm2; laminin, 20 µg/mL;
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fibronectin, 20 µg/mL) and a higher concentration (collagen IV, 20 µg/cm2; laminin,
30 µg/mL; fibronectin, 100 µg/mL) of the ILM component were used to coat the culture
plate before Müller cell seeding. Both concentration groups and the control group were
subject to the migration assay. In the low-concentration group, Müller cells exhibited signifi-
cantly increased migration compared with the control group (p < 0.01; Figure 1A). Similarly,
in the high-concentration group (Figure 1B), significantly greater migration activities were
observed compared with the control group (p < 0.001). However, after standardization
with respect to the control (Figure 1C), no significant difference was noted between the
low- and high-concentration groups (1.48 ± 0.32 vs. 1.45 ± 0.03; p = 0.414). These findings
suggest that the combination of collagen IV, laminin, and fibronectin promotes Müller cell
migration. However, no significant dose-dependent effect was observed between the two
concentrations used in this study.
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Figure 1. Migration of rat Müller cells cultured on low and high concentrations (conc.) of internal
limiting membrane component coatings, including collagen IV, laminin, and fibronectin. (A,B) Müller
cells exhibited a significant increase in migration in both the low conc. group and the high conc.
group compared with the controls. (C) The standardized comparison between the low and high conc.
groups revealed no significant difference (p = 0.414). (** p < 0.01; *** p < 0.001; N.S., nonsignificant;
and N = 6 in each group.).

2.2. MiRNA Profiling of Müller Cell Stimulated by ILM Components

Following stimulation, Müller cells were harvested and subjected to miRNA profiling.
In total, 1218 miRNAs were identified. A three-dimensional principal component analysis
(PCA) plot based on miRNA expression (Figure 2) revealed distinct clustering of the
controls, separated from the low-concentration groups. Interestingly, the high-concentration
groups were clustered close to the controls. These results suggest that the miRNA profile
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of the lower-concentration group differed more significantly from the controls, whereas the
high-concentration group was less distinguishable from the controls. Volcano plots were
generated to illustrate the differentially expressed miRNAs from the miRNA microarray
analysis (Figure 3). With a threshold of p < 0.05 and a fold change of at least 1.5, five and
six miRNAs were identified from the low- and high-concentration groups, respectively. In
the low-concentration group, five miRNAs, namely miR-132-3p, miR-152-3p, miR-196a-5p,
miR-542-5p, and miR-871-3p, were significantly downregulated (Figure 3A), and in the high-
concentration group, five miRNAs (miR-125b-1-3p, miR-132-3p, miR-146b-5p, miR-1839-5p,
and miR-3573-3p) were downregulated and one (miR-194-3p) was upregulated (Figure 3B).
In general, the fold change of the significantly regulated miRNAs in the high-concentration
group was lower than that in the low-concentration group.
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with the controls, particularly between H2 and C2.

Clustered heatmaps were generated to visualize the expression patterns of differ-
entially expressed miRNAs modulated with ILM components. In both the low- and
high-concentration groups, the replicates of each condition exhibited well-defined clus-
tering (Figure 3C,D). However, in the combined heatmap, variations were observed in
miR-542-5p and miR-196a-5p between the two replicates within the high-concentration
group (Figure 3E). Furthermore, different miRNA regulation was evident between the low-
and high-concentration groups. For example, miR-194-3p and miR-152-3p were downreg-
ulated in the low-concentration group but upregulated in the high-concentration group.
Conversely, miR-125b-1-3p demonstrated opposite regulation between the two groups
(Figure 3E).
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Figure 3. Differentially expressed microRNAs (miRs) in rat Müller cells harvested from different
internal limiting membrane component concentration (conc.) groups. (A,B) Volcano plots depicting
log fold changes plotted against p values in samples from the low conc. (A) and high conc. (B) groups
versus the control. Red dots indicate significantly regulated miRs (p < 0.05 and log fold change > 1.5).
(C–E) Hierarchical clustering heatmaps illustrate the differentially expressed miRs. Each row and
column indicate a miR and one sample, respectively. The bars indicate relative expression levels from
high (yellow) to low (blue). The asterisks in (E) indicate the miRs selected for the further transfection
assays. (F) The Venn diagram indicates that miR-132-3p is downregulated in both the low and high
conc. groups.
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Finally, the Venn diagram illustrated that the only overlapping miRNA between the
low- and high-concentration groups was miR-132-3p (Figure 3F). In addition to miR-132-3p,
three additional miRNAs (miR-146b-5p, miR-152-3p, and miR-196a-5p) were selected for
further transfection assays based on the results of the clustering heatmaps. These miRNAs
exhibited more consistent expression in both the low- and high-concentration groups, and
additional information on them is available in the literature.

2.3. Transfection of MiRNA Mimics and Inhibitors

In the transfection assays, ILM components were not used to stimulate the Müller cells.
The transfection of Müller cells with miR-132-3p and miR-146b-5p mimics yielded compara-
ble results to the controls regarding proliferation and migration. However, transfection with
miR-152-3p and miR-196a-5p mimics resulted in significantly decreased proliferation and
migration, indicating a potential regulatory role for these miRNAs in Müller cells (Figure 4).
To further elucidate the role of miR-152-3p and miR-196a-5p in Müller cell migration and
proliferation, corresponding miRNA inhibitors were constructed. Subsequent migration
assays and additional proliferation assays were conducted (Figure 5). The proliferation
assays revealed that miR-152-3p and miR-196a-5p mimics reduced Müller cell proliferation,
with the effect partially reversed by the addition of a miR-152-3p inhibitor and completely
reversed by the addition of a miR-196a-5p inhibitor, respectively (Figure 5A). The migra-
tion assays revealed similar results: the migration of Müller cells was downregulated via
miR-152-3p and miR-196a-5p mimics and counteracted with miR-152-3p and miR-196a-
5p inhibitors, respectively (Figure 5B). These findings indicate that both miR-152-3p and
miR-196a-5p played regulatory roles in the migration and proliferation of Müller cells.
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Figure 4. Transfection assays based on four selected microRNA (miRs) mimics. Rat Müller cells
cultured with miR-152-3p or miR-196a-5p mimics exhibit a significant suppression of cell prolifera-
tion (A) and migration (B). (* p < 0.05; *** p < 0.001; and N = 6 in each group).
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Figure 5. Effect of microRNA (miR) inhibition on the proliferation and migration of rat Müller
cells. (A) The suppression of Müller cell proliferation via miR-152-3p and miR-196a-5p mimics is
partially reversed with the addition of a miR-152-3p inhibitor and completely reversed with the
addition of a miR-196a-5p inhibitor. (B) The suppression of Müller cell migration via miR-152-3p
and miR-196a-5p mimics is reversed with the addition of respective inhibitors. (* p < 0.05; ** p < 0.01;
and N.S. = nonsignificant. The p values were calculated by comparing them to the control group,
unless labeled using quotation marks. N = 6 and 4 in each group of the proliferation and migration
assays, respectively).

2.4. Prediction of Target Genes for Selected MiRNAs

The potential targets of selected miR-152-3p and miR-196a-5p were predicted using
TargetScan and miRDB. The overlapping genes from the two algorithms resulted in 206 and
52 predicted targets for miR-152-3p and miR-196a-5p, respectively (Figure 6A,B). Subse-
quent Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome analysis revealed
that the predicted target genes of miR-152-3p were associated with pathways including
death receptors, phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), transforming
growth factor-β (TGF-β), and forkhead box protein O (FOXO) signaling (Figure 6C,D).
Conversely, the associated pathways for miR-196a-5p were more limited (Figure 6E,F).
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Figure 6. Predicted targets of microRNA (miR)-152-3p and miR-196a-5p and results of function and
pathway analyses. (A) MiR-152-3p targets. (B) MiR-196a-5p targets. Blue depicts the predicted gene
number from TargetScan, and pink denotes the number from miRDB. (C,D) The Kyoto Encyclopedia
of Genes and Genomes (KEGG) and Reactome-enriched pathways of miR-152-3p targets. (E,F) The
KEGG and the Reactome-enriched pathways of miR-196a-5p targets.

3. Discussion

The current study demonstrated that the ILM components effectively promoted the
migration of Müller cells. However, no significant differences were observed between
the groups with high and low concentrations of the tested ILM components. The miRNA
profile of Müller cells promoted by ILM components differed from that of the control group,
with one upregulated and ten downregulated miRNAs. Subsequent transfection assays
of synthetic miRNA mimics revealed that miR-152-3p and miR-196a-5p suppressed the
proliferation and migration of Müller cells. This inhibitory effect was successfully reversed
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by the respective miRNA inhibitors, confirming the suppressive role of miR-152-3p and
miR-196a-5p.

The advent of optical coherence tomography has enabled clinicians and researchers
to observe the healing of macular holes in vivo. Whether through spontaneous closure or
closure following surgical intervention, gliotic tissue, predominantly formed by Müller
cells, has been identified to bridge the hole edges and regress when the outer retinal layers
heal [4,15]. However, in some situations, the gliotic tissue occupies the hole and forms scar
tissue, thus preventing the coalescence of the photoreceptor layer and interfering with the
recovery of vision [4,37].

The regulation of Müller cells and associated gliosis has garnered attention, given that
Müller cells are the primary responders to almost all retinal injuries and degenerations and
have the potential for neuron regeneration [38–40]. In response to laser-induced retinal
injuries, Müller cells instantly become reactive and exhibit increased expression of glial
fibrillary acidic protein (GFAP), a key component contributing to the mechanical stiffness
of the glial cell processes. Additionally, reactive Müller cells are capable of re-entering the
cell cycle in preparation for proliferation [41]. In response to retinal injuries, Müller cells
undergo three primary gliotic changes—hypertrophy, proliferation, and migration—to pro-
tect the remaining healthy tissue [42]. A temporal window exists before gliosis transitions
into a chronic scar, during which directing Müller cells in gliotic tissue to dedifferentiate
into progenitor cells and regenerate retinal neurons, as observed in lower vertebrates, may
be plausible. However, to date, such investigations have yet to be translated to clinical
applications [43].

To understand the clinical observation indicating that ILM enhances FTMH closure,
the interaction between ILM and Müller cells has been investigated by various research
groups. We previously demonstrated that ILM components promoted the migration of rat
Müller cells in vitro, and this promotion was significantly enhanced when combined with
neurotrophic factors including epidermal growth factor, fibroblast growth factor (FGF), and
insulin-like growth factor 1 (IGF-1) [13]. Although we did not examine the effect of ILM
components on the proliferation of the Müller cells, co-culturing rabbit Müller cells with
ILM was found to enhance their proliferation through the PI3K/AKT pathway, and this
effect was further strengthened by the nerve growth factor, another neurotrophic factor [44].
Another model using human Müller cells also demonstrated the promotion of Müller cell
proliferation and survival by ILM [45]. Moreover, human Müller cells, activated by ILM
components, produced more neurotrophic factors compared with nonactivated Müller
cells [11]. These findings align with the aforementioned studies, confirming that Müller
cells are promoted by ILM components. However, within the two concentrations tested, the
higher concentration of ILM components did not further promote the migration of Müller
cells compared with the lower-concentration group. This result may partially explain the
variation in clinical outcomes of gliosis even with the placement of an ILM flap, suggesting
that a precise amount of ILM components may be necessary to induce the desired healing
process for FTMHs.

Among the selected ILM-modulated miRNAs, both miR-152-3p and miR-196-5p ex-
hibited suppressive effects on the proliferation and migration induced by ILM. MiR-152-3p
is of particular interest due to its regulatory role in cellular apoptosis, proliferation, or
migration in both normal and cancerous cells [46–49]. Predicted target genes were associ-
ated with pathways including death receptors, PI3K/AKT, transforming growth factor-β
(TGF-β), and FOXO signaling (Figure 6A,B). In the present study, miR-152-3p was down-
regulated upon Müller cell activation, potentially reducing death receptor signaling and
consequently increasing the cellular viability of Müller cells. In line with the predicted
pathway of miR-152-3p, studies on Müller cell proliferation have emphasized the necessity
of PI3K/AKT for robust Müller glial proliferation [44,50]. Furthermore, another predicted
signaling pathway (TGF-β2) was demonstrated to be upregulated by Müller-cell-related
glia [51]. MiR-196-5p was also demonstrated to suppress Müller cell migration and pro-
liferation in the current study. However, the Gene Ontology (GO) enrichment analysis
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revealed limited related pathways (Figure 6C,D), and studies on the association between
miR-196-5p and Müller cells are limited. Nevertheless, miR-196-5p has been associated
with aberrant regulation of the PI3K/AKT signaling in lung cancer cells and the behaviors
of tumor cells, including glioma and colorectal cancer [33–35]. Transcriptome profiling of
ILM-modulated Müller cells and function analysis would further validate these results and
deepen our understanding of reactive Müller cells mediated via ILM.

The study findings suggest that miR-152-3p and miR-196-5p are associated with the
regulation of cellular proliferation, migration, or apoptosis. However, the limitations of
the current study should be acknowledged. The retina is a complex structure, and Müller
cells are just one component of it. Therefore, the results obtained may not be directly
applicable to macular holes. Laser-induced retinal injury, although commonly adopted to
establish animal models for retinal pathologies, may induce excessive inflammation and
impair choroidal perfusion beneath the lesion, which may not accurately mimic idiopathic
FTMHs [52,53]. Nonhuman primates, which more closely resemble humans, are more ideal
models for FTMH studies and can be considered in future research [11,54]. Additionally,
the identified miRNAs were not confirmed through a polymerase chain reaction in the
current study. Nevertheless, the use of specific miRNA mimics and inhibitors in Müller cell
proliferation and migration assays yielded consistent results, indicating that the identified
differentially expressed miRNAs play a role in regulating these cellular processes.

4. Materials and Methods
4.1. Cell Line

The study was performed in accordance with the ethical standards outlined in the
1964 Declaration of Helsinki. Rat Müller cells (rMC-1; #RRID: CVCL_8140) were ob-
tained from Professor Vijay Sarthy’s laboratory (Northwestern University, Evanston, IL,
USA) [55] and were cultured with Dulbecco’s Modified Eagle’s Medium and Ham’s F-12
(DMEM/F12) containing 10% fetal bovine serum (FBS), 1× penicillin–streptomycin, and
2 mM of L-glutamine (Gibco, Grand Island, NY, USA).

4.2. Cell Migration Assay

To assess the effect of ILM components on Müller cell migration, culture insert mi-
gration assays were employed (Figure 7). Six-well culture plates were coated with either
low or high concentrations of ILM components. The low-concentration group comprised
10 µg/cm2 collagen IV (Advanced BioMatrix, San Diego, CA, USA), 20 µg/mL laminin
(Sigma-Aldrich, Saint Louis, MO, USA), and 20 µg/mL fibronectin (Advanced BioMatrix,
San Diego, CA, USA), and the high-concentration group comprised 20 µg/cm2 collagen IV,
30 µg/mL laminin, and 100 µg/mL fibronectin. A two-well culture insert (ibidi GmbH,
Grafelfing, Germany) served as a barrier for cell growth and was placed at the center of
each culture plate before seeding Müller cells at a density of 106 cells/mL (70 µL volume).
Subsequently, Müller cells were cultured to 100% confluence in DMEM/F12 and 10% FBS
under standard laboratory conditions. A minimum of 24 h was allowed for adequate cell at-
tachment before carefully removing the culture insert, creating two square-shaped 500 µm
cell-free gaps. Baseline images of the cell-free gaps were captured using a microscope
(TS100, Nikon, Tokyo, Japan) equipped with a digital camera (DS-Fi1, Nikon, Tokyo, Japan),
and these images were marked with a colored pen at the back of the plates. After 24 h,
with the use of the same settings, the migration of Müller cells into the cell-free area was
imaged. An imaging software (PhotoImpact v8.0, Ulead Systems, Taipei, Taiwan) was used
to evaluate the cell-covered area in the photographs, and the percentage of migration was
calculated by dividing the cell migration area at 24 h by the baseline cell-free gap area.
Six replicates were performed in each group.
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miRNA profiling was performed on the cultured Müller cells obtained from the aforemen-
tioned migration assay. Total RNA was extracted and purified using the TRIzolTM Plus 
RNA Purification Kit (Thermo Fisher Scientific, Waltham, MA, USA) in accordance with 
the manufacturer’s instructions. Subsequently, the miRNA landscape was probed using 
miRNA microarrays (Applied Biosystems GeneChip miRNA 4.0 Array, ThermoFisher Sci-
entific, Waltham, MA, USA; #902412) for the control group (n = 2), low-concentration 
group (n = 2), and high-concentration group (n = 2) per the standard manufacturer’s 

Figure 7. Illustration of the assays conducted in the current study. The cell culture plates were first
coated with either low or high concentrations of internal limiting membrane components, including
collagen IV, laminin, and fibronectin. Subsequently, migration assays are conducted using Müller cells
collected from the migration assays. The Müller cells are then subjected to microRNA sequencing.
The obtained microRNA profile is analyzed and clustered through principal component analysis
(PCA), and volcano plots are generated. Finally, proliferation and migration assays are conducted
using microRNA mimics and/or inhibitors.

4.3. RNA Purification and MiRNA Profiling

To investigate the regulatory changes in Müller cells induced by ILM components,
miRNA profiling was performed on the cultured Müller cells obtained from the aforemen-
tioned migration assay. Total RNA was extracted and purified using the TRIzolTM Plus
RNA Purification Kit (Thermo Fisher Scientific, Waltham, MA, USA) in accordance with
the manufacturer’s instructions. Subsequently, the miRNA landscape was probed using
miRNA microarrays (Applied Biosystems GeneChip miRNA 4.0 Array, ThermoFisher Sci-
entific, Waltham, MA, USA; #902412) for the control group (n = 2), low-concentration group
(n = 2), and high-concentration group (n = 2) per the standard manufacturer’s protocol. The
raw microarray datasets were analyzed using the Applied Biosystems Transcriptome Anal-
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ysis Console 4.0, and miRNA expression levels were summarized using the “RMA+DABG
(Rat Only)” algorithm. The resulting datasets were employed for PCA and clustering.
The differentially expressed miRNAs between the control and the low/high-concentration
groups were identified based on a p value of <0.05 and an absolute fold change of >1.5.

4.4. Transfection of MiRNA Mimics and Inhibitors Followed by Migration Assay

To proceed with transfection, several differentially expressed miRNAs were selected,
and synthetic mimics and inhibitors were used (Table 1). First, 3.0 µL (10 µM) of miRNA
mimics/inhibitors (Biotools, Taipei, Taiwan) and 9.0 µL of transfection reagent (Lipofec-
tamine RNAiMAX Reagent, ThermoFisher Scientific, Waltham, MA, USA) were individu-
ally diluted in 150 µL of F12-serum-free medium. Subsequently, the two solutions were
combined and incubated at room temperature for 5 min, resulting in the formation of
300 µL of miRNA mimics/inhibitors–lipid complex.

Table 1. Sequence of the synthetic microRNA mimics.

MicroRNA Sequence

rno-miR-196a-5p UAGGUAGUUUCAUGUUGUUGGG
rno-miR-152-3p UCAGUGCAUGACAGAACUUGG
rno-miR-132-3p UAACAGUCUACAGCCAUGGUCG

rno-miR-146b-5p UGAGAACUGAAUUCCAUAGGCUGU

Next, the cell migration assay was performed per the aforementioned procedure,
but with the following modifications: Müller cells were cultured to 60–80% confluence
in DMEM/F12 and 10% FBS in 6-well plates without the ILM component coatings. Sub-
sequently, 250 µL of the miRNA mimics/inhibitors–lipid solution was added per well in
the experimental group. In the vector control group, the diluted transfection reagent was
added alone to the culture plate without miRNA mimics/inhibitors. Six replicates were
performed in each group. Following transfection, an additional 1–3 days of incubation
were allowed to reach 100% confluence before conducting the cell migration assay.

4.5. Cell Proliferation Assay

To further assess the effect of miRNA mimics and/or inhibitors on Müller cell prolif-
eration, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay
with water-soluble tetrazolium-1 (WST-1) was used. Ninety-six-well plates were used
and filled with culture medium (DMEM/F12 and 10% FBS) along with either 10 µg/cm2

collagen IV + 20 µg/mL laminin + 20 µg/mL fibronectin (low-concentration group) or
20 µg/cm2 collagen IV + 30 µg/mL laminin + 100 µg/mL fibronectin (high-concentration
group) or culture medium only (control group). Müller cells at a density of 1 × 104 per
plate were seeded and allowed to proliferate at 37 ◦C for 24 h. Subsequently, the cells
were rinsed three times using phosphate-buffered saline, and excess solution was removed.
Next, 10 µL of WST-1 and 100 µL of culture medium (10% FBS and DMEM/F12) per well
were added. The cells were then incubated in a humidified incubator for 60 min. Dur-
ing this incubation period, WST-1 was cleaved with mitochondrial dehydrogenase inside
live Müller cells, forming formazan dye. This dye exhibits quantifiable absorbance at a
wavelength of 450 nm, serving as a proxy for the number of metabolically active cells. An
immunosorbent assay reader (VERSAmax, Molecular Devices, Sunnyvale, CA, USA) was
employed to measure the absorbance of the cultured cells against a background control.
Six replicates were performed in each group.

4.6. Target Gene Prediction and Gene Ontology Enrichment Analysis

To identify potential target genes of miR-152-3p and miR-196-5p, analyses were con-
ducted using TargetScan and miRDB [56,57]. The predicted targets were determined by the
intersection of results from both algorithms and were subsequently subjected to further
analysis using R and the clusterProfiler package [58,59]. Gene function and pathway infor-
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mation were assessed using the KEGG and Reactome [60–62]. The significance criterion for
target gene identification was set at p < 0.05.

4.7. Statistical Analyses

The data obtained from the cell proliferation and migration assays were analyzed using
Excel (version 16.7; Microsoft, Redmond, WA, USA). Continuous variables were compared
using an independent t test, and a p value of <0.05 was considered statistically significant.
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