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Abstract: The development of in vitro/in vivo translational methods and a clinical trial framework
for synergistically acting drug combinations are needed to identify optimal therapeutic conditions
with the most effective therapeutic strategies. We performed physiologically based pharmacokinetic–
pharmacodynamic (PBPK/PD) modelling and virtual clinical trial simulations for siremadlin, trame-
tinib, and their combination in a virtual representation of melanoma patients. In this study, we built
PBPK/PD models based on data from in vitro absorption, distribution, metabolism, and excretion
(ADME), and in vivo animals’ pharmacokinetic–pharmacodynamic (PK/PD) and clinical data de-
termined from the literature or estimated by the Simcyp simulator (version V21). The developed
PBPK/PD models account for interactions between siremadlin and trametinib at the PK and PD
levels. Interaction at the PK level was predicted at the absorption level based on findings from animal
studies, whereas PD interaction was based on the in vitro cytotoxicity results. This approach, com-
bined with virtual clinical trials, allowed for the estimation of PK/PD profiles, as well as melanoma
patient characteristics in which this therapy may be noninferior to the dabrafenib and trametinib
drug combination. PBPK/PD modelling, combined with virtual clinical trial simulation, can be
a powerful tool that allows for proper estimation of the clinical effect of the above-mentioned
anticancer drug combination based on the results of in vitro studies. This approach based on
in vitro/in vivo extrapolation may help in the design of potential clinical trials using siremadlin and
trametinib and provide a rationale for their use in patients with melanoma.

Keywords: anticancer drugs; virtual clinical trials; pharmacokinetics; pharmacodynamics; drug
combination; PBPK/PD modelling; MDM2 inhibitor; MEK inhibitor

1. Introduction

Conducting well-designed studies to establish the pharmacokinetic–pharmacodynamic
(PK/PD) relationships in animal models in a way that allows us to scale the results to
humans is a crucial element of preclinical drug development. Determining and under-
standing the relationships (or lack of them) between PK and PD significantly improves
the interpretation of drug-related data and facilitates successful translation to human
conditions [1].

The translational sciences aim to transfer results from basic science to the animal or
patient level (bench to bedside). Currently, in vitro/in vivo extrapolation (IVIVE) methods
combined with physiologically based pharmacokinetic (PBPK) modelling are often an inher-
ent element of pharmacokinetic (PK) and pharmacodynamic (PD) properties estimation in
the drug discovery and development process [2–4]. Such an approach can potentially help
implement the 3R principles (replacement, reduction, and refinement) for the ethical use of
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animals by replacing living animals and reduce the number required to obtain meaningful
PK/PD data [5].

Despite substantial progress in the development of in silico methods, the challenge of
in vitro model verification and in vitro result extrapolation to animals or humans in vivo
remains [6]. That is why studies involving animals are still irreplaceable at the preclinical
drug development level, especially in the field of oncology [7]. This situation is also caused
by the fact that some preclinical results may not directly translate to the clinic because
some in vitro systems do not fully mimic the in vivo environment. This is why further
development of in vitro/in vivo translational methods is crucial to better characterise
a clinically observed drug’s efficacy and safety and to increase the ethical usage of animals
and decrease the number of animals needed in preclinical testing programs. One alternative
way to avoid the excessive use of animals is the concept of bidirectional translational
research. Clinical and in vivo animal studies inform basic science and in vitro research,
and vice versa [8]. The translational concept of the bidirectional “learn, confirm and refine”
paradigm is adopted in the modelling and simulation (M&S) approach [9]. One of the
M&S applications that bridges the gap between in vitro and in vivo research is PBPK/PD
modelling [10,11]. The selection of sensitive cancer types usually requires preclinical
in vitro and in vivo efficacy data using indication-related cell lines or patient-derived
xenografts (PDX). Such a process demands translational studies and data modelling to
estimate effective clinical doses and dosing schedules. This is especially important for
difficult-to-treat cancer indications requiring drug combinations. The modelling of such
data is additionally complicated by the fact that there are a lack of IVIVE solutions for
drug combinations. Admittedly, there have been some attempts [12,13]; however, the
proposed clinical translational solutions were based only on the in vitro data and neglected
the animal in vivo verification context. It is also worth mentioning the concepts of tumour
static concentration and tumour static exposure developed by Cardilin et al. [14,15]. This
methodology may also aid in translational efforts for drug combinations utilising the Chou–
Talalay combination index (CI) theorem [16] and in vivo-derived data. The same group
also recently published an interesting scaling technique to predict the clinical efficacy of
drug combinations based on their efficacy in mouse xenografts [17].

Metastatic melanoma is a cancer condition that is life-threatening and difficult to
treat due to its ability to spread early and aggressively. The treatment of aggressive and
fast-spreading cancer usually requires a combination of various therapeutic options to stop
the cancer from developing further. One of the newly proposed therapeutic options is the
drug combination of siremadlin MDM2 (mouse double minute 2) inhibitor and trametinib
MEK (mitogen-activated protein kinase kinase) inhibitor. Drug combinations utilising this
class of inhibitor are currently the subject of many studies in clinical trials (clinicaltrials.gov
(accessed on 14 December 2022) identifiers: NCT02110355, NCT03714958, NCT02016729,
NCT01985191 and NCT03566485). Preclinical evidence suggests that siremadlin (previ-
ously known as HDM201) and trametinib act synergistically in melanoma [18–22]. The
mechanisms of action of both drugs (including the mechanisms influencing melanin pro-
duction [23,24], which may prevent melanoma metastasis [25,26]) are depicted in Figure S1.

Moreover, previous in vitro and in vivo data suggest that these two compounds might
synergistically interact with each other at the PK and PD levels; thus, co-administration
may result in synergistic drug–drug interaction (DDI) at the PK and PD levels, which
provides the basics for further consideration as a therapeutic option.

Recent studies showed that a tumour size change of at least 10% is a prognostic factor
and is highly correlated with the improvement of overall survival in melanoma [27,28].
Thus, it is believed that the increased antitumour activity of the siremadlin and trametinib
drug combination may contribute to increased overall survival of melanoma patients.

The main aim of this study was to establish an accurate simulation methodology for
drug combination using available in vitro/in vivo absorption, distribution, metabolism,
and excretion (ADME), and PK and PD data, to develop and optimise a PBPK/PD
model. Such a model could potentially allow for the translation of previously presented
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in vitro/in vivo findings into an in vivo human situation. This model was used to estimate
the clinical effect (tumour size reduction) of an MDM2 and MEK inhibitor combination.

The performance of virtual clinical trials (VCTs), which might be carried out on
a virtual representation of cancer patients, may lead to accurate estimations of the drug
combination’s efficacy. This can ultimately provide the rationale for using siremadlin and
trametinib in combination in clinical trials with melanoma cancer patients.

2. Results
2.1. PBPK Models (with and without PK Interaction)

The two PBPK models were developed for siremadlin. The first model with a mixed
zero- and first-order absorption mechanism (hereafter referred to as the MO model) was
originally proposed in the literature [29], and the second one was simplified to a first-order
absorption mechanism only (referred to as the FO model). Both models reasonably well
described the plasma concentration–time data for siremadlin administered daily and in
the intermittent regimens in cancer patients’ representatives, as shown in the example in
Figures 1 and S2–S4. PBPK simulations for siremadlin for all the study participants are
depicted in Figures S5–S19.
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The PBPK models developed for siremadlin indicated that the estimated area under
the curve (AUC0-inf, hereafter also referred to as exposure) and maximal concentration
(Cmax) values were accurately predicted only with the FO model. The numerical analysis
of errors (fold difference between the predicted and clinically observed values) for the
most important pharmacokinetic parameters, AUC0-inf and Cmax, showed that values
predicted by the FO model were within the 2-fold error range (0.5–2.0) of the observed
values, except the exposure predicted for a 4 mg dose (Tables 1 and 2). The exception
for a 4 mg dose was most probably caused by the fact that the observed exposure for
a 4 mg dose was not dose-proportional. The observed exposure ratio at 4 mg and 2 mg
doses (AUC 4 mg dose/AUC 2 mg dose) was 1.27, whereas the predicted exposure ratio at
those doses was dose-proportional (the AUC ratio equalled 1.96). Further analyses also
showed that the fold errors of AUC0-inf and Cmax predicted by the FO model were closer
to unity compared to those predicted by the MO model (Tables S1 and S2). Moreover,
the introduction of the FO model decreased over a 50× computation time and allowed
for model simplification with increased precision. This is why the first-order model was
selected as the absorption mechanism in the final PBPK model and was further used in the
estimation of PK interaction and in drug combination.

Table 1. Comparison of predicted vs. observed AUC0-inf for siremadlin. Population representa-
tive and total population-derived AUC0-inf parameters were generated via first-order absorption
mechanism and are presented as geometric means (%CV).

Dose (mg)

Representative
AUC0-inf
Predicted
(nM × h)

Population
AUC0-inf
Predicted
(nM × h)

AUC0-inf
Observed
(nM × h)

Representative AUC
Predicted/
Observed

Population AUC
Predicted/
Observed

1 257.90 286.40 (44.8%) 241.80 (-%) 1.07 1.18
2 515.80 537.83 (42.5%) 304.46 (31.5%) 1.69 1.77
4 1031.60 1073.86 (36.5%) 387.64 (22.0%) 2.66 2.77

7.5 1934.26 2013.49 (36.5%) 1076.86(49.8%) 1.80 1.87
12.5 3223.76 3580.00 (44.8%) 2670.28 (-%) 1.21 1.34
15 3868.52 3816.39 (40.0%) 2343.49 (71.0%) 1.65 1.63
20 5158.02 5119.24 (36.9%) 4122.18 (29.6%) 1.25 1.24
25 6447.53 6399.05 (36.9%) 4803.12 (28.3%) 1.34 1.33
50 12,895.05 13,423.28 (36.5%) 14,455.63 (25.6%) 0.89 0.93

100 25,790.10 26,846.56 (36.5%) 25,723.34 (58.5%) 1.00 1.04
120 30,948.13 29,889.60 (38.8%) 33,275.78 (62.7%) 0.93 0.90
150 38,685.16 37,968.46 (41.8%) 42,719.97 (43.2%) 0.91 0.89
200 51,580.21 51,192.34 (36.9%) 47,271.75 (56.2%) 1.09 1.08
250 64,475.26 63,698.83 (43.2%) 74,579.68 (71.2%) 0.86 0.85
350 90,265.34 89,586.57 (36.9%) 99,211.21 (34.4%) 0.91 0.90

Table 2. Comparison of predicted vs. observed Cmax for siremadlin. Population representative and
total population- derived Cmax parameters were generated via first-order absorption mechanism and
are presented as geometric means (%CV).

Dose (mg)
Representative Cmax

Predicted
(nM)

Population Cmax
Predicted

(nM)

Cmax
Observed

(nM)

Representative
Cmax Predicted/

Observed

Population Cmax
Predicted/
Observed

1 14.37 14.05 (33.6%) 14.22 (-%) 1.01 0.99
2 28.75 28.77 (27.5%) 21.61 (23.7%) 1.33 1.33
4 57.49 58.14 (27.0%) 31.69 (22.8%) 1.81 1.83

7.5 107.79 109.01 (27.0%) 70.22 (43.9%) 1.54 1.55
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Table 2. Cont.

Dose (mg)
Representative Cmax

Predicted
(nM)

Population Cmax
Predicted

(nM)

Cmax
Observed

(nM)

Representative
Cmax Predicted/

Observed

Population Cmax
Predicted/
Observed

12.5 179.64 175.62 (33.6%) 212.46 (-%) 0.85 0.83
15 215.60 209.79 (26.2%) 164.74 (56.9%) 1.31 1.27
20 266.36 278.51 (28.6%) 269.17 (20.3%) 0.99 1.03
25 359.32 348.15 (28.6%) 422.57 (27.5%) 0.85 0.82
50 718.63 726.77 (27.0%) 840.82 (13.0%) 0.85 0.86

100 1437.19 1453.48 (27.0%) 1194.25 (30.1%) 1.20 1.22
120 1724.76 1596.25 (26.2) 1871.59 (51.5%) 0.92 0.85
150 2156.00 2093.20 (25.4%) 2600.42 (27.8%) 0.83 0.80
200 2874.55 2785.12 (28.6%) 2104.39 (43.7%) 1.37 1.32
250 3593.23 3482.48 (27.4%) 3629.21 (69.5%) 0.99 0.96
350 5030.18 4873.72 (28.6%) 4066.91 (56.9%) 1.24 1.20

The PBPK model developed for trametinib properly described the plasma concentration–
time profiles in cancer patients after a single 2 mg dose and multiple (15) doses, as shown in
Figures 2 and 3. The PBPK simulations for trametinib for all study participants are depicted
in Figures S20 and S21.

Figure 2. PBPK model of trametinib after a single dose in cancer patient representative. Observed
data are presented as means from literature data (digitised from Ho et al. [30] and Ouellet et al. [31]
as indicated in Table 3).

The numerical analysis of errors (fold difference between the predicted and observed
values) for the most important pharmacokinetic parameters, AUC0–24 h and Cmax, showed
that the predicted data met the 2-fold error (range: 0.5–2.0) acceptance criteria (Table 3).

The last step of PBPK model development for siremadlin and trametinib was the esti-
mation of possible PK interaction at the absorption level using the AUC ratio relationships
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established previously in animals [19]. Plasma concentration–time profiles for siremadlin
and trametinib with and without estimated PK interaction are shown in Figures 4 and 5.

Table 3. Comparison of predicted vs. observed key PK parameters (AUC0–24 h and Cmax) for
trametinib. Population representative and population cohort-derived AUC0–24 h and Cmax parameters
were generated via first-order absorption mechanism and are presented as geometric means (%CV).

Drug Trametinib Trametinib Trametinib Trametinib

Representative
AUC0–24 h (day 1) 165.39 - - -

Population
AUC0–24 h (day 1) 170.70 (29%) - 200.76 (20%) * 109.60 (2%) **

Representative
AUC0–24 h (day 15) 570.91 - - -

Population
AUC0–24 h (day 15) 656.45 (50%) 601.24 (22%) - 586.28 (16%) **

Population
AUC ratio (day 1) - - 0.85 1.56

Population
AUC ratio (day 15) - 1.09 - 1.12

Representative
Cmax (day 1) 18.08 - - -

Population
Cmax (day 1) 18.50 (19%) - 24.44 (3%) * 10.45 (0.3%) **

Representative
Cmax (day 15) 36.44 - - -

Population
Cmax (day 15) 40.93 (36%) 36.07 (28%) - 31.67 (12%) **

Population
Cmax ratio (day 1) - - 0.76 1.77

Population
Cmax ratio (day 15) - 1.13 - 1.29

Source Current study Digitised from
Infante et al. [32]

Digitised from
Ho et al. [30]

Digitised from
Ouellet et al. [31]

* Geometric mean from digitised data. ** Geometric mean from digitised data from typical male and female with
a median body weight of 79 kg.
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The predicted changes in AUC0–24 h and Cmax for siremadlin and trametinib with
and without PK interaction for population representative are shown in Table 4. The
final siremadlin and trametinib PBPK models’ input parameters with and without PK
interactions are summarised in Tables S3–S5.

Table 4. Comparison of predicted key PK parameters (AUC0–24 h and Cmax) with and without PK
interaction for population representative for siremadlin and trametinib at the 120 and 2 mg doses
(with an initial tumour size of 6.4 cm).

Drug Siremadlin Trametinib

Dose (mg) 120 2

AUC no PK DDI 19,240.73 174.01

AUC PK DDI 21,858.34 133.15

AUC ratio (PK DDI) 1.1360 0.7652

Cmax no PK DDI 1724.96 19.02

Cmax PK DDI 2580.39 9.61

Cmax ratio (PK DDI) 1.4959 0.5051

2.2. PD (TGI) Models

The final perturbed tumour growth inhibition (TGI) model for siremadlin and trame-
tinib assumed exponential tumour growth, the Skipper–Schabel–Wilcox (log-kill) tumour-
cell-killing hypothesis, the drug effect described by the linear drug-killing model, primary
resistance to the therapy, and treatment effect delay described by the signal distribution
model with four transit compartments. Changes in the sum of the longest diameters
(SLD, hereafter also referred to as tumour size) over time in cancer population representa-
tives after treatment with siremadlin (various doses and dosing regimens) and trametinib
(2 mg dose administered daily) are presented as examples in Figures 6, 7, S22 and S23. TGI
models for siremadlin and trametinib administered in monotherapy in the cancer patient
population are depicted in Figures S24–S44. Since there was no available information about
tumour growth in the trametinib study, two TGI model variants were developed. The first
one had high tumour growth of kgh = 0.00028 1/h (Figure 8) and low tumour growth of
kgh = 0.0000261 1/h (Figure 9). For drugs administered in monotherapy, this model was
able to accurately capture the changes in tumour size over time, with a mean relative error
(RE) < 20% (except for siremadlin administered in regimen 1A with a 25 mg dose, which
was slightly over the threshold—20.06%), as shown in Table S6. The key input parameters
(with corresponding %CV calculated based on equations from [33]) for the final TGI models
for siremadlin and trametinib monotherapy are shown in Table S6.
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Figure 8. TGI model of trametinib administered daily in cancer patient representatives (n = 1) with
assumption of high tumour growth (kgh = 0.00028 1/h). Observed data are presented as medians
from literature data (data digitised from Mistry et al. [34] and Flaherty et al. [35]).

2.3. PBPK/PD Simulations for Drug Combination

The drug combination model was built based on universal TGI model principles
previously established in animals [19] and a developed TGI model for siremadlin and
trametinib. The relationships between TGI parameters for the drug combination are shown
in Tables S5 and S6. For the drug combination simulations, siremadlin’s recommended
dose for expansion of 120 mg (in regimen 1B) [36] and an approved dose of 2 mg (daily dos-
ing) [37] of trametinib were selected. Several scenarios were simulated for the combination
of siremadlin and trametinib, including the assumption that the drugs will interact with
each other at the PK or PD level. Additionally, several parameters were tested to examine
how they influence the combination treatment outcome:

• Case A assumed high tumour growth (kgh), high initial tumour size (SLD0), and
a high fraction of sensitive cells.

• Case B assumed a similar approach to that described above, but assumed low tumour
growth (kgh).

• Case C assumed high tumour growth (kgh), high initial tumour size (SLD0), and
a low fraction of sensitive cells.

• Case D assumed high tumour growth (kgh), low initial tumour size (SLD0), and
a high fraction of sensitive cells.
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Figure 9. TGI model of trametinib administered daily in cancer patient representatives (n = 1) with
assumption of low tumour growth (kgh = 0.0000261 1/h). Observed data are presented as medians
from literature data (data digitised from Mistry et al. [34] and Flaherty et al. [35]).

Several sub-scenarios were also included in which the potential influence of interac-
tions at the PK and PD levels between siremadlin and trametinib were studied:

• Scenario 1—without PK and PD drug interactions
• Scenario 2—without PK but with PD drug interactions
• Scenario 3—with PK and without PD drug interactions
• Scenario 4—with PK and PD drug interactions

The previously proposed universal TGI model for the siremadlin and trametinib drug
combination allowed us to extrapolate the values of the clinical model parameters in a
melanoma cancer population. The key input parameters, relationships between input
parameters, and simulation results for these scenarios are shown in Figures 10–13 and
Tables S7–S12.
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Figure 10. Siremadlin and trametinib combination’s 120 + 2 mg efficacy in population representative
of melanoma cancer (Case A—high tumour growth, high initial tumour size, and high fraction of
sensitive cells).

The simulations of tumour growth patterns after administration of the siremadlin
and trametinib combination indicated that there was a substantial tumour size reduction,
regardless of the occurrence of PK or PD interaction. The simulations of tumour growth
pointed out a biphasic response to the drug combination with initial and subsequent de-
layed tumour size reduction (cases A and D), while a monophasic response was observed
with low tumour growth and a low fraction of sensitive cells (cases B and C). The simultane-
ous introduction of PK and PD interactions had the greatest impact on the tumour growth
reduction (scenario 4) while a lack of such interactions resulted in only a limited increase in
tumour growth reduction over trametinib monotherapy (scenario 1). The introduction of
interaction only at the PD level had a lower effect than the introduction of interaction at the
PK level in terms of tumour size reduction (scenarios 2 and 3, respectively). The simulated
tumour growth dynamics affected the final tumour size (size at the end of the 30-week
simulation: 5040 h) for the most efficacious scenario in which PK and PD interactions were
employed. For highly proliferating tumours, the simulated neoplasm size was reduced to
around 1 cm, while for low tumour growth, it was approximately four-times higher (4 cm).
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Figure 11. Siremadlin and trametinib combination’s 120 + 2 mg efficacy in population representative
of melanoma cancer (Case B—low tumour growth, high initial tumour size, and high fraction of
sensitive cells).

The increased combination efficacy as a mean objective response rate (ORR—percentage
of patients with a complete or partial response at any time during the study) was statis-
tically significant in each drug combination scenario compared to the most efficacious
drug—trametinib (Table 5).

Table 5. Comparison of estimated efficacy of siremadlin and trametinib combination at the 120 and
2 mg doses assuming various case scenarios.

Trial n No. of Trials
Difference

(Drug Combination vs.
Trametinib)

%ORR (Mean from
10 Trials)

Statistical
Significance

(p Value)

Siremadlin Case A 29 10 51.64% 0.00% <0.0001
Trametinib Case A 214 10 0.00% 51.64% <0.0001

Case 1a 243 10 26.51% 78.15% <0.0001
Case 2a 243 10 31.16% 82.80% <0.0001
Case 3a 243 10 45.81% 97.45% <0.0001
Case 4a 243 10 47.29% 98.93% <0.0001

Siremadlin Case B 29 10 25.84% 0.00% <0.0001
Trametinib Case B 214 10 0.00% 25.84% <0.0001
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Table 5. Cont.

Trial n No. of Trials
Difference

(Drug Combination vs.
Trametinib)

%ORR (Mean from
10 Trials)

Statistical
Significance

(p Value)

Case 1b 243 10 26.67% 52.51% <0.0001
Case 2b 243 10 30.70% 56.54% <0.0001
Case 3b 243 10 52.22% 78.07% <0.0001
Case 4b 243 10 59.14% 84.98% <0.0001

Siremadlin Case C 29 10 51.64% 0.00% <0.0001
Trametinib Case C 214 10 0.00% 51.64% <0.0001

Case 1c 243 10 14.41% 66.05% <0.0001
Case 2c 243 10 20.83% 72.47% <0.0001
Case 3c 243 10 42.52% 94.16% <0.0001
Case 4c 243 10 45.81% 97.45% <0.0001

Siremadlin Case D 29 10 51.64% 0.00% <0.0001
Trametinib Case D 214 10 0.00% 51.64% <0.0001

Case 1d 243 10 26.51% 78.15% <0.0001
Case 2d 243 10 31.16% 82.80% <0.0001
Case 3d 243 10 45.81% 97.45% <0.0001
Case 4d 243 10 47.29% 98.93% <0.0001

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 16 of 32 
 

 

 
Figure 12. Siremadlin and trametinib combination’s 120 + 2 mg efficacy in population representative 
if melanoma cancer (Case C—high tumour growth, high initial tumour size, and low fraction of 
sensitive cells). 

Figure 12. Siremadlin and trametinib combination’s 120 + 2 mg efficacy in population representative
if melanoma cancer (Case C—high tumour growth, high initial tumour size, and low fraction of
sensitive cells).



Int. J. Mol. Sci. 2023, 24, 2239 16 of 29Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 17 of 32 
 

 

 
Figure 13. Siremadlin and trametinib combination’s 120 + 2 mg efficacy in population representative 
of melanoma cancer (Case D—high tumour growth, low initial tumour size, and high fraction of 
sensitive cells). 

The simulations of tumour growth patterns after administration of the siremadlin 
and trametinib combination indicated that there was a substantial tumour size reduction, 
regardless of the occurrence of PK or PD interaction. The simulations of tumour growth 
pointed out a biphasic response to the drug combination with initial and subsequent de-
layed tumour size reduction (cases A and D), while a monophasic response was observed 
with low tumour growth and a low fraction of sensitive cells (cases B and C). The simul-
taneous introduction of PK and PD interactions had the greatest impact on the tumour 
growth reduction (scenario 4) while a lack of such interactions resulted in only a limited 
increase in tumour growth reduction over trametinib monotherapy (scenario 1). The in-
troduction of interaction only at the PD level had a lower effect than the introduction of 
interaction at the PK level in terms of tumour size reduction (scenarios 2 and 3, respec-
tively). The simulated tumour growth dynamics affected the final tumour size (size at the 
end of the 30-week simulation: 5040 h) for the most efficacious scenario in which PK and 
PD interactions were employed. For highly proliferating tumours, the simulated neo-
plasm size was reduced to around 1 cm, while for low tumour growth, it was approxi-
mately four-times higher (4 cm). 

The increased combination efficacy as a mean objective response rate (ORR—per-
centage of patients with a complete or partial response at any time during the study) was 
statistically significant in each drug combination scenario compared to the most effica-
cious drug—trametinib (Table 5). 

  

Figure 13. Siremadlin and trametinib combination’s 120 + 2 mg efficacy in population representative
of melanoma cancer (Case D—high tumour growth, low initial tumour size, and high fraction of
sensitive cells).

3. Discussion

The developed PBPK/PD models for the MDM2 inhibitor siremadlin and the MEK
inhibitor trametinib were able to describe both the pharmacokinetic and pharmacodynamic
profiles of these drugs. The models consider the oral (p.o.) administration of siremadlin and
trametinib, the first-order absorption mechanism, a full-body distribution model, hepatic
metabolism and renal excretion for siremadlin (renal excretion calculated using the FCIM
method [38]), intravenous clearance for trametinib, and a permeability-limited tumour
distribution model.

The first developed PBPK model for siremadlin assumes a mixed zero- and first-order
absorption mechanism, as originally suggested in the literature [29], and the second model
includes a first-order absorption mechanism only. The analysis of the fold difference
between the predicted and clinically observed values for key PK parameters (AUC0-inf
and Cmax) indicated that those values were accurately predicted only with the model
assuming a first-order absorption mechanism. In our opinion, the model with mixed zero-
and first-order absorption is more sensitive to the initial tumour size (SLD0) than the
model with first-order absorption. Therefore, the predicted values may be more likely to
deviate from those observed in the clinical trial. The exposure and maximal concentration
values predicted by the model assuming first-order absorption were within the 2-fold
error range (0.5–2.0) of the observed values, except the AUC0-inf predicted for a 4 mg dose.
The exception for the 4 mg dose was most probably caused by the fact that the observed
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exposure for a 4 mg dose was not dose-proportional compared, for example, with exposure
for a 2 mg dose (AUC 4 mg dose/AUC 2 mg dose: 1.27), whereas the predicted exposure
was nearly dose-proportional (AUC 4 mg dose/AUC 2 mg dose: 1.96). The model tended
to slightly overpredict exposure in the 2–25 mg dose range, while for higher doses, the fold
error was close to unity. This may have been caused by several factors: different sampling
of data in the simulation and in the clinical protocol, or an unexplained variability of nearly
17%, which was assumed during the generation of resimulated PK data [29], while in the
PBPK model, no unexplained PK variability was assumed. Since the PBPK models consider
various compartments, rapid changes in tumour size may affect the volume of distribution,
which could also explain the variability in the estimated PK parameters. The final PBPK
model was successfully verified with resimulated data from the PK model published by
Guerreiro et al. [29] and external PK data digitised from the literature [39].

The PBPK model developed for trametinib properly described the plasma concentration–
time profiles in cancer patients after a 2 mg dose administered once and after reaching
a steady state (after approximately 15 doses [40]). The predicted data met the 2-fold error
range (0.5–2.0) acceptance criteria for AUC0–24 h and Cmax, as well. The developed PBPK
model was successfully verified with external PK data extracted from the literature [30–32].

The above-mentioned models were further extended with the introduction of PK
interaction at the absorption level. Estimations of the exposure changes for both drugs were
made based on relationships between the AUC ratios and drug doses previously established
in animals [19]. This interaction included changes in the absorption rate constant (ka) and
fraction absorbed (fa) for siremadlin and alterations in the absorption rate constant (ka),
fraction absorbed (fa), and lag time (tlag) in the case of trametinib.

The translation of PK drug interaction from animals to patients is very challenging.
This is due to differences in digestive tract anatomy and physiology, transporter abun-
dance, intestinal pH, internal organ blood flow, metabolising enzymes, and potential drug
absorption mechanisms [41,42]. It appears that ex vivo or cadaver studies in an Ussing
chamber might be one of the methods that allows for precise estimation of the fraction
absorbed for single drugs and drug combinations. However, further studies are needed to
prove its utility [43–45]. Therefore, the occurrence of PK interaction between siremadlin
and trametinib estimated in this work should be taken with caution. Only results from
the currently ongoing siremadlin and trametinib clinical trial (NCT03714958) or following
trials may confirm or exclude the occurrence of such PK interaction.

Previously performed in vitro and in vivo studies have shown that the killing effect
of siremadlin and trametinib compounds is concentration- and time-dependent, and an
initial delay in the response and resistance to the treatment might arise [18,19]. These
findings allowed us to develop a perturbed TGI model for siremadlin and trametinib.
The developed model assumed exponential tumour growth, the Skipper–Schabel–Wilcox
(log-kill) tumour-cell-killing hypothesis, the drug effect described by the linear drug-killing
model, and acquired resistance to the therapy and treatment effect delay described by
the signal distribution model with four transit compartments. The delay in the effect of
these drugs is most likely related to the duration of the signal transduction associated
with the activation of the p53–MDM2 and MAPK pathways, resulting in cell death. Re-
sistance is an inherent part of anticancer treatment; therefore, its description may play
a critical role in predicting and optimising the treatment response and may improve therapy
scheduling [46,47]. Clinically predicted resistance in siremadlin and trametinib models
was much higher (13–26× higher) than estimated in animal models, which further war-
rants the need for drug combination usage to overcome it. The applied model assumed
that two distinct tumour growth patterns might occur as originally proposed for solid
tumours [29], the first with high tumour growth 0.00028 cm/h and the second with low
tumour growth 0.0000261 cm/h. These assumptions were in line with the reported tumour
growth range observed in melanoma cancer (0.00030 cm/h and 0.000015 cm/h for high
and low melanoma growth, respectively [48]) and a previously performed study with
melanoma-derived A375 xenografts in mice (0.00024–0.00031 1/h range [19]). Therefore,
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0.00028 cm/h and 0.0000261 cm/h were used as estimates for high and low tumour growth
in the melanoma population, as well.

The final TGI models for the perturbed groups properly predicted the tumour size
within 20% of the mean relative error (%RE) between the predicted and resimulated data in
the case of siremadlin (except for a 25 mg dose of siremadlin administered in regimen 1A),
and the predicted versus the literature data for trametinib. Most of the observed differences
were related to the TGI model developed for siremadlin. This may have been due to the fact
that when generating the resimulated PD data, nearly 4% of unexplained variability [29]
was assumed in contrast to the PBPK/PD model, where no unexplained PD variability
was assumed. Moreover, differences in the predicted PK between the PK model in Simulx
and the PBPK model developed in Simcyp may additionally deepen these differences. We
believe that further modelling work is warranted to optimise this TGI model to ensure that
all doses and dosing regimens meet the 20% acceptance criteria.

No clinical data from the siremadlin and trametinib combination are available yet.
Simulation of this combination required us to test virtual “what if” scenarios related to
the influence of various model parameters and the introduction of potential interactions
at the PK and PD levels. The results of an in-depth analysis of the TGI model parameter
dependencies and experiences from mouse species allowed us to extrapolate PD model
predictions for this combination into a clinical context. The developed PK interaction model
for siremadlin and trametinib was used in simulations, assuming PK interaction during
co-administration and that the previously selected β parameter from the MuSyC drug
interaction model was used as the PD interaction parameter.

The simulations covered the influence of the tumour growth pattern (kgh parameter),
fraction of sensitive cells (fs parameter) and initial tumour size (SLD0 parameter) on
the siremadlin recommended dose for expansion of 120 mg dose (in regimen 1B) [36]
and the approved 2 mg dose (daily dosing) [37] of trametinib. As mentioned earlier,
two distinct tumour growth estimates (kgh high and kgh low), which correspond to the
values observed in human melanoma [48], were tested in simulations of efficacy in patients
with melanoma. The fraction of sensitive cells for the drug combination was unknown;
thus, two assumptions were made: first, that the estimated sensitive fractions will be
summed up for drug combination (fs high), and second, that there will only be some parts
of the cells that respond (fs low). The assumed low fraction of sensitive cells was equal to
the inter-individual variability of the fs parameter for siremadlin (0.0321 × 1.93 = 0.0620),
which was similar to the reported values for pembrolizumab in melanoma (0.0628) [49].
Since no clinical data are available, these assumptions should also be taken with caution.
Moreover, this model did not assume conversion from sensitive to resistant cells, which
might occur in the clinical trials [50–53]. However, this issue is out of the scope of this work
because access to raw clinical data would be needed to verify such a modelling hypothesis.
According to the pooled analysis from four randomised clinical trials [54], the baseline
SLD value was a prognostic factor of the overall survival of patients treated with MEK and
BRAF inhibitors if the initial SLD (SLD0) was lower than or equal to 4.4 cm; therefore, the
influence of this parameter on the combination’s efficacy was also tested (Case D).

The simulations for the drug combination showed that high tumour growth (khg high)
results in a biphasic response to the drug combination, with an initial and subsequent
delayed tumour size reduction, regardless of the initial tumour size (SLD0), as shown in
cases A and D. In turn, a monophasic response was observed in simulations with low
tumour growth (kgh low) and a low fraction of sensitive cells (fs low), as may be observed
in cases B and C. These simulation results suggest that the tumour characteristics (such as
tumour growth or sensitivity to combined drugs) may have a considerable impact on the
onset of the observable therapeutic effect. The simultaneous introduction of PK and PD
interactions had the greatest impact on tumour growth reduction (scenario 4), while a lack
of such interactions resulted in only a limited increase in tumour growth reduction over
trametinib monotherapy (scenario 1). This may be simply explained by the fact that all
predicted PK and PD interactions were acting synergistically, amplifying the predicted
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response. The introduction of the interaction only at the PD level had a lower effect than the
introduction of the interaction at the PK level in terms of tumour size reduction (scenarios
2 and 3, respectively). The simulated tumour growth dynamics affected the final tumour
size (size at the end of the 30-week (5040 h) simulation) for the most efficacious scenario in
which PK and PD interactions were employed. For highly proliferating tumours (kgh high),
the simulated neoplasm size was reduced to ~1 cm, while for low tumour growth (kgh
low), it was four-times higher (~4 cm). Interestingly, alteration of the initial tumour size
(Case D) did not increase the calculated ORR; however, further modelling with different
doses and dosing regimens is needed to confirm such an observation.

The simulation results indicated that this drug combination significantly increases the
probability of achieving at least a partial response in melanoma patients regardless of the
occurrence of PK and PD interaction. For Cases A, C and D, the calculated ORR was in the
61–98% range, which seems to be comparable to the reported ORR for the already approved
dabrafenib (BRAF inhibitor) and trametinib combination (ORR range: 50–76% [55–59]).
Nevertheless, the estimation of the superiority or noninferiority of the siremadlin and
trametinib combination over the already approved dabrafenib and trametinib combination
was not possible with such limited availability of data. Hence, without access to raw
PK/PD clinical data coupled with the development of population PBPK models for those
molecules, such conclusions cannot be made.

The calculated ORR for trametinib monotherapy in Case B was twice as low as
in other scenarios, and was the most comparable with the observed ORR in the clinic
(26 vs. 22%) [35]. Likewise, in Case B for drug combination scenarios, a lower ORR was
calculated (ORR range: 48–81%), which also seems to be comparable with the data reported
for the approved dabrafenib and trametinib combination. This finding supports the hypoth-
esis that all patients suffering from metastatic melanoma, regardless of baseline tumour
size, tumour growth dynamics, and the fraction of sensitive cells, may potentially benefit
from this drug combination therapy. It should also be noted that other clinical factors can
affect the clinical response assessment, such as shrinkage in nontarget tumours such as
pathologic lymph nodes or the appearance of malignant lesions indicating cancer progres-
sion. Due to the fact that the developed models accounted only for the tumour size of the
target lesion without a distinction between lymph nodes or tumour metastases, such issues
described in the Response Evaluation Criteria in Solid Tumors (RECIST) guidelines [60]
cannot be fully accounted for in such simulations. Therefore, the interpretation of results
and drawing of direct comparisons with the actual clinical response should always be
approached with caution.

The developed PBPK/PD models also have other associated limitations which should
be discussed. Synergistic pharmacodynamic interaction in the current TGI model was
based on results from in vitro studies that were further validated on mouse xenografts
from the same A375 melanoma cells. One of the limitations of such an approach is that
cell-line-derived xenograft models cannot fully simulate the microenvironment of tumours
in humans, such as the vascular, lymphatic, and immune environments; moreover, such
models often lose genetic heterogeneity compared to primary tumours [61]. In recent years,
the patient-derived xenograft model (PDX model) has emerged as a promising tool that
provides translational value with better mimicking of the tumour microenvironment; how-
ever, one of the disadvantages of this model is the loss of the human tumour stroma, which
is entirely replaced by the murine stroma [62,63]. There is evidence that both the tumour
stroma and the corresponding microenvironment may affect the drug response [64–66].
This may be important based on the reports that MDM2 inhibition may affect stromal or
immune microenvironments, which was not considered in this work [67–69]. The results
from ongoing clinical trials (NCT03611868, NCT03787602) may shed light on the utility of
MDM2 inhibitors in skin cancer.

Another troubling problem regarding the developed PBPK/PD model is the repetitive-
ness of the pharmacodynamic interaction parameter (β) in the heterogeneous melanoma
patient population. Additional in vitro studies, followed by in vivo verification with
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melanoma-derived xenografts or patient-derived xenografts (PDX), are needed to val-
idate the magnitude of the estimated pharmacodynamic synergy between siremadlin and
trametinib and to improve the translational value of the present study.

The current TGI model did not account for the cell transition from a sensitive to
a resistant state (defined in the literature as the ksr parameter [29,51]), which might be use-
ful for the estimation of long-term therapies such as cancer treatment. Further model devel-
opment with raw clinical study data would be needed to assess whether the introduction of
such a feature would improve the fit to clinically observed data for siremadlin and trametinib.

Due to the limited availability of response data for trametinib in the literature, the
developed model may be not optimal and does not cover delayed resistance, resulting in
tumour recurrence in patients with partials and complete responses. Thereby, the developed
TGI model for trametinib predicts a higher percentage of responders than clinically observed
(especially in the scenario in which high tumour growth is assumed) [35,70,71].

Nonetheless, despite these many limitations, the developed PBPK/PD models reason-
ably accurately described the PK and time course of tumour growth across all doses and
dosing schedules. Further analyses and modelling work with different doses and dose regi-
mens are encouraged to externally validate the developed PBPK/PD models for siremadlin,
trametinib, and their combination toward predicting tumour size reduction. Although mod-
elling work with different doses and dosing schedules is still ongoing, the results from the
in vitro/in vivo translational approach presented in this study are promising. This study
shows that the currently examined 120 mg dose of siremadlin in regimen 1B with daily
dosed trametinib may act with sufficient synergy to elicit a significant clinical response.

Further performance of virtual clinical trial simulations with different doses and
dosing regimens of the siremadlin and trametinib combination are ongoing to help select
the most synergistic, efficacious, and safe dose levels and dosing regimens for melanoma-
bearing patients. Further development of the presented clinical PBPK/PD models for
siremadlin and trametinib is needed to develop a proper drug combination model in
clinical settings and aid in the design of potential clinical trials using siremadlin and
trametinib in patients with melanoma.

4. Materials and Methods
4.1. Clinical Studies Used

Data modelling usually requires two types of dataset: a training dataset, used in the
development of the model, and a verification dataset, used for independent verification
of the developed model. When early clinical data are available (e.g., from phase I clinical
studies) a PK model is developed using only data from such studies and validated using
data from later phases of clinical studies (phases 2 and 3). For siremadlin, resimulated data
from Guerreiro et al. [29] were used as a training dataset and data from Stein et al. [29] and
Jeay et al. [39] as verification datasets.

The details of data from clinical studies used for PBPK and PD (TGI) model develop-
ment and verification are summarised in Table 6.

4.2. Software

The PK parameters were estimated using Microsoft Excel (Excel version 2016,
Microsoft Corporation, Redmond, WA, USA, 2016, https://www.office.com (accessed
on 14 December 2022)). Digitisation of the literature-derived data was performed with
the use of WebPlotDigitizer software (version 4.4, Ankit Rohatgi, Pacifica, CA, USA, 2021,
https://automeris.io/WebPlotDigitizer (accessed on 14 December 2022)). TGI modelling
for trametinib was performed using Monolix software (Monolix version 2021R1, Lixoft SAS,
a Simulations Plus company, Antony, France, 2022, http://lixoft.com/products/monolix/
(accessed on 14 December 2022)). The simulation of clinical PK/PD data for siremadlin
was performed using Simulx software (Simulx version 2021R1, Lixoft SAS, a Simulations
Plus company, Antony, France, 2022, https://lixoft.com/products/simulx/ (accessed on
14 December 2022)).

https://www.office.com
https://automeris.io/WebPlotDigitizer
http://lixoft.com/products/monolix/
https://lixoft.com/products/simulx/
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Table 6. Details of the clinical studies used for the development and verification of the siremadlin
and trametinib PBPK model.

Drug Siremadlin Trametinib Trametinib Trametinib Trametinib

NCT number NCT02143635 NCT00687622 NCT01387204 NCT01245062
NCT00687622/
NCT01037127/
NCT01245062

Phase 1/2 1/2 1 3 1/2/3

Doses
(mg) 1–350 0.125–10 2 2 0.125–10/2/2

Administration Oral Oral Oral Oral Oral/oral/oral

n 115 206 2 214 206/97/214

Women
(%) 44 46 0 44 46/30/44

Age
(Years) 18–80 19–92 54–66 23–85 19–92/23–79/

23–85

Dataset purpose PK/PD training/
verification PK training PK training PD training/

verification PK verification

Reference
Guerreiro et al. [29]

Stein et al. [36]
Jeay et al. [39]

Infante et al. [32] Ho et al. [30] Flaherty et al. [35]
Mistry et al. [34] Ouellet et al. [31]

The Mlxtran model used for PK/PD resimulation in Simulx can be found in Code S1.
PBPK/PD modelling was performed using Simcyp simulator software (Simcyp simulator
V21, Certara UK Limited, Sheffield, UK, 2022, https://www.certara.com/software/simcyp-
pbpk (accessed on 14 December 2022)). The custom mixed zero- and first-order absorption
PK for siremadlin, PK drug interaction for trametinib, and PD (TGI) models in Lua can be
found in Codes S2–S4. Fisher’s test was performed using GraphPad Prism version 9.4.1 for
Windows, GraphPad Software, San Diego, CA, USA, 2022, www.graphpad.com (accessed
on 14 December 2022).

4.3. Statistical Methods

According to RECIST v1.1 metric [60], patients whose calculated maximal % reduction
in change from baseline tumour size was ≥30% at any time during study were scored as
responders (PR—partial response and CR—complete response), and the others as non-
responders (SD—stable disease and PD—progressive disease). The percentage of respon-
ders represents the overall response rate (ORR). The ORRs were tabulated based on the
number and percentage of subjects attaining an overall best response of complete or partial
response in the melanoma patient population. Fisher’s exact test was used to evaluate
the ORR statistically between trametinib and the estimated trametinib plus siremadlin
drug combination.

From the available sample size—n = 457: 214 patients from the trametinib study
and 243 patients (214 patients from the trametinib study plus 29 patients from the sire-
madlin study) from the trametinib/siremadlin drug combination study—we calculated
the precision of the effect (%ORR) estimate between trametinib and trametinib plus sire-
madlin to be 12.7% at a statistical power corresponding to 80% using a two-sided test with
a significance level of α = 0.05. The precision of the effect was calculated using a sample
size calculator [72]. Microsoft Excel was used to calculate the %ORR and GraphPad Prism
was used to perform Fisher’s test.

4.4. Resimulation of Clinical PK and PD Data for Siremadlin

In the literature, PK profiles for siremadlin were available only for 46 individuals [39]
instead of the whole cohort involved in clinical trial (n = 115). Additionally for already
published PD data [29], the assignment of particular dosing levels and dosing schedules was
not possible. For these reasons, patients’ siremadlin PK and PD profiles were resimulated
in Simulx using the PK/PD model from [29].

https://www.certara.com/software/simcyp-pbpk
https://www.certara.com/software/simcyp-pbpk
www.graphpad.com
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The PK and PD model input parameters used for resimulation in Simulx are shown in
Table S13. Descriptions of the dose levels, dosing schedules, and the number of patients in
each resimulated group are shown in Table 7.

Table 7. Descriptions of resimulated groups treated with siremadlin.

Dose (mg) Regimen Dosing Schedule No. of
Patients *

No. of
Trials Notes

1 2A qdx14 in 28-day cycle 1 10
2 2A qdx14 in 28-day cycle 2 10
4 2A qdx14 in 28-day cycle 4 10

7.5 2A qdx14 in 28-day cycle 4 10
15 2A qdx14 in 28-day cycle 4 10
20 2A qdx14 in 28-day cycle 5 10
15 2C qdx7 in 28-day cycle 8 10
20 2C qdx7 in 28-day cycle 6 10
25 2C qdx7 in 28-day cycle 5 10

12.5 1A qdx1 in 21-day cycle 1 10
25 1A qdx1 in 21-day cycle 1 10
50 1A qdx1 in 21-day cycle 4 10

100 1A qdx1 in 21-day cycle 4 10
200 1A qdx1 in 21-day cycle 5 10

250 1A qdx1 in 21-day cycle 9 10
Including patients from

eltrombopag group
(n = 3)

350 1A qdx1 in 21-day cycle 5 10
120 1B qwx2 (day 1/8) in 28-day cycle 29 10

150 1B qwx2 (day 1/8) in 28-day cycle 15 10
Including patients from

eltrombopag group
(n = 7)

200 1B qwx2 (day 1/8) in 28-day cycle 3 10

* Numbers of patients were obtained from siremadlin clinical trial protocol [73].

4.5. Physiologically Based Pharmacokinetic Models
4.5.1. General PBPK Modelling Strategy

The modelling strategy was based on the “middle-out” approach combining the
advantages of the “bottom-up” and “top-down” approaches [74]. In our case, some pa-
rameters were fixed (such as in vitro-determined or literature-derived data for siremadlin
and trametinib [18,19,29,37,39,40,75–80]) and others were estimated. Parameter estimation
was performed using the PE Module of the Simcyp Simulator V21 using the Nelder–Mead
method, the weighted least squares by the reciprocal of the square of the maximum ob-
served value as the objective function, and a termination criterion defined as improvement
of less than 1% of the objective function value. Optimisation was performed manually to
fit the observed or resimulated data in the case of siremadlin. PBPK model performance
was evaluated based on the “2-fold” criterion for maximum concentration (Cmax) and area
under the concentration–time curve (AUC) [81,82].

4.5.2. Virtual Population Characteristics (System Data)/Patient Population

As both studied drugs are intended for use in patients with cancer, the standard
cancer population (Sim-Cancer) which is included within the Simcyp simulator was used.
This software allows us to perform simulations on a typical cancer population patient
(population representative) or on the whole cancer population. This special population
has many adjustments (age distribution, height–age–weight relationships, prediction of
glomerular filtration rate, and changes in plasma protein concentrations, e.g., alpha-1-
acid glycoprotein, human serum albumin, and serum creatinine), which are made to
better account for the specific changes that are expected to be found in the physiological
parameters of such a population [83,84]. Some of the physiological parameters of the Simcyp
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cancer population were modified to specifically mimic the melanoma cancer population.
Concerning this, tumour properties including tumour tissue size, blood flow (blood flow
was set as in human melanoma xenografts [75,79,80]), composition (skin-derived), and pH
were adapted to the studied population.

4.5.3. PBPK Model Verification

The final siremadlin and trametinib PBPK models were compared with external ob-
served or resimulated PK data [30–32,36,39] through both visual checks and numerical
analysis. Predicted longitudinal plasma concentration profiles were generated, includ-
ing the geometric mean predicted concentrations. Local sensitivity analysis (parameter
scanning) was performed to evaluate the relative impacts of fa, ka, tlag, Hep intrinsic CL,
fu_inc, and additional renal CL on the plasma PK parameters (AUC0–24 h/AUC0-inf and
Cmax) for siremadlin, and fa, ka, tlag, and CLiv for trametinib. The performance of the
siremadlin and trametinib PBPK models was assessed using the fold error in plasma, which
referred to the ratio of the predicted AUC0–24 h/AUC0-inf and Cmax to the observed values
(Equation (1)). AUC0–24 h/AUC0-inf was calculated using the linear trapezoidal rule. Both
visual checks and numerical analyses were performed in Microsoft Excel 2016. Changes in
PBPK parameters related to PK DDI at the absorption level are shown in Table S3.

Fold Error PK parameter = Predicted PK parameter/Observed PK parameter, (1)

4.6. Pharmacodynamic Modelling
4.6.1. General PD (TGI) Modelling Strategy

The initial PD model used further in PBPK/PD modelling for siremadlin and tram-
etinib was established using Monolix software. Model selection was based on visual
inspection of the individual observed vs. predicted data and a comparison of the resulting
values of the model score (Equation (2)).

Model score = −2 × log-likelihood (−2LL, called also objective function value—OFV)
+ corrected Bayesian Information Criteria (BICc),

(2)

−2LL and BICc were estimated using the linearisation method to accelerate the cal-
culations. For the TGI model further developed in the Simcyp simulator, the goodness of
TGI model fit was evaluated based on the mean relative error (RE) value (Equation (3))
being < 20%, as proposed in [85]:

RE (%) = 100 × (Predicted Tumour Volume − Observed Tumour Volume)/Observed Tumour Volume, (3)

4.6.2. PD (TGI) Model Development and Verification

The TGI model for siremadlin and trametinib was developed based on a model
previously proposed by Guerreiro et al. [29]. In this model, unperturbed tumour growth is
assumed to be exponential, as proposed for melanoma [86] (Equation (4)):

dTS/dt = kgh × SLD0, (4)

where kgh is tumour growth (1/h) and SLD0 is the initial sum of the longest diameters (cm).
After the characterisation of tumour growth, the tumour growth inhibition models

(perturbed models) were developed for siremadlin, trametinib, and their combination
based on the observed tumour size for trametinib and the resimulated tumour size data
for siremadlin.

The final selected perturbed TGI model characterising single siremadlin-, single
trametinib-, and combination-treated groups is written in the following equations and
under the initial conditions:

TotalSLD(t) = Ts(t) + Tsr(t), (5)
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Ts_0 = SLD0 × fs, (6)

Tsr_0 = SLD0 × (1 − fs), (7)

TSCs_combination = (TSCs_siremadlin/AUC_ratio_siremadlin—TSCs_trametinib/
AUC_ratio_trametinib)/gamma,

(8)

TSCs = TSCs_siremadlin|TSCs_trametinib|TSCs_combination, (9)

C(t) = C_siremadlin|C_trametinib|(C_siremadlin + C_trametinib), (10)

TK(t) = kgh/TSCs × C(t), (11)

K1_0 = 0, (12)

K2_0 = 0, (13)

K3_0 = 0, (14)

K4_0 = 0, (15)

dK1/dt = (dTK − K1)/tau, (16)

dK2/dt = (K1 − K2)/tau, (17)

dK3/dt = (K2 − K3)/tau, (18)

dK4/dt = (K3 − K4)/tau, (19)

dTs/dt = 0, (20)

dTsr/dt = 0, (21)

dTs/dt = kgh × Ts − K4 × Ts, (22)

dTsr/dt = kgh × Tsr − K4/(1 + lambda) × Tsr, (23)

where pre-existing resistance is defined by the introduction of the sensitive (Ts—tumour
size) and resistant population (Tsr—resistant tumour size) of cancer cells. It was assumed
that at time 0, the total sum of the longest diameters of the tumour (TotalSLD) is repre-
sented by the sum of Ts and Tsr (Equation (5)). The initial Ts and Tsr size at time = 0
are calculated with the fraction of sensitive cells (fs) and the initial sum of the longest
diameters (SLD0), as in Equations (6) and (7). The tumour static concentration for the
sensitive fraction (TSCs) for the combination (TSCs_combination) was characterised as
the subtraction of the siremadlin and trametinib TSCs adjusted with the PK interaction
parameters (the AUC ratio parameters which were calculated for siremadlin and trametinib
based on findings from the preclinical model (see Table S8)) as well as gamma (the PD
interaction parameter) and β parameter determined from the analysis of in vitro data [18]
(Equation (8)). Depending on the treated group, the TSCs constant could be assigned to
the TSCs constants of siremadlin, trametinib, or their combination (Equation (9)). The
total plasma concentration of siremadlin, trametinib, or their combination was used as the
input for the drug effect (Equation (10)). The tumour-killing effect (TK) assumes linear
dynamics of the treatment effect, which is defined by tumour growth (kgh), tumour static
concentration for sensitive cells (TSCs), and total plasma concentration (C) (Equation (11)).
A delay of the killing effect (TK) was implemented through the introduction of 4 signal-
transit compartments (K1, K2, K3, and K4), as suggested by [87]. The duration of this
delay is determined by the parameter tau (Equations (16)–(19)). It was assumed that transit
compartments equalled 0 at time = 0 (Equations (12)–(15)). It was also assumed that the
initial change in tumour size for sensitive and resistant cell populations was equal to 0
(Equations (20) and (21)). The tumour growth rate (kgh) was assumed to be the same
for the sensitive and treatment-resistant cell populations. The Skipper–Schabel–Wilcox
log-kill hypothesis was applied to describe tumour size changes over time for sensitive
and resistant cell populations (Equations (22) and (23)). Additionally, it was assumed that
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the studied drugs also induce a killing effect on the resistant cell population but with
reduced potency (Equation (23)). The parameter lambda denotes the fold-change loss in
drug potency in resistant cells relative to sensitive cells. The units for particular parameters
are summarised in Table S6.

In the last step, unperturbed and perturbed tumour growth inhibition models for
siremadlin, trametinib, and their combination, previously developed in Monolix, were
translated into Lua programming language and applied within the Simcyp simulator V21
for further development to achieve a mean relative error (RE) value of <20% (Equation (3)).

4.6.3. Tumour Size Simulation for the Drug Combination

Tumour size for the studied drugs and their combination was estimated using the
PBPK/PD model within a 0–5040 h (210 days) simulation timeframe at clinically relevant
doses (120 mg for siremadlin and 2 mg for trametinib) and dosing regimens for each drug
(qwx2 for siremadlin and qd for trametinib). The trial design assumed a cancer population
in a 20–80-year age range, 50% of patients of either sex, and tumour blood flow typical for
melanoma. For simulation purposes, the influence of the initial (baseline) sum of the longest
diameters (SLD0) was tested. Each simulated patient response was classified according
to RECIST criteria [60]; therefore, all patients whose tumour size decreased by at least
30% were classified as responders. The overall response rate (defined as the percentage
of subjects who achieved CR or PR at any time during the study) was calculated for each
simulated scenario: drugs administered in monotherapy and drug combinations.

Additionally, according to the RECIST guidelines, the minimum measurable tumour
size is 10 mm; therefore, if a patient’s tumour size was lower than 1 cm during the simula-
tion timeframe (5040 h), that patient was also counted as a responding patient.
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