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Abstract: Cell biologists have long aimed at quantitatively modeling cell function. Recently, the
outstanding progress of high-throughput measurement methods and data processing tools has
made this a realistic goal. The aim of this paper is twofold: First, to suggest that, while much
progress has been done in modeling cell states and transitions, current accounts of environmental
cues driving these transitions remain insufficient. There is a need to provide an integrated view of
the biochemical, topographical and mechanical information processed by cells to take decisions. It
might be rewarding in the near future to try to connect cell environmental cues to physiologically
relevant outcomes rather than modeling relationships between these cues and internal signaling
networks. The second aim of this paper is to review exogenous signals that are sensed by living cells
and significantly influence fate decisions. Indeed, in addition to the composition of the surrounding
medium, cells are highly sensitive to the properties of neighboring surfaces, including the spatial
organization of anchored molecules and substrate mechanical and topographical properties. These
properties should thus be included in models of cell behavior. It is also suggested that attempts at cell
modeling could strongly benefit from two research lines: (i) trying to decipher the way cells encode
the information they retrieve from environment analysis, and (ii) developing more standardized
means of assessing the quality of proposed models, as was done in other research domains such as
protein structure prediction.
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1. Introduction: Aim of the Paper

A long-term goal of cell biologists consists of building workable models of cell be-
havior [1]. The expected benefit is threefold: (1) To predict the fate of cell populations
as a function of external conditions. (2) To manipulate cell fate, e.g., to improve patient
treatment. (3) To understand the relationship between cell components and function. While
this goal has long seemed out of reach of current research endeavors, progress in combining
high-throughput data gathering and data processing (e.g., [2–4]) warrants the search for spe-
cific research strategies to address this problem more directly. As recently emphasized [5],
the performance of artificial intelligence and machine learning is dependent on the choice
of parameters used to feed currently available sophisticated algorithms. Therefore, an
essential requirement for further model development consists of defining as precisely and
quantitatively as possible the parameters used by cells to process and encode environmental
cues in order to adapt their decisions. In addition, since studies performed on complex
processes such as cognition strongly suggest that complex decisions may be based on a
restricted set of features selected from an overwhelming amount of information [6,7], it
would be attractive to use the dimensional reduction capacity of artificial intelligence [3]
to identify a limited set of features used by cells to take decisions. This would provide an
invaluable help to our understanding of cell function.
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The aim of the present paper is (i) to suggest that currently available machine learning
tools might be tentatively used to develop models for prediction of cell response to cali-
brated stimulation without including the enormous amount of information currently used
to connect cell states and signaling networks, including genome, transcriptome, proteome,
metabolome and interactome, but with a more precise description of external conditions.
(ii) To provide a basis for this strategy by building a workable description of environmental
cues used by living cells to take decisions.

2. Why the Description of Information Influencing Cell Fate Decisions Is a
Timely Question

In order to determine the current bottlenecks hampering approaches to the final goal
of whole-cell modeling, it was felt useful to present a brief sketch of data and tools currently
available to dissect cell function. This will provide a basis for a discussion of current
limitations and challenges.

2.1. Current Research Strategies Followed to Decipher Cell Function
2.1.1. Detailed Study of Individual Cell Components

Nearly five decades ago, the development of recombinant DNA technology and
monoclonal antibody production gave a new impetus to cell biological research. As stated
in a well-known treatise: “Even the minor cell proteins thus became accessible to the most
sophisticated structural and functional studies” ([8] pp. 191–192).

In some cases, a definite cellular outcome could be ascribed to the engagement of a
single receptor species by a specific ligand, leading to a fairly simplistic view of cell function.
As a representative example, soon after the use of monoclonal antibodies to characterize the
membrane molecules of blood leukocytes, a leukocyte integrin dubbed LFA-1 (Lymphocyte
Function Associated 1) was shown to play a prominent role in leukocyte adhesion to target
cells, which was a key step of the immune function. A genetic defect of LFA-1 expression
was soon found to cause a specific disease that was called LAD (Leukocyte Adhesion
Deficiency, ([9] p. 399). Moreover, definite genes were found to drive autosomic recessive
diseases such as cystic fibrosis, which result from a defective anion channel ([9] p. 1986).
This was a clear incentive to study the structure, function and intracellular fate of a growing
number of molecular species.

2.1.2. Building Exhaustive Datasets: The Omic Enterprise

The remarkable successes of studies of individual molecular species was an incentive
to measure all the cell properties that seemed endowed with a functional role, with the
unformulated hope that cell function might be understood when all components were
characterized at the structural and functional levels. High-throughput methods were
accordingly devised and used to study all cell features that were thought to play a significant
role in cell function.

Since genetic studies showed that DNA encoded the essential information required
to make a living cell, it was warranted to determine the structure of the whole genome as
a basis for a complete understanding of the function of living cells and organisms. Much
effort was thus devoted to determine the genetic structure and variations of a growing
number of biological species.

However, since the function of a given cell population results from the selective
activation of a specific gene subset, it was rapidly recognized that the transcriptome
should contain more information than the genome on the workings of an actual cell. This
was an incentive to develop powerful methods for RNA sequencing of cell populations
and even individual cells. Since these methods required the destruction of studied cells,
the obtained information appeared as series of snapshots, and suitable extrapolation
procedures were needed to build dynamic models of cell function. However, this limitation
was recently claimed to have been overcome, which may result in marked advances in the
near future [10].
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While gene transcription certainly gives a better account of the state of a particular cell
than DNA sequence, cell function is essentially driven by proteins and small messenger
molecules rather than nucleic acids. However, studying the cell proteome is made more
difficult by the wide occurrence of protein modification after synthesis. As an example,
understanding the signaling status of a cell requires an exhaustive knowledge of the
phosphoproteome, since phosphorylation events act as molecular switches determining
molecular activity. Moreover, protein functional properties, not only concentrations, are key
determinants of cell behavior. A prominent example is the set of molecular interactions (the
interactome). Indeed, it seems well accepted that protein–protein interactions represent
the main mode of the proteome function in the cell [5,11,12].

However, even an exhaustive compendium of the concentration and post-translational
modifications of all proteins in a given cell would not suffice to account for its state, since
this state is also dependent on the localization of molecular constituents. Indeed, cell
activity is determined by molecular complexes (such as signalosomes) that are determined
by the binding properties and co-localization of tens of molecular species. Moreover, the
behavior of a cell at a given moment may depend on the time dependence of aforemen-
tioned parameters, which led to the defining of parameters such as “RNA velocity”. The
importance of the time dependence of cell composition is emphasized by the term of
dynamicome that was recently coined [13].

Thus, during the last two decades, there was an impressive development of more
and more powerful high-throughput measurement methods, resulting in the collection of
large and diverse datasets that might enclose a growing part of the information needed
to understand cell function. However, even the quantitative determination of the tens of
thousands of parameters accounting for the molecular composition and interactions of a
single cell would not suffice to model its function in view of two more difficulties that will
be discussed in Sections 2.1.3 and 2.1.4 below.

2.1.3. Achieving a Sufficiently Quantitative Description of Molecular Properties
Single Molecule Studies

It was soon apparent that the essentially qualitative data that were provided by
omic approaches would not be sufficient to model cell function. As was emphasized in
a Nature editorial [14], “while molecular biology seemed well on the way to become a
largely qualitative science, a quantitative description of the properties of cell components
is required to understand their function”. Adhesion molecules provide a representative
example that is highly relevant to the purpose of this review. As will be detailed in
Section 3, a major way for cells to extract information from their environment stems
from the interaction of the multiple receptors borne by their highly mobile membrane
with specific ligands anchored to surrounding surfaces. These interactions play a major
role in decision making. A frequent and important cell decision consists of sticking to a
surface bearing molecules recognized by its membrane receptors. Since adhesion is an
important process that influences nearly all aspects of cell biology, much effort was made to
characterize adhesion receptors. However, an exhaustive listing of the receptors borne by a
cell and surrounding surfaces did not allow any quantitative prediction of the outcome
of a particular contact between the cell and the surface ([15] p. 227). Indeed, to determine
whether two molecules will bind together when they are brought into transient contact,
it is necessary to know the rate of bond formation as a function of the distance between
surfaces, and once the bond is formed it may be important to know how the retraction force
generated by a cell may influence its lifetime [16]. Four decades ago, it was recognized
that this information could not be obtained with the conventional framework available to
describe molecule interactions [17]. Thus, concomitantly with the omic enterprise, specific
methods were developed to quantify interactions between surface-anchored molecules at
the single bond level [18]. These advances were used to demonstrate that cell decisions
triggered by the interaction between membrane receptors and surface-bound ligands might
be strongly dependent on the mechanical properties of these interactions [19].



Int. J. Mol. Sci. 2023, 24, 2266 4 of 26

Detailed Study of Small Molecular Assemblies

The very size of omic datasets makes them difficult to interpret. Again, cell adhesion
provides a clear-cut illustration: Cell adhesion to solid surfaces currently involves the
formation of so-called focal adhesions that act at the same time as force sensors and
tethers. However, while extensive omic studies revealed the involvement of nearly 1000
protein species in focal adhesions [20], accurate mechanistic information was obtained
by quantitatively studying the behavior of small molecular subsets during the adhesion
process. As an example, better understanding of integrin function was provided by detailed
structural and functional studies on the role of molecules such as talin and paxillin in
connecting integrins to underlying cytoskeletal elements [21].

Thus, in addition to the development of high-throughput measurement methods, there
is a need for detailed analysis of small molecular systems in order to identify functionally
important parameters. However, it must be recognized that, while performing these
studies is certainly required to understand cell mechanisms, even simple problems remain
far from being solved. Thus, there is currently no standard set of parameters allowing to
fully account for the function of the hundreds of cell membrane adhesion molecules [5].
Moreover, while it is well recognized that mechanical signals strongly influence cell–cell
and cell–matrix adhesion, underlying mechanisms remain incompletely understood [22,23].
It may thus be warranted to try and build predictive models of cell function without a
complete knowledge of the underlying mechanisms.

2.1.4. Putting Everything Together—The Birth and Growth of Systems Biology

As mentioned above, the extraordinarily high number of molecular species involved in
even local and transient phenomena made it difficult to derive mechanistic interpretations
from available datasets. Cell adhesion, which was first considered as a fairly simple process,
again provides an early representative example. Fifteen years ago, a thorough compilation
of published data led to the identification of 156 protein species involved in cell adhesion
to extracellular matrix components [24], and this estimate was later confirmed by proxim-
ity biotinylation [25]. A few years later, as described in Section 2.1.3, a high-throughput
proteomic analysis of focal adhesions revealed the presence of 905 proteins [20]. Other
examples may be found in the general process of cell activation. An experimental study
taking advantage of mass spectrometry revealed that 227 unique proteins were involved in
the early events occurring during the first few minutes and even tens of seconds follow-
ing receptor-mediated T-cell activation [26]. Deriving understandable mechanisms from
these results appeared more difficult, as it is well recognized that cell function cannot be
viewed as a sum of additive processes [27]. Rather, this must be compared to a complex
network of interacting components. As a representative example, when aforementioned
advances allowed the characterizing of individual mediators of inflammation that were
often denominated as interleukins (suggesting a specific relationship with leukocyte inter-
actions) [28], it soon appeared that a given interleukin acted on several targets (a property
called pleiotropy), and different interleukins could act on the same target. In addition, the
restriction to leukocytes did not hold. This led to the definition of the so-called cytokine
network. An important consequence of this organization is that it makes it difficult to
identify the role (or roles) of a given component due to the occurrence of redundancy, an
important contributor to the robustness of living organisms.

Thus, an exhaustive knowledge of the structure and function of molecules involved
in a given cell process is not sufficient to explain or predict the working of that molecule.
Accordingly, the progress of high-throughput measurement methods triggered the adapta-
tion or development of data processing tools that had long been ignored by cell biologists.
Since the aim of this review is to present the environmental cues that are retrieved by cells
to adapt their behavior and should be fed into theoretical models, it was felt appropriate
to present a brief (and necessarily incomplete) summary of theoretical tools currently
available to process this information. Three, not necessarily exclusive, approaches will be
considered: (i) a qualitative display of experimental data, (ii) mechanistic models based on
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known biological mechanisms, and (iii) purely predictive models based on multivariate
statistics and machine learning.

Graphical Representation of Cell Organization and Dynamics

While the results of an omic study may often be summarized as an extensive spread-
sheet, experimental reports usually include graphs [29], providing a visual representation
of data. Molecules such as adhesion molecules, membrane receptors or kinases are repre-
sented as nodes that can be linked by edges representing different kinds of structural or
functional interactions, such as binding of scaffold molecules, activation or inhibition of, e.g.,
an enzyme or a gene. This network representation was early recognized as an important
tool of systems biology [30] and remains widely used since its introduction ([24,31–34]).

Since aforementioned networks usually include several hundred nodes, there is a
need for additional explanatory concepts to make them informative. As indicated in an
early treatise by a leading author [35], a first purpose of the rapidly growing field of
Systems Biology was to allow an intuitive understanding of general principles. Thus,
remarkable sets of so-called ‘motives’ [36] formed by small groups of proteins were shown
to fulfill so-called emergent functions. As an example, a set of three molecules X, Y, and
Z, such that X activates both Y and Z, and Y also activates Z through another pathway,
was dubbed a coherent feedforward loop and it was shown to be able to perform specific
functions, such as controlling the delay between activating signals and cell responses.
Accordingly, a reasonable way of interpreting a graph consists of isolating motives that
are significantly more frequent than might be accounted for by a random arrangement
of edges [24]. Note, however, that a general difficulty in interpreting the unexpectedly
high occurrence frequency of a given motif is to know whether this is due to a functional
mechanism or only to the history of random choices that occurred during evolution.

Another simplifying concept consisted of identifying fairly isolated sub-networks
called modules that were suggested to fulfill well-defined functions in a fairly autonomous
way [37]. This concept is appealing, since module autonomy was suggested to play a
key role in the robustness and evolvability of living systems [38,39]. As a consequence,
trying to detect modules in experimentally studied networks appears as a usual part of
data analysis [32,40,41]. As an example, a thorough integrative proteomic and phosphopro-
teomic study of T-lymphocyte activation [32] allowed the authors to identify 90 modules
on the basis of co-clustering analysis and protein–protein interactions. However, it is
not easy to demonstrate that a given pattern in a network actually represents a module.
Note in particular that a molecular component may be shared by several modules [37].
Additionally, it may be difficult to determine which degree of autonomy of a set of nodes
allows it to be considered as a module. Moreover, specific mechanisms may account for
a functional separation such as a timescale difference that is not expected to appear on a
graph [42,43]. Further, it may be difficult to identify the function of a motif in a signaling
network. Finally, it may be difficult to ascribe a complex function to a subtle property of a
given molecule [44]. In conclusion, the possibility to represent cell function as a network of
modules rather than a network of molecules, which might help illuminate many important
mechanisms, remains a distant goal.

Another representation that met with some success was based on the so-called
Waddington metaphor: A cell state may be viewed as a marble rolling on some kind
of “energy” hypersurface in a highly multidimensional space. Coordinates may repre-
sent the concentrations of each component or the activity of individual genes. As will
be indicated in the next section, while this appealing metaphor remains widely used as
a starting point of current theoretical modeling, making it quantitative usually relies on
sophisticated mathematical tools, such as differential geometry, that are not familiar to
most cell biologists [45–47].
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Quantitative Models of Cell Function

While ab initio simulation of a cell as an assembly of atoms ruled by basic physical
chemical laws might be considered as a means of modeling its behavior, it was recently
emphasized that this approach is, and probably will remain for decades, out of reach of
available computer power [1].

A natural way of building a quantitative model of a network consists of using a set of
ordinary differential equations to model the interaction of nodes connected with demon-
strated edges, or links. This approach was early applied on simple biological systems with
a well-defined function. As an example, the β-adrenergic control of muscle cell contractility
was modeled as a network involving several tens of components linked by 49 equations
involving 56 parameters [48]. Parameters were derived from the scientific literature, and
validation was performed by comparing experimental and predicted values of data such
as the effect of drugs on the activity of enzymes or variations of second messengers such
as calcium. Equations were based on generic models such as Michaelis kinetics. A later
model included 106 molecular species and 193 reactions. The authors concluded that 109
out of 114 predicted outcomes were validated by published data [49]. As another recent
example, this basic formalism was recently used to model the gene regulatory network
driving the epithelial–mesenchymal transition, which is an important actor of development
and cancer [50]. A recent highly ambitious attempt at processing several independent
datasets obtained on Escherichia coli included as a basis about 10,000 differential equations
and 19,000 parameters [51].

A problem with this approach is that it is usually very difficult to determine the correct
values of extensive sets of parameters: they may be unknown, or published values may
correspond to heterogeneous experimental conditions. This was an incentive to develop
more qualitative approaches such as Boolean models consisting of ascribing discrete states
to molecular components, typically active or inactive, and determining the evolution by
associating logical functions to each node. Indeed, Boolean networks can be readily built
on the basis of published data [52]. Intermediate models were also suggested, e.g., by using
logic-based differential equations instead of logical functions [53].

A more visual approach consists of building quantitative models of Waddington’s
landscape, in which a cell state is viewed as a point or a vector in a multidimensional
space. Coordinates might correspond to the activation state of genes (with a total number
on the order of 25,000 in humans). The “energy” is obviously difficult to calculate, and
even to define. A reasonable means is to take advantage of Boltzmann’s law to derive a
free energy from the density of states that may be determined experimentally [54]. In any
case, the basic challenge is to build kinetic equations accounting for the time-dependence
of the cell state [47]. Note that some kinetic estimates of differentiation events were
cleverly derived from experimental studies of RNA splicing in individual cells [55]. As
an illustrative example, a mathematical method was developed to model the regulatory
programs underlying the reprogrammation of mouse embryonic fibroblasts into stromal
or mesenchymal cells [56]. This allowed the processing of the results of 315,000 single-cell
RNA sequencing and predict transcription factors and cytokines affecting cell fate.

Thus, while much effort is currently being made to build quantitative models of cell
signaling and differentiation, obtaining a quantitative picture of cell inner workings remains
a distant goal. An important question remains unanswered: due to the high number of
models that are currently published, it is important to assess the criteria that may be
used to validate them. Indeed, while a number of experimental tests and predictions are
presented together with any new model, it would be important to determine the number
and stringency of tests that are needed to support further use and efforts to improve all
presented approaches. This point will be further discussed in Section 2.2.
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Use of Multivariate Statistics or Machine Learning to Analyze Cell Organization and
Predict State Transitions

During the last decade, it appeared that the need to build complete quantitative models
accounting for the enormous complexity of cell signaling machinery could be provisionally
bypassed by the use of more and more sophisticated tools referred to as multivariate statis-
tics, machine learning or artificial intelligence [57–59]. The basic principles mainly consist
of ordering large datasets by finding clusters or patterns without any human help (so-called
unsupervised learning) or building predictive rules to derive outcome from input data
(supervised learning). Datasets are usually split into a training set, used to build rules, and a
test or target set, used to check the validity of these rules. These tools met with considerable
success in performing everyday tasks such as image or speech recognition [59]. Recently,
they brought a major progress in the derivation of protein conformation from amino acid
sequences, by efficiently complementing molecular dynamics [60]. An important benefit
is the reduction of the complexity of multidimensional datasets using methods such as
principal component analysis or subset selection with so-called shrinkage methods such as
ridge or lasso ([57] p61). The following examples illustrate the power of these tools.

HT29 carcinoma cells were treated with nine different combinations of epidermal
growth factor (EGF) and insulin to induce apoptosis [61]. The activation kinetics of
19 signaling molecules were determined by performing a series of 13 sequential assays
during the first 24 h following stimulation. Tools from multivariate statistics were used to
reduce the time series to scalar values (such as decay rate or area under the curve), thus
allowing outcomes to be derived from sets of input values. Apoptosis prediction was
thus derived from 19 × 13 experimental determinations (with three replicates each) that
were summarized as 20 scalar numbers for each stimulation procedure. Predictions were
performed with a multivariate regression method.

The cell response to combinations of multiple signals was studied by exposing mouse T
lymphocytes to 64 (26) combinations of six different cytokines and studying the production
of 10 different proteins (six cytokines and four transcription factors). Principal component
analysis (PCA) was used to reduce the output dimensionality from 10 to three (since the
first three components accounted for 88% of total variability) and the authors used linear
regression techniques to relate stimulation to outcome [62].

Immunologists have long tried to relate the activation pathway followed by T cells to
the binding properties of activating antigens. Recently, a combination of a robotic platform
and deep learning was used to study the activation of CD8+ T lymphocytes by 24 different
antigens [3]. The authors collected single-cell supernatants at 12 time points after the
onset of stimulation. They assayed seven cytokines as reporters of activation. A total
of 51 experiments yielded 280,000 concentration values. Machine learning was used to
extract six patterns of activation dynamics, which should provide a marked help for further
modeling of immune responses.

A general conclusion from a large number of studies is that a single homogeneous
dataset is not sufficient to allow a full characterization of cell states. It is more and more
apparent that the behavior of a given cell is determined by a number of features, including
gene transcription, protein content, spatial localization [63,64] and overall cell organization.
Thus, a current challenge consists of developing mathematical procedures for quantita-
tive processing of multimodal datasets. As a representative example, single leukocyte
transcriptome and expression of 228 membrane proteins were analysed, resulting in the
identification of 57 clusters with better separation of previously defined subsets than
allowed with transcriptome alone [2].

2.2. Current Limitations and Challenges

While the recent progress in modeling cell behavior is highly impressive, it may be
useful to delineate current limitations that should shape short-term research strategies.

A first point is that the complexity and versatility of current tools provided by machine
learning strongly increase the required size of training datasets. Indeed, it is well known
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that widely different sets of parameter values may yield a satisfactory fit with fairly simple
experimental curves with a too versatile model. Interestingly, the efficacy of modern
machine learning methods, including support vector machines, random forests or neural
networks and conventional statistical methods, such as logistic regression, was compared
quantitatively by determining their capacity to effect binary choices on the outcome of
pathological situations [65]: it was concluded that recent methods might require up to
ten-fold larger datasets than more conventional procedures. A review of 71 published
studies led to the conclusion that machine learning methods did not outperform logistic
regression [66]. A current way of increasing the amount of information contained in a model
might be to combine results of multiple studies. However, this may lead to a combination
of data obtained under too different conditions, unless an effort is made to standardize
published data, as repeatedly suggested in interactome studies [5].

A second point resulting from the power of modern data processing methods is that
when multiple partially correlated parameters are fed into a model, the relationships
derived between input parameters might not be causal, thus hampering the possibility
to extrapolate conclusions to more diverse conditions. This strongly suggests that the
efficiency of machine learning might be increased by suitable incorporation of biological
knowledge. This is an incentive to try and understand the inner workings of modern data
processing procedures that were rightly compared to blackboxes [67].

A third and related point is that it is well known that a basic requirement for genuine
scientific progress is that models be fully testable. This principle is well accepted, and
published reports usually include several checks of the predictions of presented models.
The problem is to determine the required stringency of these checks. In other words, how
many predictions must be tested to validate a model of signaling networks including tens
or hundreds of parameters? Moreover, it is very difficult to assess the validity of clusters or
patterns disclosed by unsupervised learning methods. Indeed, even the definition of a “true
cluster” may involve some arbitrary choices. Interestingly, the recent progress of protein
structure determination may provide useful guidelines for the assessment of sophisticated
methods. Unraveling the complexity of the structure of a protein, which may be defined
as the set of coordinates of several thousands of atoms, benefited from the association
of different powerful experimental techniques such as X ray crystallography or NMR,
and theoretical tools including molecular dynamics and machine learning. Importantly,
the continual progress of research strategies was guided by a number of benchmarking
methods ([68] pp. 41–54) that demonstrated the importance of building reliable quantitative
methods to measure the quality of different models (see [69] for a representative example)
and systematic testing of proposed advances, as illustrated by the CASP (critical assessment
of structure prediction) enterprise [70]. Similarly, it might be useful to develop quantitative
tools for estimating the value of currently proposed models of cell function.

This concern is made more important by present day papers being more and more
difficult to assess. Even a careful reviewer cannot fully validate a manuscript, due to a
lack of time, competence and included information. Indeed, the difficulty of assessing
the validity of a method was recently emphasized to hamper the progress of artificial
intelligence [71]. An important point is that most methods involve somewhat arbitrary
choices that are often hidden. A simple example is about clustering methods that often rely
on the calculation of a distance in a multidimensional space. While Euclidean distance is
usually chosen, this is by no means the single possible choice [7]. Moreover, results may
be influenced by parameter scaling procedures. Indeed, the lack of information about the
details of theoretical models was recognized as a general problem [72].

In conclusion, currently available experimental and theoretical methods make it a
realistic goal to achieve a detailed description of the state of individual cells and predict
transitions triggered by environmental cues. Inner working mechanisms should be obtained
in a next step [73]. However, while much effort has been made to achieve a multimodal
description of cell states, fewer reports are devoted to a similarly multimodal description of
the environmental cues that trigger cell state transition. A major point is that most published
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reports concern the cell response to a few combinations of soluble bioactive molecules.
A better description of cell environmental status should improve the quality of both
predictive algorithms and of the assessment of cell regulation models. Thus, it might
be rewarding to try to relate the signals sensed by cells probing their environment to final
decisions without dissecting signaling mechanisms. A first goal would thus consist of
achieving a manageable description of the information retrieved by living cells. Accordingly,
in the second part of this paper, we shall review current experimental knowledge allowing
us to define the information used by living cells to take decisions. It seems reasonable to
expect that the aforementioned tools that were developed to describe the cell state might
help us provide a quantitative description of environmental cues.

3. Description of Environmental Cues

As explained above, our purpose is not to provide a mechanistic interpretation of the
mechanisms used by cells to process extracellular cues, which would be a fairly distant goal,
but only to build a minimal list and description of extracellular data that are processed by
cells to take decisions, which should provide a firm basis for the building of a manageable
“environmental landscape”.

3.1. Cell Sensitivity to Soluble Bioactive Molecule

We shall first describe the information provided by the analysis of soluble components
of the extracellular milieu, since this was the traditional focus of studies on cell signaling.

3.1.1. Instantaneous Concentration of Active Biomolecules

It was concluded from a bioinformatics study that the human genome encoded
about 3700 transmembrane proteins, forming the so-called ‘surfaceome’ [74]. More than
1000 of these proteins might be considered as receptors for soluble mediators, including
779 G-protein receptors (GPCRs). Note that intracellular receptors of membrane-crossing
molecules such as steroid hormones should also be considered. There is no doubt that
many cell decisions concerning metabolic activity, differentiation, proliferation or migra-
tion are heavily dependent on the occupancy of a number of receptors, and it might be
tempting to consider this information as an acceptable picture of extracellular signals.
Indeed, many attempts at analyzing cell signaling pathways consisted of studying the
intracellular changes triggered by an exposure to suitably chosen concentrations of ligands
of well-characterized cell receptors ([3,26,61,75] provide but a few examples). However,
while it might be found more straightforward to relate cell outcomes to receptor occu-
pancy rather than to the composition of extracellular spaces, it must be kept in mind that a
given receptor may generate different responses after engagement with different ligands, a
phenomenon sometimes referred to as receptor bias. As a recent example, it was shown
that different ligands of angiotensin II type 1 receptor could trigger different responses
and conformational changes of this (GPCR) receptor [76]. Moreover, as mentioned below,
different ligands of a given T-cell receptor (TCR) may trigger widely different responses,
from paralysis to full activation, and differences have been mostly ascribed to lifetime
differences of TCR-ligand complexes [77,78].

Another important point is that cell responses to several stimuli are not additive. This
was well studied in a systematic study of the stimulation of macrophage-like RAW264 cells
by 22 receptor ligands (such as growth factors and/or cytokines) that were added either
separately or as 231 binary combinations. A large number of non-additive interactions
were evidenced [27]. Thus, a quantitative description of cell response to receptor ligands
may require studying a large set of ligand combinations. The multiplicity of mediators
contributing T follicular helper cell differentiation is but a single example [79].

In conclusion, a detailed list of the concentrations of cell receptor ligands in the
extracellular medium is an important component of a list of exogenous cues that determine
fate decisions. However, as will be shown in the next section, the temporal variations of
these concentrations must also be considered.
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3.1.2. Time Dependence of Receptor Engagement

It has long been shown that the outcome of cell stimulation after activation of a given
signaling pathway could be related to the dynamics of signaling events [42,75,80]. As
an early example, the stimulation of the well-known mitogen-activated protein kinase
(MAPK) pathway was monitored in PC12 mammalian cells. Epidermal growth factor
(EGF) was found to induce cell proliferation, together with a transient MAPK activation,
while nerve growth factor (NGF) induced durable MAPK activation and differentiation
including neurite outgrowth [42]. It must be emphasized that this finding may seem to
contradict the hope that an analysis of cell-signaling networks might be facilitated by the
existence of independent modules that might fulfill separate functions [39]. As another
early example, it was reported that a transient rise of intracellular calcium induced in
B lymphocytes induced NFκB activation, while a lower and more durable calcium rise
stimulated the NFAT pathway [80]. Moreover, as mentioned above, different T-cell receptor
ligands may induce widely different responses, and this seems tightly related to the kinetics
of ligand–receptor engagement (as reviewed in [81]). The importance of the dynamics of
signaling phenomena might provide a basis for the so-called proof-reading mechanism
that ensures the fidelity of intracellular biochemical processes [82–84].

Note that the relationship between the temporal variation of mediator concentration
and the dynamics of receptor engagement and second-messenger generation may not be
straightforward [85]. Thus, many reports supported the concept of dynamical encoding
in cells processing exogenous cues [86]. As an example yielded by a quantitative analysis
of the induction of intracellular calcium changes by extracellular ATP, the authors were
surprised to find that cell decoding mechanisms acted as low-pass filters, making cell-
retrieved information somewhat insensitive to the underlying signal dynamics [87]. This
point is highly relevant to our purpose. Indeed, if signal encoding is a general component
of intracellular information processing, it may be difficult to relate physiological cell
outcomes to specific molecular species. This may match the need to understand logic
operations rather than the activity of individual electronic components when studying
modern computer functions [37].

In conclusion, the aforementioned data show that a quantitative description of ex-
tracellular signals requires substantial information on the time dependence of receptor
engagement. It is thus important to determine the temporal length and resolution that
must be considered, or, in other words, the details of cell memory of past events. Here
are a few examples: TCR-mediated T cell activation is a well-studied process that seems
to be triggered by a summation of binding events during a period of time on the order
of 1 min [19,88,89]. Gradient-directed cell migration plays an important role in develop-
ment and in pathogen elimination. Directional persistence results from a balance between
directional memory and capacity to respond to rapidly fluctuating chemoattractant con-
centration, and directional memory was estimated at a few minutes [90,91]. Interestingly,
the requirement to account for a memory may set a constraint on theoretical models of cell
state, as discussed in Section 2. It has been repeatedly found that cells keep a memory of
the mechanical properties of their environment. The duration is on the order of days to
weeks, and a theoretical model was recently elaborated [92]. A rather extreme example
is provided by the immune system, in which interaction with a foreign pathogen usually
results in the generation of so-called memory cells that will provide lifelong protection.

In conclusion, the input of a model of cell response to extracellular cues should include
quantitative information on the time dependence of the concentration of extracellular
ligands. The time scale of the required information is obviously dependent on studied
output, and cell response to chemoattractants may depend on second- or minute-scale
variations of stimuli. Cell differentiation will rather require time scales of several days
to months.
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3.1.3. Spatial Heterogeneity of the Extracellular Milieu

In some cases, cell response to an extracellular ligand is determined not only by its
concentration and time dependence but also by spatial distribution. Chemotaxis provides
a clear illustration. As it has long been shown [93], when a motile cell such as a vertebrate
leukocyte is exposed to a spatial gradient of a chemoattractant, it rapidly starts migrating
along the gradient direction. It was estimated that a relative concentration difference of
the order of 1% between two cell sides could be detected. A point of caution relative to the
interpretation of this phenomenon may be added: the capacity of a cell to migrate along a
concentration gradient does not provide a formal proof that spatial information is retrieved.
Thus, bacterial chemotaxis was found to be based on serial measurements of chemoat-
tractant concentration: swimming bacteria usually display repeated random directional
changes denominated as tumbling. The tumbling frequency was shown to decrease when
local chemoattractant concentration increased, which was sufficient to provide directed
migration. In contrast, mammalian cells may process vectorial information [90,93].

In conclusion, the effect of extracellular medium on cell behavior might be satisfacto-
rily accounted for by the spatial and temporal distribution of biologically active molecules.

However, compelling evidence has shown that cell behavior is at least as deeply driven
by the properties of solid structures, such as an extracellular matrix or neighboring cells,
as by soluble molecules. As will be shown below, the mechanisms of information retrieval
and the nature of parameters processed by cells encountering outer surfaces may be quite
different from those mentioned above.

3.2. Cell Sensitivity to Surface Properties of Their Environment

While little was known four decades ago about cell communication via the direct
interaction of molecules with the outer surfaces of cells ([8] p. 717), a compelling amount of
evidence now shows that cell behavior is highly dependent on multiple interactions with
neighboring surfaces. Anchorage dependence is a well-known example: most cells (but
not leukocytes) need to adhere to outer surfaces to proliferate and even to survive [94].
Moreover, adhesive interactions are well known to drive prominent cell processes such as
spreading [95], migration [96,97], and differentiation [98].

Importantly, while cell response to soluble molecules is essentially determined by
intrinsic properties of interacting membrane receptors and soluble ligands, the information
retrieved by cells interacting with surface-bound receptor ligands is strongly dependent
on a number of properties of the environment of interacting molecules. The purpose of
this section is to provide a list of these properties that have to be entered as an input to any
model of cell decision. While a full discussion of underlying mechanisms, which remain
incompletely understood, would not fall into the scope of this review, main hypotheses
will be briefly mentioned to make this listing more understandable.

3.2.1. Differences between Cell Receptor Interaction with Soluble and Anchored Ligands

It has been amply demonstrated that a given molecule may induce widely different
cell responses in soluble and surface-anchored form. Thus, surface-bound but not soluble
vitronectin was found to support endothelial cell survival [99]. Moreover, low concen-
trations of a monomeric TCR ligand were found to activate T lymphocytes only when
they were bound to surfaces such as plastic or lipid bilayers [100]. We shall now consider
three non-exclusive features that might be responsible for these differences: kinetics of
receptor engagement, force generation and ligand topography. In Section 3.2.2, we shall
discuss general material properties that were also shown to influence cell behavior under
conditions where interacting molecules are not fully characterized.

Kinetics of Receptor Engagement

As indicated in Section 3.1.2, the signal triggered by the exposure of a membrane
receptor to a specific ligand is dependent on the number and duration of binding events.
The kinetics of soluble ligand binding is determined by the conventional association and
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dissociation constants that are considered as intrinsic properties of any ligand–receptor
couple. In contrast, the binding kinetics of surface-anchored molecules strongly depend on
many different parameters, as explained below.

Cell-Specific Parameters

While the contacts between cell membrane receptors and soluble ligands are driven
by thermal diffusion, the association with and dissociation from surface-bound ligands are
triggered by cell movements. Indeed, the cell surface is highly motile [101] and studded
with a number of protrusions of varying shape and denomination, such as lamellipodia,
invadopodia, filopodia, microspikes or microvilli. Microvilli have a typical diameter of the
order of 0.1 µm and a length varying between a few tenths of a micrometer and several
micrometers; they have long been considered as exploratory structures, since their tip may
be enriched with cell receptors and signaling molecules [102] and they display continual
protrusion–retraction cycles. The interaction of microvilli with surfaces have been studied
quantitatively with microscopical techniques such as interference reflection microscopy
(IRM) or total internal reflection fluorescence microscopy (TIRF). Thus, when myeloid [103]
or lymphoid cells [88,104] were sedimented on ligand-bearing surfaces, cell adhesion [103]
or activation [88,104] was preceded by the occurrence of transient contacts of a few seconds
duration between the tips of microvilli and surfaces. This phenomenon lasting several tens
of seconds was dubbed “tiptoeing” [103,105].

Obviously, the time available for molecular contact formation between binding sites
is dependent on the period of time during which the tip of a microvillus is at binding
distance of a surface-anchored ligand. Importantly, this may be influenced by surrounding
molecules. Indeed, cell membranes are usually coated with a dense polysaccharide-rich
layer called the glycocalyx that may generate repulsive forces and hamper molecular inter-
actions [15,106]. Interestingly, this inhibition may be modulated by active cell processes.
Thus, some bulky glycocalyx elements were reported to be sorted out of contact zones
through an incompletely understood active mechanism [107]. Moreover, cells such as
macrophages were found to increase the avidity of membrane receptors by partial pruning
of glycocalyx elements [108]. More recently, the repulsive properties of endothelial cell
glycocalyx were measured by indentation of glass microbeads with an atomic force micro-
scope [109]: the glycocalyx behaved as an elastic layer of 110 nm thickness and an elastic
modulus on the order of 5 kPa. The authors estimated that this repulsive layer triggered a
ten-fold reduction of the number of receptor–ligand interactions between flowing blood
granulocytes and the endothelial cell walls.

Another point of importance is the receptor concentration on the tip of microvilli. This
was shown to be a key factor of the activity of receptors such as L-selectin [110] or T-cell
receptors [111].

Molecular 2D Binding Parameters

While the frequency and duration of membrane receptor associations with soluble
ligands, under so-called 3D conditions, are fully determined by molecular concentration
and conventional association and dissociation rates, a different theoretical framework is
required to account for bond formation between surface-anchored molecules, i.e., under
so-called 2D conditions [112]. Key concepts will be rapidly summarized below. The reader
is referred to a recent review for more information and references [5].

Bond formation. Bond formation between a (free) cell membrane receptor and a soluble
ligand L is usually viewed as a simple stochastic phenomenon occurring with a probability
of kon.(L).dt during a small period of time, dt. The on-rate kon provides a global account
of the rate of molecular encounters and the probability that a molecular encounter will
result in bond formation. This constant is expressed in M−1.s−1 and may be considered as
an intrinsic property of the ligand–receptor couple, liable to quantitative determination
with standard physical-chemical tools. In contrast, the rate of bond formation between
two molecules anchored at distance d, i.e. under so-called 2D conditions, has a dimension
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of second−1, and it is not a number but a function kon(d) [112]. This function is not easy
to determine, and it cannot be considered as an intrinsic property of the receptor and
ligand binding sites, since it is dependent on the length of interacting molecules (usually
several tens of nanometers). Molecular shape and flexibility are also important to allow
contact between binding sites. As an example, integrin molecules may display an inactive
form associated with so-called closed conformation and reduced distance between the
membrane and binding site [113,114]. Moreover, the rate of encounters between binding
sites is dependent on the lateral diffusion of receptor and ligand molecules, which is
determined by cellular properties. In conclusion, the capacity of a membrane receptor to
interact with a surface-anchored ligand is dependent on cell motion, cell surface topography
and molecular composition, and also on binding parameters that are not included in the
conventional framework used to describe 3D interactions.

Bond lifetime. The rupture of a bond formed between a cell membrane receptor and
a soluble ligand may be viewed as a stochastic event with occurrence probability koff.dt
during a small time interval dt. The off-rate koff is a constant number expressed in second−1

and may be considered as an intrinsic property of the ligand–receptor couple (provided
the complex is exposed to a standard temperature and medium composition). However,
the lifetime of a bond formed between membrane-anchored molecules is determined by a
balance between the force F generated by the cell-driven retraction process and the bond
mechanical resistance. The force dependence of the dissociation rate of biomolecular bonds
has been subjected to intensive study during more than three decades. It was first thought
that koff(F) followed a simple exponential law (often referred to as Bell’s law [115]). It was
later found that the rupture process might display a more complex behavior: so-called
catch bonds were found to display increased lifetimes in the presence of forces in the order
of several piconewtons. Moreover, it was found that bond formation behaved as a multistep
process with a progressive increase of mechanical strength. The dissociation rate is thus
a function koff(F,t), where F is the applied force and t is the bond age. A last point is that
rebinding of two anchored molecules maintained at close distance may conversely increase
the total duration of receptor engagement and thereby enhance signaling [116].

In conclusion, the frequency and duration of binding events between surface anchored
molecule is strongly dependent on cellular properties.

Force Generation

During the last two decades, a wealth of experimental data demonstrated that force
generation between anchored ligands and membrane receptors plays a major role in signal
generation. Indeed, it is well established that (i) forces exerted on membrane molecules
can trigger signals, (ii) forces are generated at the interface between cells and surfaces, and
(iii) the tethering strength of anchored ligands actually influences cell activation. We shall
describe a few examples to illustrate these points. More information and references may be
found in a recent review [117]. However, for the sake of clarity, it was felt useful to recall
the precise meaning of the concept of signal used in this and our previous [117] paper.
It was deemed reasonable to define a signal as a message that may be generated by any
interaction between a cell and its environment, such as the engagement of a membrane
receptor by a specific ligand molecule. Living cells are exposed to countless signals that
may induce responses. A cell response often consists of so-called signaling cascades, i.e.,
sequences of intracellular biochemical events resulting in changes of cell state and behavior.

Piconewton forces may generate signals. There is no doubt that a major mechanism of sig-
nal generation following receptor engagement is the induction of a receptor conformational
change by the binding process. The aforementioned G-protein coupled receptors (GPCRs)
probably provide the best studied example: the engagement of transmembrane GPCRs
will allow them to interact with heterotrimeric Gαβγ proteins and trigger a signaling
cascade. It is now well demonstrated that piconewton forces may be sufficient to trigger a
conformation change and disclose binding sites, leading to signalosome assembly. Thus,
forces of the order of 50 pN [118] and even 10 pN [19] applied on T-cell receptors were
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found to trigger cell activation. Forces as low as a few piconewtons were found to change
the conformation of talin, a protein found in focal adhesions with a role in connecting
integrins to actin microfilaments [44,119]. Piconewton-scale forces were shown to activate
membrane cationic PIEZO channels [120].

Cells are known to generate forces of several tens of piconewtons in contact with outer surfaces.
Granulocytes deposited on fibronectin-coated pillars of 500 nm diameter exerted protrusive
and retraction forces of several tens of pN/post [121]. T lymphocytes generated traction
forces of the order of 100 pN on arrays coated with antibodies to CD3, a TCR-associated
membrane structure [122]. Integrin-mediated adhesion of melanoma cells to surfaces
involved traction forces of at least 40 pN [123].

The capacity of surface-anchored receptor ligands to activate cells may require a minimal
tethering strength. Indeed, the adhesion of CHO cells to the integrin ligand RGD required
that tethers connecting RGD motives to surfaces resist forces higher than 40 pN. However,
a tethering strength of 12 pN was sufficient to allow the activation of the Notch receptor
by surface-anchored ligands [124]. Moreover, the initiation of antibody production by B
lymphocytes stimulated with antigen-anchored surfaces was influenced by the strength of
antigen-surface bonds [125].

Thus, the simple concept suggested by the aforementioned experiments is that cells
analyze surrounding surfaces by forming multiple intermolecular bonds and subjecting
these bonds to forces generated by multiple protrusion-retraction cycles. Interestingly, a
theoretical analysis showed that force application on receptor-ligand bonds allowed more
rapid and/or precise analysis of the interaction properties than a mere determination of
receptor occupancy by soluble ligands [126].

Spatial Distribution of Ligands on Surfaces

Molecular clustering is an important mechanism of signal generation. For example,
this may allow a kinase to encounter and phosphorylate a specific site on a target molecule.
Thus, the activation of an EGF receptor by ligand binding results in dimerization and
autophosphorylation. An early step of T lymphocyte activation is the phosphorylation
of specific sites called ITAMs on the TCR complex by kinases such as lck [81]. While
clustering may be triggered by a conformational change induced by monovalent ligand
binding, multivalent receptor ligands often behave as powerful clustering triggers. Thus,
T lymphocytes are efficiently activated by antibodies specific for the complex made with
TCR and CD3 on their membrane. Indeed, this activation has long been used as a reporter
of T lymphocyte function to help in the diagnosis of immune deficiency diseases. Further,
it has been emphasized that the communication of different cell types such as immune or
neural cells may involve the formation of specific molecular assemblies called synapses in
contact zones, and the potential role of these synapses in regulating signal transduction has
been studied for decades [127,128]. Clearly, a specific pattern of binding molecules exposed
on a surface may influence the organization of membrane molecules in a cell adhering to
this surface.

Accordingly, the outcome of cell interaction with anchored receptor ligands may be
highly dependent on their spatial distribution. An early and impressive example is the
demonstration that endothelial cells were switched from growth to apoptosis when they
were deposited on surfaces bearing adhesive islands of decreasing size, from hundreds
to tens of squared micrometers [129]. A possible mechanism might be that a minimal
adhesive area is required to allow cell spreading [130], involving increased microfilament
polymerization and apparent area increase, together with volume and thickness decrease
and marked metabolic changes. More recently, it was found that cells were also highly
sensitive to the nanometer-scale topography of anchored ligands. Thus, rat fibroblasts
displayed efficient spreading on surfaces coated with integrin ligands organized in hexago-
nal patterns separated by 58 nm intervals, not 110 nm intervals [131]. In addition to the
distance between ligand molecules, their geometrical ordering was also found important:
disordering the surface distribution of integrin ligands on a surface could strongly increase
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the adhesion of breast myoepithelial cells [132]. Further, much experimental evidence
showed that different regions of a given cell may react differently with a same ligand. Thus,
an intercellular contact was reported to generate an attraction on the rear side of a cell, and
a repulsion on the anterior region of the same cell [133].

Another important point is that the outcome of cell interaction with ligand-coated
surfaces is not only influenced by the lateral (2-dimensional) distribution of membrane
molecules, but also by the width of the separation gap. This width is determined by the
length of adhesion molecules and the glycocalyx-generated repulsion, and it may display
wide variations, from tens to hundreds of nanometers [134,135]. As a consequence, bulky
molecules may be sorted out of the contact zone and replaced with smaller molecules.
A striking illustration of the potential importance of this mechanism is provided by the
exclusion of the bulky CD45 phosphatase (about 45 nm width) from the region of contact
between T lymphocytes and antigen-presenting cells. It was predicted that this exclusion
might trigger T-lymphocyte activation by facilitating the phosphorylation of specific tyro-
sine residues [136]. This was checked experimentally by showing that an elongation of the
molecule bearing a TCR ligand reduced its capacity to activate T lymphocytes [137] and
that phosphatase exclusion might suffice to trigger cell activation in a model system [138].
More recent experimental evidence supports the concept that local separation distance of
interacting surfaces can influence signaling [139].

In conclusion, in addition to their sensitivity to soluble mediators, cells are strongly
influenced by the nature, density and topography of active biomolecules exposed to sur-
rounding surfaces, including extracellular matrix (ECM) and neighboring cells. Further,
the effect of a given molecule on cell fate decisions may be different when it is in soluble
form or anchored to a surface. This information should thus be included in the input of
any cell model.

In addition to the properties of anchored bioactive molecules, cells are known to be
strongly influenced by the material properties of their microenvironment [140]. We shall
now list the features of recognized importance. Note that the separation between the
material properties of anchored molecules and underlying substrates may seem somewhat
arbitrary, but this was felt warranted for the sake of clarity.

3.2.2. Influence of Surrounding Material Properties on Cell Behavior

It is well known that the properties of an extracellular matrix or neighboring cells play
an essential role in cell behavior. Anchorage dependence, which was mentioned above,
provides a dramatic example [94]. However, it was long considered that this phenomenon
was essentially due to the necessity for cells to interact with specific anchored molecules.
More recently, it was repeatedly demonstrated that cells are also deeply influenced by some
bulk properties of surrounding surfaces, including basic physical-chemical properties such
as hydrophobicity, mechanical stiffness, and micrometer- or nanometer-scale topography.
Properties probed by cells encountering a surface will now be considered sequentially.

Basic Physical-Chemical Properties

When the mechanisms of cell interaction with other cells or surfaces were first studied,
it was hoped that the basic theoretical framework developed by physical chemists [15]
might provide a strong basis for data interpretation: a suitable Hamaker constant might
account for an attraction between membrane lipid bilayers. The negatively charged
glycoconjugate-rich membrane coat, called the glycocalyx, might account for an anti-
adhesive effect generated by electrostatic repulsion and entropic repulsion generated by
the confinement of flexible polymer, a phenomenon called steric stabilization. The ca-
pacity of phagocytic cells such as macrophages to ingest hydrophobic particles might be
accounted for by surface-energy effects (see [15] for a general presentation and [141] for
more information and specific references). Indeed, an important issue in biomaterials
science would be to find a set of parameters allowing researchers to fully characterize
a surface and predict its fate in a biological environment [142]. However, this hope has



Int. J. Mol. Sci. 2023, 24, 2266 16 of 26

not yet been fulfilled. While the importance of basic parameters such as surface charge
and hydrophobicity remains recognized in current thinking [143], the parameters provide
insufficient information to predict the outcome of cell–cell and cell–surface interaction. An
important reason for this situation is that a material surface exposed to a biological envi-
ronment is coated within seconds with a layer of adsorbed biomolecules that subsequently
undergo conformation changes that will result in the exposure of a number of structural
motives, the interaction of which with the multiple cell membrane receptors will drive
biological responses [141,143]. Moreover, while glycocalyx-mediated repulsive forces are
certainly important, their effect may depend on considered receptors. Thus, long adhesion
receptors such as P-selectin (about 40 nm length) are much less sensitive to repulsive forces
than T-cell receptors or CD32 immunoglobulin receptors (about 15 nm length). Thus, the
information sensed by a cell encountering a surface is better described by a description
of the accessibility of individual ligand molecules than a global parameter accounting for
repulsion and surface separation.

Environmental Stiffness

It has been repeatedly demonstrated that many cell processes such as resisting mechan-
ical forces [144], migrating, [145,146], spreading [147], entering an activation program [148]
or differentiating [140,149–151] are highly dependent on the stiffness of underlying sur-
faces. Therefore, it is important to define an exhaustive set of parameters accounting for the
mechanical properties of surfaces that are sensed by cells. In most cases, experiments were
performed with polymers such as polyacrylamide [149,151], collagen [150] or alginate [140]
coated with adhesion molecules such as fibronectin. Young modulus is commonly used
as a reporter of surface stiffness. This parameter provides a simple way of describing the
elasticity of a homogeneous medium, i.e., the deformation induced by a constant stress.
However, it is not ensured that this provides an exhaustive account of the information
retrieved by a cell probing an actual surface. Firstly, actual media are viscoelastic, and it
is important to consider the timescale of stiffness determination by cells [92,152]. Indeed,
when mesenchymatous cells were deposited on hydrogels exhibiting independent changes
of elasticity and stress relaxation, spreading, proliferation and differentiation were shown
to be influenced by stress relaxation parameters [153]. Murine fibroblasts and osteoblasts
were reported to detect substrate prestrain [154], and the spreading of mesenchymal stem
cells was concluded to depend on matrix plasticity [155]. It would certainly be useful
to determine a small set of parameters accounting for the mechanical properties of most
substrates encountered by cells under experimental or physiological conditions. Moreover,
since the major path followed by cells to probe surface stiffness is probably by pulling at
ligands of adhesion receptors, retrieved information is expected to depend at the same time
on the mechanical properties of the substrate, adhesive bonds, receptor-bearing molecules
and receptor–cytoskeletal interaction. Thus, a ligand-specific tethering parameter might
provide a better description of the information yielded by a given adhesive interaction. Ac-
cordingly, cell stiffness sensitivity is dependent on the arrangement of adhesion sites [156],
and it was concluded from other studies that cells integrate adhesive and mechanical cues
provided by a substrate [157,158].

Probably different sensing mechanisms are used by cells to process pulling and push-
ing interactions. Indeed, traction forces may be used to assess the biological significance
of a ligand or the opportunity to develop focal adhesions, whereas a pushing movement
may generate inhibitory signals to a moving cell [159]. Specific molecules may be needed
to inhibit cell growth, since contact inhibition is required to maintain the homeostasis of an
entire organism. It is also important for a migrating cell to be able to stop pushing against a
stiff surface. Therefore, the possible importance of using different parameters to account
for substrate response to pushing and pulling forces should be considered [133].
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Surface Topography

It has long been known that adherent cells are highly sensitive to the micrometer- and
nanometer-scale topography of underlying surfaces [160].

Thus, cells align along grooves exposed by a surface [161,162]. The amoeboid mi-
gration of lymphocytes confined within channels of a 5 µm section was sensitive to the
micrometer-scale texture of these channels [163]. The migration of breast cancer cell de-
posited on fibronectin-coated surfaces was sensitive to the micrometer-scale shape of
adhesive areas [164].

Further, cell behavior is markedly sensitive to the nanometer-scale topography of
surfaces. As an example, macrophage activation was qualitatively dependent on the
roughness of underlying titanium surfaces [165,166]. When T lymphocytes were deposited
on surfaces bearing nanopillars of 10 nm height bearing anti-TCR antibodies, activation
was decreased when nanopillar spacing was increased to above 50 nm [167].

A problem to make use of these results is that there is no simple way of achieving
an exhaustive description of surface roughness [168]. A possible way of identifying a
minimal set of parameters accounting for the influence of environment roughness on cell
function might be to consider potential mechanisms for this influence. The following
three hypotheses may be considered: (i) As mentioned above, the signaling efficiency of
a membrane receptor may be modulated by its molecular environment. As described
above the sorting out of phosphatase-associated bulky CD45 molecules was shown to be
involved in TCR-mediated signaling. This sorting was altered when TCR ligands were
bound to nanopillars with a spacing wide enough to allow CD45 insertion [167]. (ii) It
has been well shown that the membrane of cells strongly adhering to a surface may at
least partially adapt the cell’s curvature to improve molecular contact [134,169]. Further,
the conformation [170] and localization of membrane proteins may be influenced by local
curvature, thus modulating signaling. Recently, cells expressing a fluorescent actin reporter
were deposited on substrates bearing nanostructures of varying curvature [171]; the authors
concluded that actin fibers formed in regions of curvature radius lower than about 200 nm,
and this involved FBP17, a curvature-sensing protein. (iii) During the first phase of contact
formation between a cell and a surface, the formation of ligand–receptor contacts may
be strongly modulated by the topography of approaching surfaces [172], leading to the
concept of an effective contact area [173]. Alternatively, it might be useful to define an
effective density to account for the accessibility of any important ligand molecule.

A tentative summary of parameters sensed by living cells to analyze their environment
is shown in Table 1.

Table 1. How cells see the world.

Environmental Cue Cell Detection Mechanism Main Signaling Trigger

Soluble or anchored ligands of
membrane receptors Receptor engagement Conformational change

2D topography of encountered
surfaces—density gradients

Sorting of membrane molecules in
contact areas—haptotaxis Clustering, synapse formation

3D topography—roughness Membrane curvature Curvature-sensing molecules

Force generation and viscoelasticity of
neighboring structures

Membrane undulations, pulling and
pushing movement Mechanotransduction

Cells continually analyze their environment, including the extracellular medium, extracellular matrix and en-
countered cells, to take decisions. A classification of retrieved cues is suggested, together with the way they are
perceived by cells and the main signaling mechanisms involved in information processing.

4. Conclusions

The main conclusion is that while much progress has been made in providing quan-
titative accounts of cell states with thousands of parameters, and in analyzing the state
transitions triggered by tens of combinations of soluble stimuli, much experimental evi-
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dence has demonstrated that cell behavior is guided by a complex combination of multiple
environmental cues, including the density of soluble and anchored molecules, 2D and 3D
topography of the surrounding matrix and cells at the micrometer and submicrometer level,
and the mechanical properties of these components. It is therefore suggested that it might
be worthwhile to try to build a quantitative description of the cell environment with an
accuracy matching the currently achieved description of cell states. It might be reward-
ing to relate detailed environmental signals to physiological outcomes without including
information relative to intracellular networks. It is suggested that this might provide a
valuable support for the modeling of cell state transitions. As a first and essential step to
approach this goal, there is a need to build sufficiently extensive training datasets, including
a quantitative account of the aforementioned signals and cell behavioral responses.

In addition, it was felt that the following three remarks might be of interest.
First, it might be warranted to improve the tools used to check currently developed

models. Indeed, while innovative computer-assisted tools allow processing of the enor-
mous amount of information yielded by high-throughput omic studies, a major weakness
caused by the very power of these techniques is that it is difficult to subject analyses to
stringent checks. Unsupervised clustering or principal component analysis are representa-
tive examples of heuristic tools yielding results that are difficult to validate. This concern is
the more serious, as the growing complexity and multidisciplinary character of systems
biology makes the details of current papers more and more difficult to criticize, and even
to understand by reviewers with a biological background. Interestingly, the importance
and dangers of these situations have been encountered and well stated in other scientific
domains, such as the highly respected field of theoretical physics [174–177]. Thus, it would
certainly be useful to organize systematic checks of cell behavioral models. The support of
CASP experiments to the development of protein structure predictions suggests that this
may be a rewarding effort [70].

A second point is about the data efficiency of elaborated models. Current omic-based
descriptions of cell states may involve hundreds or thousands of parameters. Building a
readily testable model of signaling processes would require a drastic dimensional reduction.
A current challenge certainly consists of combining conventional biological wisdom with
machine learning to improve the efficiency of data processing. This strategy was claimed
to be successful in the domain of image processing [178]. Moreover, the human brain is
known to be able to rapidly analyze an image that may include millions of pixels, e.g., for
face recognition that has to be completed fairly rapidly. This can be achieved by using
a specific encoding [6,179]. Similarly, there may be a need for cell survival to synthesize
a myriad of environmental cues into a simple and fairly stable class. It is tempting to
speculate that it might be possible to identify a cell code for environmental description.

Third, as suggested in the beginning of this section, the quality of training datasets
should determine the success of future progress in modeling cell behavior. A first and
easiest step consists of listing relevant parameters, in the spirit of Table 1. However,
the second and much more formidable task will consist of filling the cases of training
spreadsheets with relevant information on the effect not only of individual signals but
also of signal association (see, e.g., Section 3.1.1 and [27]). This will obviously require a
much more extensive and up-to-date analysis of published data than the mere compilation
presented in this paper. Further, the following example illustrates another previously
discussed [5] difficulty concerning the choice of quantitative parameters accounting for
environmental cues. While it is well accepted that the outcome of T-lymphocyte stimulation
is strongly dependent on the lifetime and force dependence of the TCR-ligand bond, there
is currently no comprehensive list of binding properties containing all a priori information
required to predict the outcome of receptor engagement. A possible way to overcome this
difficulty may be to measure simultaneously with sufficient temporal resolution receptor
engagement, force generation and cell activation. Thus, recent experiments suggested that
TCR-mediated activation might be triggered by a force of about 5 pN, and this might be
generated by a loading rate of 1.5 pN/s generated by T cells [180]. This kind of evidence
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might provide guidelines for determining the parameters relevant to cell activation, e.g.,
by using as a key parameter the bond lifetime under 5 pN force after a few seconds of
strengthening. More generally, it may be suggested that a current challenge may consist of
combining multimodal experimental platforms aimed at monitoring well-chosen cellular
models [105] and aforementioned omic and machine learning techniques. While the
complexity of this task may seem formidable, it may be hoped that a better understanding of
cell encoding processes might help reduce the complexity of datasets to a manageable size.
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2D Two dimensional Relative to anchored molecules
3D Three dimensional Relative to soluble, freely diffusing molecules
CASP Critical assessment of protein structure prediction
ECM Extracellular matrix
EGF Epidermal growth factor
IRM Interference reflection microscopy
LAD Leukocyte adhesion deficiency
LFA-1 Lymphocyte function associated molecule 1
MAKP Mitogen activated protein kinase
NGF Nerve growth factor
NMR Nuclear magnetic resonance
PCA Principal component analysis
TCR T Cell receptor
TIRF Total internal reflection fluorescence
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