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Abstract: The human stress hormones catecholamines play a critical role in communication between
human microbiota and their hosts and influence the outcomes of bacterial infections. However, it is
unclear how M. tuberculosis senses and responds to certain types of human stress hormones. In this
study, we screened several human catecholamine stress hormones (epinephrine, norepinephrine, and
dopamine) for their effects on Mycobacterium growth. Our results showed that epinephrine signifi-
cantly stimulated the growth of M. tuberculosis in the serum-based medium as well as macrophages.
In silico analysis and molecular docking suggested that the extra-cytoplasmic domain of the MprB
might be the putative adrenergic sensor. Furthermore, we showed that epinephrine significantly
enhances M. tuberculosis biofilm formation, which has distinct texture composition, antibiotic resis-
tance, and stress tolerance. Together, our data revealed the effect and mechanism of epinephrine on
the growth and biofilm formation of M. tuberculosis, which contributes to the understanding of the
environmental perception and antibiotic resistance of M. tuberculosis and provides important clues for
the understanding of bacterial pathogenesis and the development of novel antibacterial therapeutics.
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1. Introduction

Tuberculosis (ITB), caused by Mycobacterium tuberculosis (M. tuberculosis), is the second
leading infectious disease after COVID-19. The emergence of drug-resistant TB, especially
multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB), is consid-
ered the greatest obstacle to global TB control. People infected with M. tuberculosis have a
5-10% lifetime risk of falling ill with TB. Those with compromised immune systems, such
as people living with HIV and malnutrition, have a higher risk of falling ill [1].

Stress impairs major immune functions through multiple pathways, consequently af-
fecting the secretion of the neuroendocrine hormones glucocorticoids and catecholamines [2].
Stress-induced catecholamines, epinephrine (Epi), norepinephrine (NE), and dopamine
(Dop), affect the homeostasis of the body and influence the course of numerous diseases [3].
It has also been demonstrated that stress-induced catecholamines influence bacterial growth
and virulence, thereby affecting their interaction with the host and the outcomes of bacterial
infections [4-6]. The interaction of gut bacteria with stress hormones can stimulate the
growth, motility, virulence, and/or biofilm formation of pathogens such as Escherichia coli,
Salmonella spp., Salmonella Enteritidis, and Yersinia ruckeri [7-10].
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When residing within host niches, bacteria could employ an array of molecular sen-
sors to adapt to their environment changes [11,12]. While invading the host, bacteria
sense these hormones through catecholamine receptors [5]. As an intracellular bacterium,
M. tuberculosis encounters various chemical signals including catecholamines. Previous
studies have shown the effects of some hormones on the pathogenicity and growth of M.
tuberculosis inside an infected host. For example, sexual hormones substantially modify
the host immune system activity and influence the course of experimental pulmonary
TB [13]. Endocrine hormones were found to modify the cellular immune responses of TB
patients [14]. Cortisol and/or dehydroepiandrosterone (DHEA) modify the immunomodu-
latory capability and intracellular bacterial growth of THP-1-derived macrophages infected
with M. tuberculosis [15]. However, the effect of catecholamines on M. tuberculosis and the
underlying mechanism remain elusive.

In the current study, we investigated the effect of catecholamines on the growth,
biofilm formation, and antibiotic and stress tolerance of M. tuberculosis and deciphered the
underlying mechanism.

2. Results
2.1. Epinephrine Stimulates M. tuberculosis Growth In Vitro

Catecholamine stress hormones can significantly influence the growth and behavior of
various bacteria [9,16-18]. To investigate the effect of catecholamines on the growth of M.
tuberculosis or M. smegmatis, we incubated M. tuberculosis or M. smegmatis with epinephrine
(Epi), norepinephrine (NE), or dopamine (Dop) and examined the ODgponm (Figure 1A).
The results showed that the in vitro growth of M. tuberculosis was significantly increased
in the presence of Epi, but not in the presence of NE and Dop, as compared to the vehicle
treatment ( Figures 1B and S1A,B). Of note, none of these three hormones showed significant
effects on the growth of M. smegmatis in vitro (Figures 1C and S1C).

(A) M. tub%rrcu/osis © M. smegmatis
M. smegmatis L 9] Ctrl ns
rm
o
(000000000000 P e
4000000000 000| ¢ 1.0 s
screening 3000000000000 §
el LI000000000000| &
5000000000000 8 ML
1000000000000 0.54
Epi NE Dop ctllQOO0000000000 &
Bk OO 0000000000 —
0.0 T
0 1 2 3
(B) 1.8+ M. tuberculosis Pays
ctr . (D)
1.54 Epi L Survival assay
e 400
124 ik Ctr.| fran—
£ a000]  EPI
3 0.9 e 2 o
8 — g 200 Kok
0.6 *x L
)
ns 100
0.34 nNs
L
0 v x
00— T 3
0 A @ & 4 > 6 “ 8 Days post infection
Days Y

Figure 1. Epi stimulates M. tuberculosis H37Ra growth in vitro. (A) Flow chart of the effect of
catecholamine stress hormones on the growth of M. tuberculosis and M. smegmatis. (B) Effects of
Epi on the growth of M. tuberculosis on serum-7H9 medium. (C) Effects of Epi on the growth of
M. smegmatis on serum-7H9 medium. (D) Effects of Epi on M. tuberculosis CFU in THP-1 cells.
PMA-primed THP-1 cells were pretreated with 2 uM Epi or vehicle control for 24 h, challenged
with M. tuberculosis (MOI = 3) for 6 h, and then treated with DMSO or epinephrine for 12 h and
3 days, respectively. The intracellular viable bacilli were determined by CFU at the indicated time.
*2x p <0.0001; **, p < 0.01; ns, not significant (two-way ANOVA). Data are representative of three
independent experiments with three biological replicates (mean + SEM).
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Next, we tested the effect of Epi on intracellular M. tuberculosis growth by performing
a survival assay. We observed that the viable M. tuberculosis was significantly increased
in Epi-treated macrophages compared to the vehicle control (Figures 1D and S1D). Cell
viability was measured by MTS, which showed a significant difference between vehicle
and Epi treatment (Figure S1D). These data indicated that Epi has a positive effect on the
growth of M. tuberculosis in vitro and in macrophages.

2.2. MprB Is Involved in the Regulation of M. tuberculosis Growth In Vitro by Epi

MprAB two-component systems (TCSs) are involved in sensing external environmen-
tal signals and controlling stress response in mycobacterial species [19,20]. We hypothesized
that M. tuberculosis equips some proteins to sense Epi. Molecular docking analyses were
performed to predict the binding sides between MprB and Epi. Our results show that MprB
is able to bind to Epi (Figure 2A), suggesting that MprB might be the potential sensor of Epi.
Further, we overexpressed mprB in M. tuberculosis and M. smegmatis mc? 155, respectively,
and examined the growth of bacteria with or without Epi exposure in vitro. Our results
showed that the overexpression of mprB significantly enhanced the growth of M. smegmatis
but not that of M. tuberculosis with the treatment of Epi in comparison to the wild-type
strain (Figure 2B,C). We then knocked down mprB from M. tuberculosis (mprBXP) and found
that the Epi-treated mprBXP strain reduced the growth of M. tuberculosis compared to the
Epi-treated wild-type strain (Figures S1 and S2). These results suggest that M. tuberculosis
mprB might be the putative adrenergic sensor.
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Figure 2. MprB is involved in regulation of M. tuberculosis growth in vitro by Epi. (A) Docking of Epi
to M. tuberculosis MprB. (B) Effect of 2 uM of Epi on the growth of M. smegmatis overexpressing mprB.
(C) Effects of 2 uM of Epi on the growth of M. tuberculosis overexpressing mprB. ****, p < 0.0001, ns,
not significant (two-way ANOVA). Data are representative of three independent experiments with
three biological replicates (mean + SD).

2.3. Epi Stimulates M. tuberculosis Biofilm Formation

Catecholamine hormones are reported to enhance biofilm formation [21] and antibiotic
resistivity in some bacteria [22]. Thus, we investigated the role of Epi on the biofilm
formation of M. tuberculosis. Our data showed that when exposed to Epi, M. tuberculosis
grew faster than the vehicle-treated bacteria and significantly increased the absorbance
of crystal violet at ODggonm (Figure 3A,B), indicating that Epi stimulates M. tuberculosis
biofilm formation. Next, the biofilms were analyzed under a scanning electron microscope
(SEM), which revealed a bunch of bacteria embedded in biofilms with the treatment of Epi.
As shown in Figure 3C, the Epi-induced biofilm was more compact and smoother than the
vehicle-treated bacteria.

The hallmark of biofilm is the self-production of the extracellular polymeric substance
(EPS), mainly composed of exopolysaccharides, lipids, secreted proteins, and extracellu-
lar DNAs [23]. To further analyze the biochemical compositions of the Epi-induced M.
tuberculosis biofilm, we stained the biofilm with Calcofluor white, Nile red, propidium
iodide (PI), SYPRO Ruby, and Texas Red for carbohydrates, lipids, extracellular DNA,
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proteins, and polysaccharides, respectively. As shown in Figure 3D, more carbohydrates,
lipids, proteins, and polysaccharides were observed in the Epi-induced biofilm than in the
vehicle control bacteria. These data demonstrated that Epi-induced M. tuberculosis biofilm
comprises textures and compositions.
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Figure 3. Epi affects M. tuberculosis biofilm. (A) Exponential cultures of M. tuberculosis were exposed
to 2 uM of Epi for 1 week. (B) CV assays were performed to quantitate M. tuberculosis biofilms. The
data are represented as mean =+ SD. Statistical significance was determined using Student’s ¢ test.
**,p <0.01. (C) M. tuberculosis biofilms were developed in the serum-7H9 medium. SEM images are
shown at x3000 (upper) and x10,000 (bottom). (D) Characterization of Epi-induced biofilm matrices
in M. tuberculosis. M. tuberculosis carrying eGFP were subjected to 2 uM of Epi for 1 week and then
stained with Calcofluor white (for carbohydrates), Nile red (for lipids), PI (for eDNA), SYPRO Ruby
(for proteins), and Texas red (for polysaccharides), respectively. Cultures were then analyzed using
CLSM. All data are representative of three independent biological experiments performed in triplicate.
Scale bars in (D) indicate 50 um. The data are represented as mean + SEM. Statistical significance was
determined using Student’s ¢ test. ****, p < 0.0001; ***, p < 0.001; **, p < 0.01; ns, not significant.

2.4. Epi Enhances M. tuberculosis Antibiotic Resistivity and Stress Tolerance

To further investigate the difference in the biochemical contents between M. tuber-
culosis treated with/without Epi, we performed metabolite analyses. Our data revealed
59 metabolites with significant differences between the control and M. tuberculosis exposed
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to Epi (Figure 4A and Table S1), of which 29 metabolites showed higher abundance in
Epi-treated bacteria (Figure 4B). KEGG enrichment demonstrated that the different metabo-
lites mainly consisted of DNA, RNA, and amino acid metabolism (Figure 4C). Of note,
3',5'-Cyclic diGMP (¢cGMP) (KEGG C16463) participating in the two-component system
and biofilm formation, Cyclic GMP (KEGG C00942) participating in purine metabolism,
cyclic GMP-AMP (KEGG C20640) participating in the cytosolic DNA-sensing pathway, and
UDPMurAc(oyl-L-Ala-D-gamma-Glu-L-Lys-D-Ala-D-Ala) (KEGG R05629), UDP-MurNAc-
L-Ala-gamma-D-Glu-L-Lys (KEGG C05892), UDP-MurNAc-L-Ala-D-Glu (KEGG C00692),
UDP-MurNAc, UDP-MurNAc-L-Ala-D-Glu-6-carboxy-L-Lys-D-Ala-D-Ala (KEGG C04882),
and UDP-MurNAc (KEGG C01050) participating in peptidoglycan biosynthesis were sig-
nificantly more abundant in the Epi-treated M. tuberculosis (Figure 4D).
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Figure 4. Different metabolome between Epi-treated and vehicle-treated M. tuberculosis. (A) Heat
map and clustering presenting metabolomic profiles of Epi-treated and vehicle-treated M. tuberculosis.
(B) Volcano plot indicating significant up-regulated (red) and down-regulated (blue) metabolites from
LC-MS-based metabolomics data. Red and blue dots indicate metabolites with higher abundance
in Epi-treated and vehicle-treated bacteria, respectively. (C) KEGG enrichment of metabolites that
had significant change between Epi-treated and vehicle-treated M. tuberculosis. The red bar indicates
metabolites with higher abundance in Epi-treated bacteria-enriched pathways and the blue bar
indicates metabolites with higher abundance in vehicle-treated bacteria-enriched pathways. p values
of each enriched pathway were marked at the end of the bar, while the length of the bar indicated the
number of enriched metabolites in each pathway. (D) The network between up-regulated metabolites
with KEGG pathways. Each green node represented a pathway and each circle edge indicated
enriched metabolites; foldchange (Epi-treated vs. vehicle-treated) was illustrated with the color of
the circle node, the edge between the nodes indicating the belonging of metabolites to the pathway.



Int. . Mol. Sci. 2023, 24, 17370

6 of 13

Peptidoglycan biosynthesis is organized into networks with varying drug suscep-
tibility [24]. Moreover, the metabolites involved in the biosynthesis of cofactors and
vancomycin resistance are highly abundant in Epi-treated bacteria. As these metabolites
are associated with bacterial drug resistance and biofilm formation [25], we then performed
drug susceptibility analysis with the treatment of different concentrations of drugs. Our
data demonstrated that the ODsygnm of Epi-treated M. tuberculosis was significantly in-
creased compared to the control bacteria when incubated with INH, RIF, and Bedaquiline
(Figure 5A—C), indicating the Epi-induced biofilm formation facilitates M. tuberculosis drug
tolerance. Furthermore, we investigated the role of Epi-induced biofilm formation in
stress tolerance, such as 0.1% SDS, 10 mM H;,0,, low pH (pH 4.5), and 5% ethanol. Our
data showed that the ODs7ony, of Epi-treated M. tuberculosis was significantly higher than
that of the vehicle control when incubated with SDS, H,O,, and ethanol, but not pH
4.5 (Figure 5D). Together, these findings indicated that Epi induces antibiotic and stress
tolerance in M. tuberculosis.
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Figure 5. Epi enhances M. tuberculosis antibiotic resistivity and stress tolerance. (A-C) M. tuberculosis
biofilms were treated with INH (A), RIF (B), and Bedaquiline (C) at 0%, 1x, 5x, and 10x MIC for
72 h, respectively, and then assayed by drug susceptibility analysis. (D) Effects of Epi on the in vitro
M. tuberculosis stress tolerance. The data are represented as mean + SEM. Statistical significance was
determined using two-way ANOVA. ns, not significant; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. All
data are representative of three independent biological experiments performed in triplicate.

3. Discussion

The disturbance of hormonal homeostasis occurs during TB and has a significant
impact on the host’s immune system. The elevated level of stress hormones negatively
regulates the immune system and increases the risk of infection [2]. Despite disturbing the
immune system, stress hormones also influence the pathogenicity and survival of microbes
inside the host [26-28]. In the current study, we proved for the first time that catecholamine
hormones such as Epi affected the growth of M. tuberculosis in both serum-based media
and macrophages (Figure 1). In-silico analysis suggested that MprB may be responsible
for sensing catecholamines. This hypothesis was supported by the overexpressing mprB
in M. smegmatis, leading to increased responsiveness to Epi. However, we did not find
any significant difference between the wild-type and mprB overexpressed M. tuberculosis
strains upon treatment with the Epi (Figure 2). We speculate that this may be due to
the hysteresis nature of the MprAB system in M. tuberculosis [29]. We tried to knock
out mprB from M. tuberculosis but failed due to its growth essentiality. We then tried to
knock down mprB from M. tuberculosis (mprBXP) and examined whether Epi promotes M.
tuberculosis proliferation through mprB. The Epi-treated mprBXP strain reduced the growth
of M. tuberculosis compared to the wild-type strain, but Epi still promoted the growth of
the mprBXP strain on day 6 and day 8. The possible reason is that the function of mprB is
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compensated by other genes or the poor knockdown effect (~20%, Figure S2). Therefore,
it would be important to further confirm the adrenergic sensors for catecholamines and
underlying mechanisms.

We found that Epi can also affect the extracellular matrix of M. fuberculosis, which was
validated by biofilm CV assay and SEM (Figure 3). Our metabolome data suggested distinct
metabolites spectra between M. tuberculosis treated with/without Epi: 3',5'-Cyclic diGMP
were found to have significantly higher abundance in the Epi-treated bacteria (Figure 4A,B);
3’5 -Cyclic diGMP could activate the production of adhesins and extracellular matrix
products, leading to the formation of biofilm in P. aeruginosa [30] and V. cholerae [31]. This
suggested that Epi treatment might induce the production of 3,5'-Cyclic diGMP, which
increases the biofilm formation of M. tuberculosis. Mycobacterial biofilm mainly contains
mycolic acids (lipids), proteins, eDNA, and polysaccharides [32,33]. The composition of the
biofilms affects the texture and stability of biofilms [34]. Thus, we applied different dyes to
stain different constituents of the biofilm and found more carbohydrates, lipids, proteins,
and polysaccharides in the Epi-induced biofilm using CLSM, which was consistent with
our metabolite analysis (Figures 3D and 4). It has been demonstrated that biofilm protects
bacteria against environmental stress such as cell envelope integrity [35], oxidation [36], and
antibiotic resistance [37,38]. The increased polysaccharides and lipids may be responsible
for producing the drug tolerance phenotype in Epi-treated bacteria. In line with this, we
found that Epi-treated bacteria were more resistant to antibiotics, SDS, H,O,, and ethanol
(Figure 5), of which the mechanisms need to be further investigated. Moreover, we observed
this phenomenon in attenuated the M. tuberculosis H37Ra strain, and this phenomenon
may be different in different strains [39]. Our data suggest that the application of quorum-
sensing inhibitors to increase biofilm susceptibility to antibiotics may be a potential strategy
to address Epi-induced M. tuberculosis biofilm formation.

In conclusion, our data showed that catecholamine Epi enhances M. tuberculosis growth
in serum serum-based media and affects the extracellular matrix of M. tuberculosis. Further
work needs to be conducted to elucidate the effect of catecholamines, especially Epi, on M.
tuberculosis in a suitable animal model and the detailed mechanisms. Together, our data
contribute to the understanding of the environmental perception and antibiotic resistance
of M. tuberculosis.

4. Materials and Methods
4.1. Bacteria Strains, Growth Conditions, and Reagents

Moycobacterium tuberculosis (M. tuberculosis) H37Ra and Mycobacterium smegmatis (M.
smegmatis) mc? 155 were cultured at 37 °C under static conditions in Middlebrook 7H9 broth
(Becton Dickinson, Bergen County, NJ, USA, 271310) supplemented with 10% oleic albumin
dextrose catalase (OADC, Becton Dickinson, NJ, USA), 0.05% Tween 80, and 0.5% glycerol
or on solid Middlebrook 7H11 agar plates (Becton Dickinson, NJ, USA) supplemented
with 10% OADC and 0.5% glycerol. When required, a final concentration of 25 ng/mL
kanamycin was added to the medium.

For checking the effects of hormones on the growth of M. tuberculosis or M. smegmatis,
bacteria were treated according to the procedure described previously [40]. Briefly, bacterial
cultures from the logarithmic phase were sub-cultured in Middlebrook 7H9 broth supple-
mented with 10% OADC, 0.5% glycerol, 10% fetal bovine serum (FBS), and 10 nmol/L
ascorbic acid (serum-7H9) and the ODggonm Was adjusted to ~0.1. The bacterial culture was
left untreated (blank control) or exposed to 2 uM of epinephrine (Epi, Sigma, Darmstadt,
Germany, E4642), norepinephrine (NE, Aladdin, Shanghai, China, N107258), or dopamine
(Dop, Sigma, Darmstadt, Germany, H8502), respectively. DMSO-treated bacteria were used
as a control.

For the in vitro bacterial growth assay, bacteria were cultured in T25 polystyrene flasks
with serum-7H9 broth and the initial ODgppnm Wwas adjusted to ~0.1. For M. tuberculosis
H37Ra, bacterial ODgponm was measured daily for 8 days and CFU was measured at day
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0, day 4, and day 8. For M. smegmatis mc? 155, bacterial ODggonm Was measured daily for
3 days. All samples and experiments were performed in triplicate.

4.2. Colony-Forming Unit (CFU) Assay

The human monocytic leukemia cell line THP-1 (ATCC, TIB-202) was cultured in a
RPMI-1640 medium supplemented with 10% FBS, 100 U/mL penicillin, and 100 pg/mL
streptomycin at 37 °C in 5% CO,. Then, 10° cells per well were seeded in 24-well plates and
were differentiated for 24 h by supplementing 40 ng/mL phorbol 12-myristate 13-acetate
(PMA) at 37 °C in 5% CO,. The cells were infected with M. tuberculosis H37Ra (MOI = 3)
for 6 h and then washed thrice with pre-warmed PBS and supplied with a fresh medium
with 5% FBS containing amikacin (50 ug/mL) for 1 h to eliminate the extracellular bacteria
(referred to as day 0). Cells were then incubated with the fresh RPMI-1640 medium in the
presence or absence of 2 uM of Epi. The medium was changed every 12 h. The infected
cells were lysed at indicated time points using 0.5 mL of sterile 0.1% Tween 80 in water,
and viable M. tuberculosis was enumerated by 10-fold serial dilution of lysates and plating
in triplicate over 7H11 agar plates. Plates were incubated for 3 weeks and colonies were
quantified.

4.3. Construction of the mprB Overexpressing Strain of M. tuberculosis H37Ra and M. smegmatis
2
mc* 155

mprB (Genebank NC_000962.3) was amplified using primers mprB-F (5'-CAGAATTCAT
GTGGTGGTTCCGCCGCCG-3') and mprB-R (5'-CTCAGTCCACGCGCGCAACCTAGAGAT
CTCG-3') and cloned into vector pMV261-psmyc. The plasmid was electro-transformed
into M. tuberculosis H37Ra or M. smegmatis mc? 155 and cultured on 7H11 agar plates
containing 25 ug/mL kanamycin. The empty pMV261-psmyc vector was used as the vector
control.

4.4. Construction of the mprB Knock down Strain of M. tuberculosis H37Ra

The mprB gene was knocked down in M. tuberculosis H37Ra by the Cas 10 RNA interfer-
ence method [41]. The downregulation of mprB was confirmed by gRT-PCR using primers
qPCR-mprB-F (GTGATCCGTGGCGAGTTGTTCAT) and qPCR-mprB-R (TGCTTCGGTGGG
CTTGAGACTT) (Figure S2A).

4.5. Molecular Docking

Discovery Studio 3.1 (Accelrys Co., Ltd., San Diego, CA, USA) access was provided
by the Huazhong Agricultural University (Wuhan, China). The M. tuberculosis Rv(0982
MprB (PDB code: 6BLK) crystal structures were downloaded from RCSB Protein Data
Bank (https://www.rcsb.org) (accessed on 11 June 2020). Hybridization states, charges,
and angles were assigned in the protein structure with missing bond orders and explicit
hydrogen atoms were added at pH 7.4. The energy of the protein structure was minimized
in 200 steps of the smart minimize method. To prepare ligands, the 3D structures of
epinephrine (CID: 5816) were downloaded from the PubChem database (https://pubchem.
ncbi.nlm.nih.gov) (accessed on 6 November 2020) and optimized with Discovery Studio
3.1. LigandFit and CDOCKER Docking programs implemented in Discovery Studio 3.1
were conducted following the study by Li et al. [42].

4.6. Crystal Violet (CV) Assay of Biofilm

The CV assay of M. tuberculosis H37Ra biofilm was performed as described previ-
ously [43]. Briefly, the CV assay was performed in 24-well plates under static conditions.
Logarithmic-phase cultures of M. tuberculosis H37Ra (ODggonm ~1) were diluted 1:100 in a
serum-7H9 medium with or without 2 uM Epi. The plates were wrapped twice in parafilm
and incubated at 37 °C for about 1 week. After biofilm formation, the medium was removed
from wells by pipetting underneath the biofilm. Biofilms were dried in a biosafety cabinet
and incubated with 500 uL of 1% CV for 10 min at 37 °C. The CV was removed and the M.
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tuberculosis H37Ra biofilm was gently washed twice with PBS. The bound CV was then
extracted by a 10 min incubation with 1 mL of 95% ethanol at 37 °C. The absorption of
extracted CV was measured at A600 on a spectrophotometer in a 96-well plate.

4.7. Scanning Electron Microscopy (SEM)

The cell morphology of M. tuberculosis H37Ra biofilms present on Epi treatment was
assessed by SEM. A total of 300 pL from each sample of Epi and DMSO pretreated bacilli
cultures were seeded in 48-well plates on sterilized glass coverslips. The plates were
incubated at 37 °C for about 1 week. Then, the media were removed from each well and the
coverslips were gently washed twice with pre-warmed PBS. The coverslips were transferred
to a 2% glutaraldehyde solution and processed according to the previous study [44]. The
slides were dried with 40% ethanol followed by 60%, 80%, and 100%, put in a dry oven at
37 °C for 1 h, and then put on clean aluminum pins and immobilized with Leit-C (Sigma,
Darmstadt, Germany, 09929-30G). The pins were sputtered with Au (Agar Sputter Coater,
Agar Scientific Ltd., Stansted, GB, UK) and subjected to scanning electron microscopy (SEM,
JSM-6010LV, JEOL GmbH, Freising, Germany).

4.8. Confocal Laser Scanning Microscopy (CLSM)

M. tuberculosis H37Ra biofilms were produced on coverslips in a 24-well polystyrene
plate using the methods described above. Biofilms were stained with fluorescent dyes
such as 0.5 mg/mL Texas Red™ (ThermoFisher Scientific, Waltham, MA, USA, T1395MP),
1 mM Nile Red™ (ThermoFisher Scientific, Waltham, MA, USA, N1142), FilmTracer™
SYPRO™ Ruby Biofilm Matrix Stain (ThermoFisher Scientific, Waltham, MA, USA, F10318),
3 pug/mL Calcofluor white (ThermoFisher Scientific, Waltham, MA, USA, R40015), and
15 uM propidium iodide (PI, ThermoFisher Scientific, Waltham, MA, USA, P1304MP).
Biofilms were stained with Texas Red, Nile Red, or SYPRO Ruby for 20 min with Calcofluor
white for 30 min or with PI for 5 min. After staining, samples were washed three times
with PBS and viewed using a Nikon confocal microscope.

4.9. Metabolite Extraction

M. tuberculosis was cultured in T25 polystyrene flasks with or without Epi, as shown above.
After biofilm generation, both the control and Epi-treated cultures were centrifuged. The pellet
masses were resuspended in 1 mL of a precooled mixture of acetonitrile/methanol/H,O
(40:40:20). The suspensions were transferred to screw-headed 1.5 mL tubes and mechanical
lysis with 0.1 mm zirconia beads in a Precellys tissue homogenizer for 3 min (6500 rpm)
twice under continuous cooling at or below 2 °C. Lysates were clarified by centrifugation
and then filtered across a 0.22 pm filter. The residual protein/peptide content of metabolite
extracts (BCA Protein Assay kit; Thermo Scientific) was determined to normalize samples to
cell biomass. All data obtained by metabolomics were averages of independent triplicates.

4.10. Metabolism Data Analysis and Visualization

Liquid chromatography—-mass spectrometry (LC-MS)-based metabolomics was con-
ducted according to previous literature [45,46]. Extracted metabolites were separated on
a Cogent Diamond Hydride type C column (gradient 3) and the mobile phase consisted
of solvent A (ddH;O with 0.2% formic acid) and solvent B (acetonitrile with 0.2% formic
acid). The mass spectrometer used was an Agilent Accurate Mass 6220 time of flight (TOF)
coupled to an Agilent 1200 liquid chromatography system. Detected ions were deemed
metabolites based on unique accurate mass-retention time identifiers for masses exhibit-
ing the expected distribution of accompanying isotopologues. Metabolite identities were
searched using a mass tolerance of <0.005 Da. The relative concentration of metabolites was
determined by using a calibration curve generated with varying concentrations of chemical
standard spiked into a homologous mycobacterial extract to correct for matrix-associated
ion suppression effects. The abundance of extracted metabolite ion intensities was extracted
using Profinder 8.0 (Agilent Technologies, Santa Clara, CA, USA) and Qualitative Analysis
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6.0 (Agilent Technologies) and normalized by each sample’s protein concentration. The
clustered heat map and hierarchical clustering trees were generated using Cluster 3.0 (Stan-
ford University, Stanford, CA, USA) and Java TreeView 3.0 (Stanford University, USA). The
differential abundance of metabolites was analyzed with deseq2 [47]. Metabolic pathway
enrichment analysis was carried out using the R package FELLA [48] with the reference
data downloaded from KEGG (organism: mtu). The volcano plot was generated by R pack-
age ggplot2 [49] and ggrepel (https:/ /CRAN.R-project.org/package=ggrepel) (accessed
on 3 November 2021). The network plot of pathways and metabolites was generated by
Cytoscape [50].

4.11. Drug Susceptibility Analysis

For the drug susceptibility assay, biofilms of M. tuberculosis were grown in 96-well
polystyrene plates, each well containing 100 pL of serum-7H9 media containing a saturated
planktonic culture in the presence or absence of 2 uM of Epi. The plates were parafilm-
wrapped and incubated at 37 °C for 1 week. Epi-induced M. tuberculosis biofilms were
treated with RIF (MIC = 0.025 pg/mL), INH (MIC = 0.025 pg/mL), and Bedaquiline
(MIC =0.02 pg/mL) at 0x, 1x,5x, and 10x MIC, respectively, and then incubated for 48 h
at 37 °C. Following incubation, 20 puL of 0.02% Resazurin (sodium salt, MP Biomedicals)
was added to each of the wells of the plates and color change was monitored after incubation
of approximately 20 h at 37 °C. Experiments were performed independently three times,
each with triplicate determinations.

4.12. In Vitro Stress Susceptibility Assay

To investigate the effect of Epi on the different stress responses of M. tuberculosis,
biofilms of M. tuberculosis were grown in 96-well polystyrene plates, each well containing
100 pL of serum-7H9 media in the presence or absence of 2 uM of Epi. The plates were
parafilm-wrapped and incubated at 37 °C for 1 week. Epi-induced M. tuberculosis biofilms
were treated with 0.1% SDS, 10 mM H,O,, low pH (pH 4.5, adjusted with HCI), and 5%
ethanol, respectively, and then incubated for 48 h at 37 °C. Following incubation, 20 pL
of 0.02% Resazurin (sodium salt, MP Biomedicals, Santa Ana, CA, USA, 0219459801) was
added to each of the wells of the plates and color change was monitored after incubation of
approximately 20 h at 37 °C. Experiments were performed independently three times, each
with triplicate determinations.

4.13. Other Insilco Analysis

The M. tuberculosis target genes and proteins were identified using the online database
mycobrowser available at https:/ /mycobrowser.epfl.ch/ (accessed on 6 March 2019).

4.14. Statistical Analysis

Numerical data were analyzed and plotted by using GraphPad Prism 7.0 (La Jolla,
CA, USA) software from three independent experiments shown as mean + SD or SEM.
Evaluation of the significance of differences between groups was performed by using
two-way ANOVA or Student’s ¢ test. Statistical differences were considered significant
when p < 0.05 and the p values of <0.05, <0.01, <0.001, and <0.0001 were indicated as *, **,
** and *** in figures, respectively.

5. Conclusions

Our data revealed that epinephrine stimulates M. tuberculosis growth and biofilm
formation, which contributes to the understanding of the environmental perception and
antibiotic resistance of M. tuberculosis.

Supplementary Materials: The supporting information can be downloaded at https:/ /www.mdpi.
com/article/10.3390/ijms242417370/s1.
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