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Abstract: A large body of evidence, replicated in many mouse models of Alzheimer’s disease (AD),
supports the therapeutic efficacy of the oral mammalian target of rapamycin inhibitors (mTOR-
Is). Our preliminary data show that intracerebroventricular (ICV) administration of everolimus
(RAD001) soon after clinical onset greatly diminished cognitive impairment and the intracellular
beta amyloid and neurofibrillary tangle load. However, RAD001 shows >90% degradation after
7 days in solution at body temperature, thus hampering the development of proper therapeutic
regimens for patients. To overcome such a drawback, we developed a stable, liquid formulation of
mTOR-Is by loading RAD001 into distearoylphosphatidylethanolamine–polyethylene glycol 2000
(DSPE-PEG2000) micelles using the thin layer evaporation method. The formulation showed efficient
encapsulation of RAD001 and a homogeneous colloidal size and stabilised RAD001, with over 95% of
activity preserved after 14 days at 37 ◦C with a total decay only occurring after 98 days. RAD001-
loaded DSPE-PEG2000 micelles were unchanged when stored at 4 and 25 ◦C over the time period
investigated. The obtained formulation may represent a suitable platform for expedited clinical
translation and effective therapeutic regimens in AD and other neurological diseases.

Keywords: intracerebroventricular; mTOR; mTOR-I; rapalog; neurological disorders; neurodegeneration;
Alzheimer’s disease; DSPE-PEG2000 micelles; micellar liquid formulation; drug stabilisation

1. Introduction

Taken orally, mTOR-Is (rapamycin and its synthetic analogues, rapalogs) are pow-
erful immunosuppressant drugs that are widely used in the control of organ transplant
rejection [1]. They exert their effect on every cell in the body, without distinction, heavily
influencing their metabolism and blocking the cell cycle in the G1 phase, thus inhibiting
proliferation [2]. The latter action prevents the clonal expansion of lymphocytes, which
causes immune system (IS) suppression.

Tuberous sclerosis complex, TSC [3], is a rare inborn disorder caused by mutations in
either TSC1 or TSC2 genes (both mTOR inhibitors). It is characterised by a hyperactiva-
tion of mTOR and benign tumours in almost every organ and therefore also by cerebral
subependymal nodules and fast-growing, life-threatening neurinomas [4] called SEGAs
(subependymal giant cell astrocytomas). Despite its heavy immunosuppressive effect, and
exploiting its antiproliferative one [5], the oral administration of the rapalog everolimus
(RAD001) has been the first choice for the treatment of TSC patients since the 2010s. How-
ever, the maximum tolerated dose of RAD001 (maximal blood concentration 9–15 ng/mL)
can benefit only 40% of patients, reducing the size of SEGAs [6] and improving seizure
control [7]. In the same study, a dose that was lower (3–7 ng/mL), albeit tolerable, was

Int. J. Mol. Sci. 2023, 24, 17478. https://doi.org/10.3390/ijms242417478 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms242417478
https://doi.org/10.3390/ijms242417478
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-2750-6226
https://orcid.org/0000-0003-0280-6238
https://orcid.org/0000-0001-5043-7233
https://doi.org/10.3390/ijms242417478
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms242417478?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 17478 2 of 17

completely ineffective. Thus, the efficacy of the treatment seems to be dose-dependent, but
the drug displays a narrow therapeutic index.

Under specific conditions, rapalogs exert an immunomodulatory effect. When den-
dritic cells (DCs) are isolated and cultured in vitro with rapalogs together with an alloanti-
gen and then injected back into the bloodstream, these “rapalog-conditioned” DCs reach the
regional lymph nodes (LNs), where they stimulate the production of regulatory T lympho-
cyte clones (Tregs), inducing tolerance towards that specific alloantigen [8–13]. However,
until now, this tolerogenic effect has never been exploited through oral administration.
In preclinical experiments on mouse models of multiple sclerosis (MS) and experimental
autoimmune encephalomyelitis (EAE) [14–19], as well as in clinical trials for MS [20] and
type 1 diabetes [21], immunosuppressive, antiproliferative effects prevailed, and symptoms
reappeared shortly after the end of treatment.

In 2010 [22], a study showed that the oral administration of a high dose of rapamycin
for 10 weeks led to memory recovery in cognitively impaired 3xTg Alzheimer’s disease
(AD) mice. The 3xTg-AD mouse [23] displays clear cognitive impairment at 6 months
of age, with only sporadic beta amyloid (βA) plaques but a significant intracellular βA
load and apparent severe synaptic dysfunction. In the above study, autophagy activation
played a major role by reducing the intracellular βA and neurofibrillary tangles (NFTs)
load and restoring synaptic function. However, the severe immunosuppression caused
by the drug [1] may have helped to control the inflammatory components of the disease,
which have only recently been described [24]. Prompt cognitive recovery and severe
mTOR inhibition has also been demonstrated in other early onset (EOAD) and late-onset
Alzheimer’s disease (LOAD) mouse models upon prompt treatment for 13 to 16 weeks
after clinical onset [22,25]. With prolonged administration up to 6 months, the amyloid
angiopathy was also reduced [26,27]. All models treated with oral rapamycin received
a dose of 2.24 mg/kg/24 h for months [28]. Unsurprisingly, the role of immunosuppression
on disease recovery was not investigated, with inflammation in AD pathogenesis not
being completely understood at the time and the role of autophagy in the disease only just
emerging. Again, as in TSC, the low therapeutic index of rapalogs represents the main
obstacle preventing immediate transfer to humans, with a dose of a few mg/day being
sufficient to induce severe immunosuppression and metabolic side effects [1].

Conversely, due to there being scarce CNS-related side effects (e.g., headache and
nausea, which are rarely severe enough to compromise administration), we suggested that
local, intracerebroventricular (ICV) administration [29], despite its obvious invasiveness,
could promote rapid translation to clinics. Therefore, we administered a RAD001 solution
through ICV injection into a 3xTg-AD mouse model using previously assessed experimental
conditions [22]. Unexpectedly, the RAD001 ICV administration effectively rescued cognitive
functions and mood after a short administration and far beyond the end of treatment [30].

However, our approach was affected by the significant instability of the mTOR-Is
tested at body temperature in solution, which rapidly decayed by >90% within a week [30].

To overcome such an important issue, the development of a stable formulation of
mTOR-Is was thus required. Such a formulation could help to tailor effective therapeutic
regimens (10–15-day treatment cycles) for AD patients. Therefore, the aim of this work was
to develop and characterise a micellar delivery platform for RAD001 in vitro that is able to
enhance drug stability to overcome the above-mentioned issues that greatly limit its thera-
peutic potential. For such a purpose, we resorted to a distearoylphosphatidylethanolamine–
polyethylene glycol 2000 (DSPE-PEG2000)-based micelle delivery system. This type of
micelle is well known for its capacity to entrap and deliver a broad range of hydrophobic
drugs [31,32]. A large body of literature addressing DSPE-PEG2000 micelle use in drug
delivery exists [33–37]. Properties like a low critical micellar concentration and aggregation
number, good stability, a lean preparation process and affordability make DSPE-PEG2000
micelles a potentially good delivery platform even for RAD001. For these reasons, RAD001
was encapsulated in DSPE-PEG2000 micelles and the formulation was characterised in
terms of physical–chemical properties and stability over time in conditions relevant to
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a potential clinical application. If successful, we believe that the sustainability of the mate-
rials and processes employed as well as their recognised biocompatibility may promote
a relatively fast translation to the clinic.

2. Results

In this work, we chose to encapsulate RAD001 into a micellar formulation to overcome
the drug stability issues observed in solution that emerged in our previous work, in which
its efficacy was demonstrated in AD mice after ICV administration [30].

2.1. Validation of the HPLC Method

The HPLC method employed was validated to ensure its suitability and the stability
of the formulation. Based on preliminary observations, the method setup was chosen as
a compromise between reliability and sensitivity. For this purpose, standard solutions of
RAD001 were compared with working solutions that were employed in the stability study.
The column and elution conditions were chosen such that only a short analysis time and
low material consumption were required.

The results of the method performance are shown in Supplementary Tables S1–S4.
The method showed good sensitivity, with a limit of detection (LOD) and limit of quan-
tification (LOQ) of 0.12 ± 0.04 and 0.41 ± 0.02 µg/mL, respectively. Linearity, accuracy,
and precision were confirmed by the correlation coefficients always being >0.99 and the
lack of statistically significant differences between the standard and working solutions
(Supplementary Tables S1 and S2). Likewise, intra-day and inter-day reproducibility was
ensured with coefficients of variation below 3% and 5% in most cases for the RAD001
standard and working solutions (Supplementary Table S3). The recovery performances
were also good, with values always above 97% in all cases, with, again, no statistically
significant difference between standard and working solutions (Supplementary Table S4).
The method also had a relatively fast elution time with retention times (Rt) around 9.7 min.

The stability of RAD001 in the formulation was assessed by measuring the amount of
RAD001 degradation products. In this regard, since the drug is particularly susceptible to
oxidation [38], RAD001 was exposed to highly oxidising conditions and then analysed. The
results are shown in Supplementary Figure S1. The chromatogram of the oxidised RAD001
displays multiple peaks between 2 and 4 min, close to the solvent front, ascribable to the
more hydrophilic oxidised forms of RAD001. The comparison with the standard profile
highlights the ability of the method to discriminate between native and degraded forms of
RAD001, as evidenced by the large Rt difference between the corresponding peaks. The
chromatograms at 4, 25, and 37 ◦C recorded over time (Supplementary Figure S2) and the
estimation of the overall increase in degradation products overlapped with the RAD001
decay curve at 37 ◦C in 10% v/v DMSO/physiological solution (Supplementary Figure S3),
providing further evidence of the stability indicating features of the method employed in
this work.

2.2. Characterisation of RAD001-Loaded Micelles

Based on preliminary observations, 1/10 and 1/20 w/w RAD001/lipid ratios were
chosen to assess the conditions for the optimal loading of RAD001 into micelles. Table 1
shows that the 1/20 ratio ensured nearly complete entrapment of RAD001 in the micelles,
while at 1/10, loading efficiency (LE) was almost halved. This result confirms the ability
of DSPE-PEG2000 micelles to entrap hydrophobic drugs [31,32]. RAD001 solubility was
increased at least 40 times by encapsulation into the micelles. In fact, in line with reports
showing a solubility in water, physiological solutions, and buffers of <0.01% [39], drug
solubility was around 57 ± 3 µg/mL in physiological solution and 156 ± 9 µg/mL in
10% v/v DMSO/physiological solution at 4 ◦C (Supplementary Figure S4). The values
increased slightly to 68 ± 5 µg/mL and 181 ± 6 µg/mL, respectively, at 37 ◦C. When encap-
sulated in micelles, RAD001 reached concentrations of about 2 mg/mL in the physiological
solution at room temperature (25 ◦C).
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Table 1. Loading efficiency (LE) of DSPE-PEG2000 micelles at different RAD001 fractions in
physiological solution.

RADD001/Lipid w/w Ratio RADD001 Molar Fraction LE (%w/w) ± S.D. (n = 3)

1/10 0.29 56.4 ± 4.5
1/20 0.14 98.7 ± 2.3

The micelles were characterised in terms of size and stability in different storage media,
such as 10 mM PBS pH 7.4 and physiological solution.

The size of the micelles was consistent with a previous study that found average hy-
drodynamic diameters between 2 and 35 nm [32]. In our case, the RAD001-loaded micelles
were 14 ± 3 nm in size, only slightly larger than the empty micelles (11 ± 2 nm) (Figure 1).
This small increase can be ascribed to a loading effect. In addition, the polydispersity was
low, between 0.256 and 0.125 for both RAD001-loaded and empty micelles.
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Figure 1. RAD001-loaded micelles show homogeneous and consistent colloidal sizes. Size distri-
butions of Ev-mic obtained by photocorrelation spectroscopy in physiological solution diluted in
ultrapure water at 25 ◦C.

A short-term analysis of the stability of the loaded micelles was performed at 37 ◦C
over 21 days in two different storage media (Figure 2). The micelles were more stable in the
physiological solution as the size distribution was nearly unchanged with a non-significant
decrease in terms of mean diameter on day 21. In PBS, new peaks appeared at around 5 nm
and 450 nm. This change suggests a loss of the micelle structure as well as aggregation
with a possible release of the drug, which may also aggregate over time into larger clusters.
As a result, RAD001-loaded micelles seemed to be less stable if they were incubated in PBS.

To support this observation, the micelle preparations were assayed by means of HPLC
in the same conditions over more than 100 days of incubation. The obtained profiles con-
firmed the decay of RAD001 in PBS that started earlier than in the physiological solution
(Figure 3). RAD001 was completely lost after 40 days in PBS, while in the physiological
solution complete degradation was only recorded after 100 days. This matches the as-
sumption that the drug is progressively released early and then slowly degraded in PBS.
DSPE-PEG2000 micelles can be significantly perturbed by strong electrolytes. Such events
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are influenced by factors like lipid and ion concentrations. In particular, size increases and
critical micellar concentrations decrease with increasing ionic strength due to a stabilisation
of negatively charged phosphate groups by counterions in buffered or saline media [36,40].
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In our conditions, micelle destabilisation in PBS may occur through a perturbation of
the surface potential due the additional ions and thus increasing the tendency to aggregate
and the subsequent structural changes that may lead to drug leakage. The elucidation of
this aspect is far from the aim of this work and will require further evaluation in future
studies. Overall, our study suggests that physiological solution is the preferred storage
medium for the RAD001-loaded micelles.

2.3. Evaluation of Ev-Sol and Ev-Mic Stability

To evaluate the stability of the RAD001 in micelles (Ev-mic), samples were incubated at
4 ◦C, 25 ◦C, and 37 ◦C, and compared with RAD001 solution in 10% v/v DMSO/physiological
solution at established time points, by HPLC-UV analysis (Figure 4). At 37 ◦C. Ev-mic
showed prolonged stability that was far superior to that of Ev-sol, as reported in Figure 4A;
while Ev-sol dropped to zero at day 14, Ev-mic was undetectable by day 98. As shown in
Figure 4B,C, Ev-mic was more stable at 25 ◦C and 4 ◦C compared to Ev-sol and retaining
around 100% of the drug concentration after 98 days of incubation, while Ev-sol decayed
completely at day 35 at 25 ◦C and at day 50 at 4 ◦C.
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Figure 4. Micelles stabilise RAD001 in solution. RAD001 decay in 10% v/v DMSO/physiological
solution (vehicle) (grey) and in micelles (black) at 37 ◦C, 25 ◦C, and 4 ◦C. After 15 days at 37 ◦C, over
95% of the Ev-mic activity was still maintained, while Ev-sol decayed completely.

2.4. Toxicity of Empty Micelles

The assay was conducted using HeLa and SH-SY5Y cells, which were seeded in
a 96-well plate at a concentrations of 3000 and 6000 cells/well, respectively, and treated
for 24 and 48 h. These two cell lines were chosen as both are well established models that
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can be used to evaluate drug toxicity [41,42] and pharmacological effects [43,44]. In all of
the cellular experiments, we maintained the same difference in cell concentration, taking
into account the different replication rates between the HeLa and SH-SY5Y cells. Empty
micelles, suspended in PBS or in physiological solution, were used at final concentration of
0.2, 1, 2, 4, 8, 16, and 32× relative to the Ev micelle concentration of 5 nM (considered as
1×) (Figure 5).
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Figure 5. Micelle safety in vitro. HeLa and SH-SY5Y cells were challenged for (A) 24 h and
(B) 48 h with increasing concentrations of blank DSPE-PEG2000 micelles and analysed using the
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay. Cells were seeded
in a 96-well plate at concentrations of 3000 or 6000 cells/well, respectively, and were maintained in
culture medium (100 µL) for 24 h before the treatment.

Cell proliferation was nearly unchanged after empty micelle treatment. The same
behaviour was observed in PBS (Supplementary Figure S5).

2.5. Evaluation of Ev-Sol and Ev-Mic Stability Using Cell Cultures

To verify the greater stability of Ev-mic indicated by the HPLC analysis, Ev-sol and
Ev-mic activity was assessed using HeLa and SH-SY5Y cells (Figure 6A,B). Ev-sol and
Ev-mic, prepared in the same manner as in the stability experiment, were used at a final
concentration of 5 nM in fresh medium or after incubation at 37 ◦C, 25 ◦C, and 4 ◦C for
7, 14, 35, 50, and 77 days. The RAD001 IC50 is 1.6–2.4 nM [45], so a 5 nM concentration
seemed suitable for assessing its inhibitory activity while avoiding toxicity. The inhibition
of cell proliferation was evaluated using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-
2H-tetrazolium bromide) assay. Untreated, DMSO/physiological solution-treated (Veh),
and empty micelle-treated (Empty mic) cells were used as negative controls. Fresh EV-sol
was used as positive control. The day after the MTT treatment, cell proliferation was
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measured by spectrophotometric readings at 589 nm and 650 nm. As reported in Figure 6A,
at 37 ◦C, the Ev-mic activity was no longer detectable after 77 days, while at 25 ◦C and
4 ◦C, it remained mostly unchanged. It lasted a bit longer at 25 ◦C and 4 ◦C. Ev-sol activity
ceased at 35 and 50 days, respectively. The results obtained using the HeLa cell line were
confirmed by the analysis conducted on the SH-SY5Y cells using the same experimental
conditions (Figure 6B). At 37 ◦C, the Ev-sol activity was not detectable on the 14th day.
Therefore, consistent with the observed stabilisation of RAD001, these results demonstrated
a prolonged pharmacological activity of Ev-mic compared to Ev-sol in cell cultures.
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Figure 6. Micelles extend the activity of RAD001 in vitro. Ev-sol and Ev-mic activity on (A) HeLa
and (B) SH-SY5Y cells was measured using the MTT assay. HeLa and SH-SY5Y cells were seeded
into a 96-well plate at concentrations of 3000 cells/well and 6000 cells/well, respectively, and were
maintained in culture medium (100 µL) for 24 h before the treatment. Ev-sol and Ev-mic were
used fresh and after incubation at 37 ◦C, 25 ◦C, and 4 ◦C for 7, 14, 35, 50, and 77 days. Untreated,
DMSO-treated (Veh), and blank micelle-treated (Empty mic) cells were employed as negative controls,
while fresh RAD001 solution-treated cells (Ev-sol fresh) were used as positive controls. All treatments
were performed at the same equivalent concentration of RAD001 (5 nM). Data are representative of
three independent experiments. * p < 0.001, ** p < 0.01.
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3. Discussion

There is evidence demonstrating that a 10-to-16-week (or longer) oral administration
of rapamycin is efficacious in the recovery from cognitive decline in AD mouse models, and
it is beneficial in both EOAD and LOAD [22,25–27,30]. However, this result was obtained
by administering the drug orally at a daily dose of 2.24 mg/kg [28], which is a high dosage
compared to standard rapamycin therapies.

More than a decade after the first publications demonstrating its efficacy in mice,
a phase 1 clinical trial (NCT04200911, CARPE DIEM, https://clinicaltrials.gov/study/
NCT04200911, accessed on 12 August 2023) for oral rapamycin on already symptomatic patients
has been completed and a phase 2 study (NCT04629495, REACH, https://clinicaltrials.gov/
study/NCT04629495, accessed on 12 August 2023) is now in progress. Therefore, the
application of rapalogs to neurological disease treatment has a strong supporting rationale;
however, we believe that the systemic route may not be the best choice to ensure long-term
therapeutic effects and adherence. Even though it is hampered by unarguable invasiveness,
based on our preclinical observations, ICV administration may provide an alternative and
valuable modality to greatly enhance the efficacy and safety of treatments.

In our previous work [30], ICV administration of RAD001 increased the cerebral
drug concentration while maintaining low blood levels, and therefore reducing systemic
immunosuppression. Our results after 2 weeks of treatment matched those observed in
previous works after 10–16 weeks [22,25–27].

An elegant paper by Mohammad et al. [46] on the mechanism of action of fingolimod,
a widely used drug for MS control, may provide a reasonable explanation for our results.
They demonstrated that, in mice, there is a continuous flow of DCs patrolling the brain.
DCs enter the brain through choroid plexuses, then cross the ependymal layer, proceed
along the rostral migratory stream, and exit the brain through the lamina cribrosa, reaching
the lymphatic vessels and then the cervical LNs. Fingolimod exerts its therapeutic effect
(both in mice and in humans) by blocking DC egression from the brain, preventing them
from reaching the cervical LNs, bringing inflammatory signals and relapse. This results in
DCs gathering in the olfactory bulb.

It has been recently demonstrated that the administration of βA-specific Tregs, ob-
tained in vitro, ameliorates both the inflammatory pathology and cognitive impairment in
3XTg-AD mouse model [47]. In our case [30], a similar effect may be speculated to occur
due to a strong conditioning of the DCs by the locally administered RAD001. It is possible
that “RAD001-conditioned” DCs, after gathering and processing self-antigens (βA), mi-
grated to the regional LNs, where they found an active immune system that induced the
expansion of specific Treg clones. Unlike oral administration, in which immune cells are
blocked in the G1 phase of the cell cycle [2], we might have replicated in vivo and locally
in the CNS, the “conditioning” of DCs by RAD001, which, so far, has been only reported
in vitro [8–13]. Together with autophagy-linked βA depletion, this might help to control
the inflammation in AD [24,48–50] and restore the impaired tolerance to beta-amyloid
(Figure 7).

In this context, prolonging the treatment period could promote the improvement of
the therapeutic outcome. Unfortunately, the evident instability of rapalogs in solution
strongly limits the possibility of achieving long-term effects and establishing a suitable
therapeutic regimen. Therefore, stabilisation approaches that can significantly extend the
lifespan of rapalogs in liquid formulations, either in the body or upon storage, can drive
the development of successful clinical applications.

The choice of micellar formulations depends not only on their drug preservation capac-
ity but also on the ease of preparation, storage, and handling. These features have enabled
micellar formulations to reach phase 3 trials with high chances of market approval [51,52].

Micelles are already clinically tested to deliver anticancer drugs [53]. In particular,
DSPE-PEG2000 micelles have been found to be effective in delivering a broad range of
drugs in animal models [54–57] and RAD001 in vitro [58]. Properties such as a low critical
micellar concentration as well as small size increase the appeal of DSPE-PEG2000 micelles

https://clinicaltrials.gov/study/NCT04200911
https://clinicaltrials.gov/study/NCT04200911
https://clinicaltrials.gov/study/NCT04629495
https://clinicaltrials.gov/study/NCT04629495
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since they can enable effective drug accumulation at the site of action [31,32]. Moreover,
as also proven for RAD001 in this work, DSPE-PEG2000 micelles ensure nearly complete
entrapment of hydrophobic drugs in their core with optimal production yields.
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Figure 7. Hypothetical explanation of the prolonged recovery observed in the AD mouse model
treated with ICV everolimus [30]. On the left, a cognitively impaired 3xTg-AD mouse. On the right,
a cognitively recovered 3xTg-AD mouse. On the upper part of the figure, the in vitro production
of βA-specific Tregs is described: (A) in vitro conditioning of DCs with βA and a rapalog [8–13],
(B) injection of conditioned DCs into the bloodstream, (C) conditioned DCs migrate to regional lymph
nodes; (D) infusion into the bloodstream of specific Tregs into 3xTg-AD mouse; (E) the infusion of
βA-specific Tregs leads to improved βA tolerance and cognitive recovery [46] (green arrow), but
not to βA load reduction (red arrow). On the bottom part of the figure, the in vivo approach and
the hypothetical explanation of its rapid and prolonged efficacy are described [30,47]. (AB) The
rapalog-loaded osmotic pump is implanted into the lateral ventricle, likely leading to conditioning of
CNS-patrolling DCs; (C) conditioned DCs migrate to regional lymph nodes; (D) the treatment might
lead to in vivo βA-specific Treg production that could lead to both βA tolerance [46] (green arrow)
and to reduction of the βA load, promoting autophagy (F). The combined effect could explain the
results observed.

In our case, the obtained RAD001 micelles showed a suitable size and loading capacity
and could stabilise RAD001 over an extended period of time which is comparable to long-
term storage and prolonged therapeutic regimens. Moreover, the in vitro experiments on
HeLa and SH-SY5Y cell lines confirmed the biocompatibility of DSPE-PEG2000 (Figure 5)
as well as the stabilisation of RAD001 that correlated with the observed RAD001 decay
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over time (Figure 6). These results encourage the further development of this strategy
especially when considering the translational potential of the formulation. In this regard, it
must be stressed that the approach in this work, which influenced the choice of materials
and processes, was to keep the system as simple as possible in order to limit potential
bottlenecks in the transfer to the clinic.

Our results suggest that ICV administration of the RAD001-loaded DSPE-PEG2000
micelles may extend RAD001’s therapeutic effect compared to the solution, likely im-
proving the impact of the mTOR inhibition on patients’ quality of life and reducing the
immunosuppression and metabolic side effects.

Although invasive, ICV administration requires a minor surgical intervention, and it
is currently in clinical use to treat rare conditions [59–62]. Bacterial meningoencephalitis
that is sensitive to antibiotics that are unable to cross the blood–brain barrier and primary
cerebral lymphomas are just two examples of conditions currently being treated using
ICV therapy. Possible complications include local infection and intracerebral haemorrhage;
however, these complications only result in a temporary therapy interruption without
serious long-term effects [61].

Nevertheless, the use of ICV administration should be based on a careful risk–benefit
evaluation of the patients’ profile. In fact, this procedure can have a greater economic
impact on national health systems than more conventional routes of administration, even
though we believe that proper automation may result in minimal-risk operations that can
be performed by a general surgeon.

Through ICV administration, RAD001-loaded micelles may represent an immediately
available treatment for several forms of dementia and neuroproteinopathies [63]. This
consideration may also apply to TSC for which the oral administration of rapalogs is
already the treatment of choice. Unfortunately, 60% of patients fail to obtain control of
SEGA growth and seizures. Studies on patient cohorts suggest that rapalogs’ treatment
effect in TSC could be dose-dependent [6,7]. Therefore, local, high doses through ICV
administration might considerably improve therapy outcomes.

A recently proposed alternative strategy to ICV administration consists of a combi-
nation of a selective peripheral rapamycin inhibitor (Rapablock) and a third-generation
mTOR-I that is able cross the blood-brain barrier (BBB) (Rapalink-1) [64]. This so-called
“Shokat combination” is able to ensure the pharmacological effects on the CNS while
avoiding peripheral side effects. Nevertheless, this strategy may fail in some cases, such
as progressive autoimmune diseases, some forms of AD [65], and brain tumours [66],
where inflammation is known to alter the integrity of the BBB. In such cases, the inhibitor
Rapablock can cross the BBB and inhibit Rapalink-1 within the brain.

4. Materials and Methods
4.1. Preparation of RAD001 Stock, Standard, and Working Solutions

Everolimus (RAD001, Selleck Chemicals, Houston, TX, USA) stock solutions were
prepared by dissolving the drug in methanol (VWR, Milan, Italy) at a concentration of
1 mg/mL. Standard solutions at 10, 5, 2.5, 1.25, 0.625 µg/mL were obtained by diluting
the RAD001 stock solution in methanol. Working solutions of RAD001 were obtained
by diluting the stock solutions to a concentration of 10 µg/mL (Ev-sol) in a 10% v/v
DMSO/physiological solution. RAD001-loaded micelle (Ev-mic) working solutions were
prepared using the RAD001 extraction method described below. All solutions were pre-
pared using ultrapure water obtained by reverse osmosis (resistivity 18.2 MΩ·cm at 25 ◦C;
total organic carbon ≤ 5 ppb, Milli-Q purification apparatus, Millipore, Bedford, MA, USA).

4.2. Preparation of RAD001-Loaded Micelles

RAD001-loaded DSPE-PEG2000 (Lipoid, Steinhausen, Switzerland) micelles were
prepared by employing the thin layer evaporation method. Briefly, carefully weighed
amounts of RAD001 and lipids were dissolved in 3 mL of chloroform (Sigma-Aldrich,
Milan, Italy) in a 50 mL round flask at 1:10 and 1:20 w/w ratios. The solvent was removed
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by gentle evaporation at room temperature (RT) under nitrogen stream and vacuum dried
for 1 h to eliminate any residual solvent traces. The thin film obtained was reconstituted
in an exact volume (3 mL) of physiological solution by slowly adding the solvent and
vortexing. After complete reconstitution, a clear micellar suspension (Ev-mic) was obtained
and was stored at 4 ◦C until use.

4.3. HPLC Method Validation and RAD001 Quantification
4.3.1. HPLC Method Validation

The HPLC method employed in this work was assessed following the International
Conference of Harmonization (ICH) guidelines. Linearity, precision, accuracy, recovery,
limit of detection (LOD), and limit of quantification (LOQ) were assessed in accordance
with recommendations [67–69]. The method was also tested for its capacity to detect
RAD001 degradation products. For this purpose, RAD001 was oxidised by exposure to
a 30% v/v H2O2 solution for 24 h at 37 ◦C and then analysed by HPLC [68].

The HPLC instrument was a Portlab STAYER HPLC system equipped with a UV
detector, parallel pump, and Triathlon autosampler (Portlab, Rome, Italy). The HPLC
conditions were based on a published work with some modifications [70]: isocratic mode
with acetonitrile/water (60:40, v/v), eluted at 0.8 mL/min, 15 µL injection volume, Zorbax
C8, 4.6 mm ID × 250 mm, 5 µm column (Agilent, Milan, Italy) equilibrated at 55 ◦C. UV
detection was performed at 278 nm. The RAD001 calibration curves were generated using
dilutions of stock solutions, which were prepared as described above. All measurements
were performed in triplicate.

4.3.2. RAD001 Quantification

The drug was quantified using the validated HPLC method. While Ev-sol working
solutions were directly subjected to analysis without further dilution, Ev-mic samples
were prepared by extracting RAD001 micelle formulations stored in the physiological
solution. A 200-fold direct dilution of the suspensions with a 1:1 DMSO/chloroform mixture
was performed before the HPLC analysis. To reduce carry-over effects and the possible
accumulation of residual lipids in the column, Ev-sol and Ev-mic samples were injected in
an alternating fashion, followed by periodic washing of the column with chloroform and
methanol. All measurements were performed in triplicate and the results are expressed as
mean ± S.D.

4.3.3. RAD001 Solubility and Micelle Loading Efficiency

RAD001 solubility was assessed in the physiological solution and 10% v/v DMSO/
physiological solution by incubating 2 mg/mL RAD001 suspensions at 4 ◦C and 37 ◦C for 2 h.

The RAD001 loaded into the micelles was measured by determining the residual
undissolved and/or non-entrapped RAD001 after hydration. For this purpose, loaded
micelle suspensions were ultracentrifuged at 50,000 rpm for 30 min at 4 ◦C using an Optima
TL ultracentrifuge equipped with a TLA-100.4 rotor (Beckman, Palo Alto, CA, USA) and
aliquots of the supernatants were diluted in DMSO and then analysed as described above.
The loading efficiency (LE) was calculated as follows:

LE(%) =
Amount of RAD001 in the centrifuged micelle suspension

Amount of RAD001 added
× 100 (1)

A further check to exclude the presence of suspended particulates was performed by
photocorrelation spectroscopy, as described below, to detect aggregates. All measurements
were performed in triplicate and the results are expressed as mean ± S.D.

4.4. Micelle Size

The size of Ev-mic and blank micelles was assessed by photocorrelation spectroscopy.
In brief, the samples were diluted with ultrapure water and analysed at 25 ◦C and the hy-
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drodynamic diameter was determined using a Nicomp 380 ZLS photocorrelator (PSS, Santa
Barbara, CA, USA) equipped with a 35 mW He/Ne laser (=654 nm) and an APD detector.

4.5. Micelle Stability

Loaded RAD001 stability was evaluated in the physiological solution and 10 mM
phosphate-buffered saline (PBS, Sigma-Aldrich, Milan, Italy), pH 7.4, as storage solutions.
The samples were incubated at 37 ◦C over 21 days and measurements were performed by
withdrawing 100 µL aliquots at established time intervals. These were diluted in ultrapure
water at RT and analysed. Changes in micelle size were monitored by photocorrelation
spectroscopy. All measurements were performed in triplicate and the results are expressed
as mean ± S.D. The RAD001 stability in micelles was assessed by HPLC as described above.
The Ev-sol working solutions and Ev-mic suspensions in the physiological solution were
incubated at 4, 25, and 37 ◦C over time and the RAD001 decay was followed until complete
degradation was achieved. All measurements were performed at least in triplicate and the
results are expressed as mean ± S.D.

4.6. Cell Cultures

Both HeLa cells (uterine cervix carcinoma cell line) and SH-SY5Y cells (neuroblastoma
cell line) were obtained from the American Type Culture Collection (Manassas, VA, USA)
and were cultured in Dulbecco’s modified Eagle’s medium (DMEM with L-glutamine)
supplemented with 10% (v/v) heat-inactivated foetal bovine serum (FBS), 100 U penicillin,
and 100 U streptomycin in a humidified incubator with 5% CO2 at 37 ◦C.

4.7. Micelle Cytotoxicity Test

The toxicity of empty micelles was evaluated using HeLa and SH-SY5Y cells and
the MTT assay. The cells were seeded into a 96-well plate at concentrations of 3000 and
6000 cells/well, respectively, and maintained in 100 µL of medium. The assay was per-
formed at 24 and 48 h after treatment. Empty micelles, suspended in PBS or in the physio-
logical solution, were used at a final concentration of 0.2, 1, 2, 4, 8, 16, or 32×, where 1× is
equivalent to the Ev-mic RAD001 concentration of 5 nM.

4.8. Functional Stability of Incubated RAD001 Micelles In Vitro

The stability of the RAD001 solution (Ev-sol) and RAD001-loaded micelles (Ev-mic)
was determined by evaluating cell proliferation after treatment. Briefly, HeLa and SH-
SY5Y cells were seeded into a 96-well plate at concentrations of 3000 cells/well and
6000 cells/well, respectively, and were maintained in culture medium (100 µL) for 24 h
before the treatment. Every condition was tested in triplicate. Ev-sol and Ev-mic were sus-
pended in cell culture medium at a final concentration of 5 nM and were used fresh or after
incubation at 37 ◦C, 25 ◦C, and 4 ◦C for 7, 14, 35, 50, and 77 days. As controls, untreated,
DMSO-treated (Veh), and empty micelle-treated (Empty mic) cells were assayed. Cell
proliferation was evaluated using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium
bromide (MTT; Sigma-Aldrich) assay according to the manufacturer’s instructions. The
cells were mixed with 10 µL MTT (0.5 mg/mL) and maintained for 4 h in a humidified
incubator at 37 ◦C. Then, 100 µL of solubilisation solution (10% SDS with 0.01 N HCl) was
added to each well. The solubilisation of formazan crystals was performed overnight in an
incubator at 37 ◦C. The following day, cell proliferation was evaluated by a Beckman Coul-
ter DTX 880 Multimode Detector (Beckman Coulter Inc., Brea, CA, USA) using a 589 nm
line and 650 nm reference.

4.9. Statistics

Student’s t-test and one- or two-way ANOVA with a Bonferroni post hoc test was
used to determine statistical significance. Significance was defined as p < 0.05. The data are
pooled results (mean ± SEM) or representative images from three experiments.
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5. Conclusions

The RAD001 entrapment in DSPE-PEG2000 micelles resulted a successful stabilisa-
tion strategy. This approach was able to produce a remarkable improvement in RAD001
stability that may promote the development of effective long-term treatment regimens for
certain neurological disorders. Previous evidence of the therapeutic potential of the local
administration of rapalogs [30], combined with the suitable features and high translatability
of the proposed technology, support the development of a therapeutic approach based
on continuous ICV infusion of mTOR-Is. Further steps have been planned to address the
therapeutic potential of our strategy in proper preclinical models.
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www.mdpi.com/article/10.3390/ijms242417478/s1.
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