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Abstract: Methyl donors such as choline, betaine, folic acid, methionine, and vitamins B6 and B12
are critical players in the one-carbon metabolism and have neuroprotective functions. The one-
carbon metabolism comprises a series of interconnected chemical pathways that are important for
normal cellular functions. Among these pathways are those of the methionine and folate cycles,
which contribute to the formation of S-adenosylmethionine (SAM). SAM is the universal methyl
donor of methylation reactions such as histone and DNA methylation, two epigenetic mechanisms
that regulate gene expression and play roles in human health and disease. Epigenetic mechanisms
have been considered a bridge between the effects of environmental factors, such as nutrition, and
phenotype. Studies in human and animal models have indicated the importance of the optimal
levels of methyl donors on brain health and behavior across the lifespan. Imbalances in the levels
of these micronutrients during critical periods of brain development have been linked to epigenetic
alterations in the expression of genes that regulate normal brain function. We present studies that
support the link between imbalances in the levels of methyl donors, epigenetic alterations, and
stress-related disorders. Appropriate levels of these micronutrients should then be monitored at all
stages of development for a healthier brain.
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1. Introduction

Environmental factors such as diet and stressors have substantial effects on brain
health [1]. The impact of these factors could be long-lasting if we are exposed to them
during early life. Methyl-donor micronutrients play an important role in normal brain
development and function [2–5]. Micronutrients such as choline, betaine, folic acid, me-
thionine, and vitamins B6 and B12 have been shown to modulate the epigenome [5]. They
are critical players in the one-carbon metabolism which consists of chemical reactions and
some of these reactions lead to the formation of S-adenosylmethionine (SAM). SAM is a
universal methyl donor for key epigenetic mechanisms such as DNA methylation and
histone methylation [6]. These mechanisms regulate gene expression and function without
altering the gene sequence and play a key role in human health and disease [7].

Studies have shown that methyl-donor micronutrients can act as neuroprotectants in
the developing brain by causing epigenetic alterations in key neuronal genes [5,8,9]. For
example, changes in DNA methylation and changes in histone marks have been reported
in stress-related disorders [10–13]. Exposure to stressors during early development has
been linked to epigenetic changes in different brain regions that play a role in cognitive
function or regulation of the stress response and behavior [14–16]. Early life stressors
could cause epigenetic programming of stress-related genes with long-term effects on the
functionality of the stress or the hypothalamic–pituitary–adrenal (HPA) axis and other
neuronal networks [17,18]. Research studies conducted in human and animal models show
a link between early supplementation of dietary components with methyl donors and
changes in cognitive functions and behavior [9,19–22].
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In this review, we will focus on the role of methyl-donor micronutrients in the one-
carbon metabolism and how they impact gene expression regulation by epigenetic mech-
anisms. We will summarize those studies that show the effects of early life stressors on
brain function and report whether the supplementation of these micronutrients can cause
epigenetic alterations of key genes related to cognitive functions and behavior and hence
influence disease progression or prevention.

2. Epigenetic Mechanisms

Epigenetic mechanisms regulate gene expression and function by altering the chro-
matin structure without altering the base sequence of DNA. These mechanisms are in-
terrelated and include DNA methylation, posttranslational modifications of histones or
histone modifications, chromatin remodeling, and the role of microRNAs [23–27] (Figure 1).
These mechanisms can be induced by environmental factors, could be reversible, and have
been linked to the etiology of many diseases or disorders such as cancers, cardiovascular
diseases, metabolic disorders, and neurological disorders [7]. It is, therefore, critical to
understand the role of nutrients, as environmental factors, in altering gene expression by
their epigenetic mechanisms and how these alterations that happen at critical stages of
development are linked to human health and disease.
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Figure 1. Epigenetics mechanisms. This is a schematic view of the epigenetic mechanisms that
regulate gene expression. They are interrelated and include DNA methylation, histone modifications,
chromatin remodeling, and the role of microRNAs.

DNA methylation plays essential roles in a range of biological functions in mammals
such as the silencing of transposable elements, regulation of gene expression, DNA replica-
tion, parental imprinting, X-chromosome inactivation, control of cellular differentiation,
normal embryonic development, normal brain development, and brain plasticity [28,29].
DNA methylation is a covalent inert modification that chemically modifies the DNA with-
out altering its charge. It does that by adding the methyl group CH3 to the carbon 5
on cytosine which is located next to guanine in the CpG dinucleotides, which leads to
the formation of 5-methylcytosine (5-mC) as a nitrogenous base [25,30,31]. This covalent
modification is catalyzed by the activity of DNA methyltransferases (Dnmt1, Dnmt3a,
Dnmt3b, and Dnmt3L) that utilize S-adenosylmethionine (SAM) as a universal methyl-
donor. Structurally, these mammalian enzymes share a conserved C-terminal catalytic
domain important for their enzymatic activity except for Dnmt3L. They also contain an
N-terminal regulatory domain except for Dnmt2. The N-terminal domain is essential for
protein–protein interactions such as interactions of Dnmts with proteins or effectors that
are involved in the modulation of chromatin structure and function [32]. These enzymes
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are expressed in a spatial and temporal manner and have been shown to be abundantly
expressed in the brain. Although DNA methylation is considered one of the most sta-
ble and inert epigenetic marks in the mammalian genome, it can be reversible [33,34].
This was demonstrated with the discovery of DNA demethylases such as the ten-eleven-
translocation (TET) family of proteins. The activity of these enzymes led to the discovery of
the 5-hydroxymethylcytosine (5-hmC) as a modified nitrogenous base with a role in cellular
differentiation, aging, and cancer [35–37]. The majority of CpGs are concentrated in the
gene promoter and in the first exon of a gene they are known as CpG islands and are often
unmethylated. The abnormal methylation of these CpGs is linked to gene repression [30].
Studies have shown that the supplementation of specific micronutrients that act as methyl
donors can cause global or gene-specific changes in methylation in the developing and
mature brain, thus altering gene expression and susceptibility to diseases [3,5,38].

Histone modification is another epigenetic mechanism that chemically modifies the
N-terminal tail of histones. In this way, it alters the interaction of DNA with histone
proteins, around which the DNA is wrapping itself resulting in changes in gene expression.
The switch between chromatin compaction and chromatin relaxation is regulated by the
ability of the N-terminal tail to perform malleable posttranslational modifications (PTMs)
at specific amino acid residues along this tail. These modifications are not random but
occur at specific residues such as lysine (K), arginine (R), serine (S), or threonine (T) and
accordingly, can alter the accessibility of transcription factors to their binding sites [39,40].
The best-understood and well-characterized histone modifications include methylation,
acetylation, phosphorylation, ubiquitination, and sumoylation. These modifications are
written by “writers”, erased by “erasers”, and read by effector proteins. Most histone
methylation and acetylation happen at the lysine and arginine residues of histone H3
and H4; lysine methylation is catalyzed by histone methyltransferases (HMTs/KMTs)
and lysine demethylation by histone demethylases (HDMs/KDMs). Similarly, histone
acetylation is regulated by histone acetyltransferases (HATs/KATs) and deacetylation by
histone deacetylases (HDACs) [40–44]. The epigenetic factors of microRNAs represent
another layer of gene expression regulation. They are described as short RNAs that do
not code for proteins but regulate the expression of many protein-coding genes. They
require the RNA-induced silencing complex (RISC) to guide them to their target which
is the 3′-untranslated region (3′UTR) of a gene. Once they reach their target, they cause
gene silencing by either degrading the mRNA or halting its translation [26,45,46]. These
epigenetic factors are abundantly expressed in the developing and mature brain and
can modulate gene expression at different stages of neuronal development in diverse
organisms [47,48]. The dysregulation in microRNA expression has been associated with
several diseases or disorders [49], including neurological disorders [48,50–52]. These
epigenetic mechanisms described above are now considered plausible mechanisms in the
etiology of many diseases that are environmentally induced and not necessarily caused by
genetic factors.

3. One-Carbon Metabolism

One-carbon metabolism consists of chemical reactions that are catalyzed by several
enzymes with the contribution or presence of methyl-donor micronutrients. These reactions
support several pathways such as nucleotide metabolism, redox state, neurotransmitters
synthesis such as acetylcholine, and regulation of epigenetic mechanisms via the formation
of SAM [53–56]. Folate and methionine cycles are two main components of the one-
carbon metabolism [54], among which the methyl-donor micronutrients such as folate,
methionine, choline, betaine, and vitamins B6 and B12 are critical players. There is a
link between the changes in the levels of these micronutrients and epigenetic alterations
(Figure 2). Table 1 provides a list of methyl-donor micronutrients that contribute to the
one-carbon metabolism.
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Figure 2. One-carbon metabolism. This figure shows the main components of the one-carbon
metabolism, the folate cycle, the methionine cycle, and the contribution of micronutrients such as
choline, betaine, folate, methionine, VitB6, and VitB12 in several biological processes. Enzymes and
vitamins are written in red and biological processes are highlighted in green. Micronutrients are high-
lighted in blue. THF: tetrahydrofolate, SAM: S-adenosylmethionine, SHA: S-adenosylhomocysteine,
SAHH: SAH hydrolase, BHMT: betaine-homocysteine methyltransferase, MAT: methionine acetyl-
transferase, DNMTs: DNA methyltransferases, HMTs: histone methyltransferases, MS: methionine
synthase, MTHFR: methyltetrahydrofolate reductase, ChAT: choline acetyltransferase, AchE: acetyl-
choline esterase, GSH: glutathione. Adapted from Ref. [5].

Table 1. This table summarizes the functions of methyl donors that contribute to the one-
carbon metabolism.

Methyl Donors Function References

Methionine Precursor for SAM formation, maintenance of the
redox state, and brain health. [57]

Choline
Regulation of cholinergic signaling, maintaining

cellular membrane integrity, and contributing to the
formation of SAM.

[58–61]

Betaine Choline precursor, a methyl-donor in the BHMT
pathway, and anti-inflammatory functions. [62–64]

Folic acid Normal brain development, nucleotide synthesis, and
prevention of neural tube defects. [65–67]

Vitamin B12 Nucleotide synthesis, antioxidant properties, and
maintaining brain health. [68–70]

Vitamin B6

Maintenance of the redox state and brain health. Role
in transamination and decarboxylation reactions

required for the metabolism of several
neurotransmitters. Nucleotide synthesis and

protein/lipid metabolism.

[71–73]

The main outcome of the methionine cycle is the formation of SAM that powers
methylation reactions such as DNA methylation and histone methylation. SAM donates
the methyl group to the epigenetic machinery such as DNA methyltransferases (DNMTs)
that methylate the DNA or to histone methyltransferases (HMTS/KMTs) that methy-
late histones [6,38,53] (Figure 2). After the transfer of the methyl group to the substrate,
SAM is converted to S-adenosylhomocysteine (SAH). Under normal conditions, SAH is
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hydrolyzed to yield adenine and homocysteine by S-adenosylhomocysteine hydrolase
(SAHH) (Figure 2). On the other hand, the elevation in SAH levels compared to SAM has
an inhibitory effect on DNA methyltransferases with the potential to alter DNA methy-
lation [74,75]. Via the catalytic activity of cystathionine β-synthase (CBS), homocysteine
with serine can form cystathionine, which is further catalyzed to form products with
antioxidant properties. Methionine can be regenerated by the activity of two enzymes,
betaine-homocysteine methyltransferase (BHMT) and methionine synthase (MS). Betaine-
homocysteine methyltransferase can transfer a methyl group from betaine, as a choline pre-
cursor or derived from the diet, and generate methionine and dimethylglycine (DMG). The
folate metabolism leads to the formation of purine and 5-methyltetrahydrofolate (5-MTHF)
using 5-methyltetrahydrofolate reductase (5-MTHFR). It is worth noting that methyltetrahy-
drofolate reductase (MTHFR) gene polymorphism alters its enzymatic activity and has
been linked to altered cognitive functions [76]. Another enzyme, 5-methyltetrahydrofolate-
homocysteine methyltransferase or methionine synthase (MS), a VitB12-dependent enzyme,
can transfer a methyl group from 5-methyltetrahydrofolate (5-MTHF) to homocysteine and
in this manner produces tetrahydrofolate (THF) and methionine (Figure 2). Methionine
is adenylated by methionine adenosyltransferase (MAT) to generate SAM [53]. Dietary
methyl donors such as choline, betaine, folic acid, methionine, and the B vitamins are inter-
connected in this one-carbon metabolism. Changes in their levels can alter gene expression
and regulation by altering the levels of SAM, linking changes in the intake of dietary methyl
donors to alterations in cellular functions.

4. Dietary Methyl Donors, Epigenetic Alterations, and Stress-Related Disorders

Studies have shown that early life experiences cause a developmental programming
of the hypothalamic–pituitary–adrenal (HPA) axis or stress axis and behavioral responses
to stressors [17,77,78]. This developmental programming of the stress axis induced by
early life experiences could be explained by changes in the expression of stress-related
genes by epigenetic mechanisms such as DNA methylation with long-term neurobehav-
ioral outcomes [79–82]. The supplementation or deficiency in the levels of methyl-donor
micronutrients during early life can have an impact on offspring brain development with
long-term effects on behavior [83–86]. In this section, we will describe the programming
of the stress axis through early life experiences and the role of methylation, then we will
summarize research studies that explain this intricate link between micronutrients, changes
in methylation, and stress-related or neurodevelopmental disorders.

4.1. HPA Axis Programming by Early Life Stress and the Role of Methylation

The hypothalamic–pituitary–adrenal (HPA) axis represents the organism’s neuroen-
docrine response to stressors. Upon HPA axis activation, the immune system and the
nervous system are also activated. This results in the release of stress mediators such as
endocrine hormones, cytokines, and neurotransmitters. These mediators enable the organ-
ism to react and respond to stress leading to an adaptive or maladaptive response [87–89].
The main mediator that is released upon HPA axis activation is glucocorticoid GC (or
cortisol), which exerts a negative feedback mechanism at the levels of the anterior pitu-
itary, hypothalamus, and hippocampus. GC can cross the blood–brain barrier and bind
to its glucocorticoid receptor (GR), with higher affinity to the mineralocorticoid receptor
(MR). Glucocorticoid receptors and mineralocorticoid receptors are widely expressed in
limbic regions such as the prefrontal cortex, hippocampus, amygdala, and hypothalamus
(Figure 3). The binding of GC to its receptor induces signaling mechanisms that regulate
the stress response and behavior via the activation or repression of stress-related genes [90].
Aberrant release of GC or a blunted HPA axis response is harmful and has been shown to
contribute to psychopathology [89–91].

The dysregulation of the HPA axis and imbalances in the levels of GCs and the ex-
pression of its receptors in limbic regions have been linked to psychiatric disorders [92–94].
In particular, exposure to stress during early life is considered one of the main early life



Int. J. Mol. Sci. 2023, 24, 2346 6 of 15

experiences that can result in long-term consequences such as neurobehavioral changes that
may develop into major psychosis [95–98]. One plausible explanation that mediates this
link between early life experiences and long-term neurobehavioral outcomes are epigenetic
mechanisms that chemically modify the expression of stress-related genes via methyla-
tion [1,12,81,99,100]. Genome-wide changes in methylation, hypo- and hypermethylated
sites, were reported in the brain tissues of suicidal individuals or individuals with a history
of early life adversity [101,102].
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Figure 3. HPA axis. This figure represents the HPA axis or the stress axis where glucocorticoids
(GCs) are the outcome of its activation. GC exerts feedback at the levels of the anterior pituitary,
hypothalamus, and hippocampus to regulate the stress response. GC receptors are expressed in the
hippocampus, hypothalamus, prefrontal cortex, and amygdala, which are considered part of the
limbic system. CRF/CRH: corticotropin-releasing hormone or factor, ACTH: adrenocorticotropin
hormone, GC: glucocorticoid. Red arrows on the right side mean negative feedback. Green arrow
means positive feedback.

The brain is plastic, especially early in development where exposure to adaptive or
maladaptive environmental factors can have positive or negative long-term effects on
health that could pass to the next generations [103,104]. We evaluate here evidence of
the role of DNA methylation in the embedding of early life experiences and the role of
nutrition. One of the most studied brain regions in humans and rodents that demonstrates
the long-term effects of early life experiences on behavior is the hippocampus. For example,
the effects of maternal care in the form of licking and grooming during postnatal life impact
the behavior and the stress response of offspring during adulthood. The alterations in the
offspring stress response later in life were associated with a change in the methylation
status of the CpG islands of the glucocorticoid receptor (GR) (NR3C1) gene promoter that
altered the binding of the nerve growth factor-induced protein A (NGF1-A) transcription
factor to its binding site in the GR promoter and altered GR gene expression in the rat
hippocampus. This study demonstrated the epigenetic effects of maternal care on the
offspring’s stress response in relation to changes in the methylation of the GR gene pro-
moter [105]. Similarly, human postmortem hippocampal tissues of suicidal victims with a
history of childhood abuse or maltreatment showed an increase in the methylation of GR
with a decrease in its expression [106]. The effects of early life experiences impact other
stress-related genes besides GR. Exposing infant rats during early postnatal life to stress
altered the methylation status and the expression of the brain-derived neurotrophic factor
Bdnf gene in the adult prefrontal cortex. This alteration persisted in the next generation of
infant rats demonstrating the transgenerational transmission of the effect of early stress
on brain-derived neurotrophic factor Bdnf and behavior [107]. Another study conducted
in mice showed the effects of early life stress (ELS) on neuroendocrine function in the
hypothalamic paraventricular nucleus (PVN). Early life stress resulted in hypomethylation
of the promoter of the Vasopressin gene (Avp) with an increase in its expression. These
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epigenetic changes were associated with an elevation in blood corticosterone levels, an
impaired ability of offspring to cope with stress, and an impaired memory [108]. An
interesting study conducted in Wistar Kyoto rats, a highly stress-susceptible strain with
anxiety/depression-like phenotypes and a hyperactive HPA axis, showed a positive ef-
fect of ELS on offspring neurodevelopment during adulthood. Maternal separation for
180 min from postnatal days 1 to 14 caused global hypermethylation in the rat hippocampus
but not in other limbic regions with reduced methylation in the insulin receptor and its
downstream targets, known to have a role in memory and neuronal survival. Several
other genes that are linked to cell proliferation, tyrosine kinase signaling, axonal guidance,
synaptogenesis, and transmission were differentially methylated. Interestingly, the GR
(Nr3c1) gene methylation was not altered in this study. These methylation changes were
associated with diminished depressive or anxiety-like behavior, increased exploratory
behavior, and increased sociability in offspring suggesting stress resilience in adulthood as
an adaptive response of offspring to persistent ELS. Dietary methyl-donor supplementation
for four weeks during adulthood had anxiolytic and antidepressant effects in these rats
with improved cardiovascular responses to stress [109].

Methyl-CpG-binding protein (MeCP2) has been implicated in the etiology of the
developmental disorder, Rett syndrome (RTT). Rett syndrome mouse models show altered
corticosterone response to stress, dysregulated levels of the stress hormone corticotropin-
releasing hormone or factor (Crh/Crf), and dysregulation of the stress axis [110–112]. In this
context, one study investigated the effects of ELS such as maternal separation (MS) from
postnatal days 3 to 21 in MeCP2 heterozygote female mice (MeCP2-het-MS) and wild-type
(WT-MS) mice on anxious behavior during adolescence using behavioral tests such as open
field, the forced swim test, and elevated plus maze. At six weeks of age, MeCP2-het-MS
mice show less anxiety and less depressive-like behaviors compared to WT-MS mice, with
reduced neuronal activation in the PVN, as depicted by the immunoreactivity of c-fos/Avp
and c-fos/Crh. These findings indicate the role of MeCP2 functionality on stress axis
regulation and its impact on emotional behavior and neuronal activity later in life [113].

Interestingly, one study reported the hypermethylation of a distal cytosine guanine
island (CGI) shore of the GR (Nr3c1) in Crh-producing neurons in the PVN of the hypotha-
lamus, a brain region that is involved in stress regulation, leading to upregulation of GR
and thus preventing the elevation of Crh in response to stress in adulthood [114]. Other
stress-related genes that are found to be altered epigenetically in response to early life
stress are vasopressin (Avp) and Crh/Crf in the hypothalamic PVN. For example, maternal
separation in mice resulted in the hypomethylation of CpG sites along the enhancer of Avp
leading to an increase in its expression with an increase in stress responsiveness due to an
elevation in corticosterone. This elevation led to altered feedback inhibition of the HPA axis
response leading to a hyperactive stress response [108]. Interestingly, this hypomethylation
of Avp was linked to the phosphorylation of MeCP2 and an altered ability of phosphory-
lated MeCP2 to bind to the Avp enhancer and recruit DNA methyltransferases to cause
gene repression [115]. Early prenatal stress caused hypomethylation of CpG sites of the
Crf promoter in the hypothalamus and central amygdala of mice with elevated levels of
corticotropin-releasing factor (CRF), suggesting dysregulation of their stress axis during
adulthood [116].

What about Bdnf in the context of ELS and epigenetic alterations? Epigenetic regula-
tion of Bdnf expression is affected in response to ELS. For example, the release of MeCP2
repressor complex from the Bdnf promoter results in its demethylation with an increase
in Bdnf expression [117], and the epigenetic mediator microRNA-132 has been shown to
downregulate MeCP2 expression and indirectly reduce Bdnf levels in the hippocampus of
a rat model of chronic stress-induced depression [118]. Epigenetic regulation of Bdnf has
been linked to neuroplasticity and neuronal activity in mature hippocampal neurons [119].
Studies have demonstrated that Bdnf expression is critical for normal dendritic branch-
ing in the hippocampus and amygdala implicating the role of Bdnf in major behavioral
correlates of stress disorders such as anxiety and depressive-like behaviors [120,121]. The
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type, intensity, and duration of the stressor, the developmental period studied, the brain
region involved, and the rodent strain used in studies may have resulted in different in-
terpretations and results in the scientific field. For example, postnatal stress resulted in
Bdnf hypermethylation and reduced Bdnf expression in the rat adult prefrontal cortex that
persisted in the next generation [107], whereas prenatal stress resulted in decreased Bdnf
expression and hypermethylation at Bdnf exon IV in the rat amygdala and hippocampal
regions during adulthood with an increased expression of Dnmt1 and Dnmt3a [122].

4.2. Potential Neuroprotective Effects of Dietary Methyl Donors: More or Less?

The etiology of many diseases is now believed to be caused by not only genetic factors
but also environmental factors via epigenetic mechanisms that do not follow mendelian
inheritance patterns [24,123]. Dietary methyl-donor micronutrients that contribute to
the one-carbon metabolism have been shown to be critical during development as they
contribute to the formation of SAM which is involved in methylation reactions that are
essential for brain health across the lifespan [5]. In this section, we will present evidence
from findings that demonstrate the effects of the optimal levels of these micronutrients
during specific stages of development on human health and disease.

Folate maternal intake is quite important to decrease the incidence of neural tube
defects (NTDs) in children and its deficiency has been linked to many diseases including
anemia, atherosclerosis, psychiatric disorders, and cancer [93,124]. Consistent results
in clinical trials showed the beneficial effects of using folate in conjunction with other
pharmacological interventions in mitigating the effects of psychiatric disorders such as
schizophrenia, bipolar disease, autism, and attention-deficit hyperactivity disorder [125].
Several human studies demonstrated the correlation between maternal inadequate intake
of micronutrients and altered neurodevelopment such as brain defects, altered behavior,
altered cognition, and potential contribution to psychiatric disorders [10,126,127]. A large
study conducted in humans showed that maternal intake of folate and VitB12 during
the first trimester of pregnancy correlated with a higher score in cognitive measures in
children at age 3 years [128]; in addition, a Norwegian study demonstrated a reduced
risk of language delay in children at 3 years of age with folate maternal intake during
early pregnancy [129]. The neuroprotective effects of micronutrients are not only evident
during early life. Several studies linked the intake of specific micronutrients to cognitive
performance during adolescence. For example, higher dietary folate intake positively
correlated with academic performance in adolescents [127–130]. Animal studies showed
comparable findings. For example, prenatal folate deficiency during the gestational days
GD11-GD17 in rats is linked to structural changes in the brain such as a reduction in the
number of progenitor cells in the fetal neocortex [131]. VitB deficiency correlated with the
elevation of homocysteine in neurons and astrocytes in specific brain regions such as the
striatum, hippocampus, and cerebellum. Homocysteine-positive cells showed markers
of death. These rats had altered motor function and altered cognitive functions such as
learning and memory deficits during adulthood [132].

In an early life induced model of depression in rats, maternal separation for 180 min
from postnatal days PD2 to PD21 altered the levels of total high-density lipoprotein-
cholesterol (HDL-cholesterol) levels and increased depressive-like behaviors in offspring, as
measured by an increased immobility time in the forced swimming test displayed by these
rats. An eighteen-week supplementation of choline, betaine, folate, and VitB12 at PD60
reduced the depressive-like behavior in offspring and increased total DNA methylation in
the hippocampus, as measured by the levels of 5-methylcytosine [21]. The anti-depressive
action of methyl donors was demonstrated in chronically high-fructose-treated rats, an
animal model of anxiety and mood disorders. Eight weeks of methyl-donor supplementa-
tion at 4 weeks of age in female rats reduced oxidative stress, as measured by the nitrite
content in the rat hippocampus, reduced anxiety-like behavior in the elevated plus maze
test, and depressive-like behavior in the forced swimming test, reinforcing the notion that
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methyl donors could act as nutri-therapeutic agents in mitigating the effects of stress-related
disorders such as anxiety and depression [133].

The neuroprotective effects of methyl donors of the one-carbon metabolism were also
reported in humans with and in animal models of neurodegenerative disorders such as
Alzheimer’s disease (AD). AD is one of the most common types of cognitive impairment
with aging and is associated with altered one-carbon metabolism. Its neuropathology is
characterized by the accumulation of amyloid beta peptide plaques and the hyperphospho-
rylation of the microtubule-associated protein tau, causing the formation of neurofibrillary
tangles [134]. Recent studies support the notion that diets rich in micronutrients that play
a role in the one-carbon metabolism have promising effects in mitigating AD pathogen-
esis [67,135–139]. In the context of methyl donors, an increase in plasma homocysteine,
and hence SAH as a methyltransferase inhibitor, was reported in AD brain samples and
correlated with cognitive impairment [140]. The association between VitB and AD is still
debatable. Presenilin (PSEN1) plays a role in increasing secretase activity that cleaves the
amyloid precursor protein (APP) into amyloid beta peptides. Studies have linked VitB defi-
ciency to hypomethylation of the PSEN1 promoter and an increase in its expression in an
AD TgCRND8 mouse model. Supplementation of SAM to these mice reversed the effects on
PSEN1 hypomethylation and expression, tau phosphorylation, and reduced amyloid beta
peptide production [141,142]. On the other hand, folic acid supplementation in an amyloid
precursor protein/presenilin (APP/PSNE1) transgenic mouse model of AD reduced the
levels of amyloid beta proteins as this correlated with increased activity of Dnmt1 and the
hypermethylation of PSEN1 and APP promoters which correlated with a decrease in their
expression [143]. Deficiency or disruption in glutathione (GSH) levels, an antioxidant that
is produced by homocysteine in the transsulfuration pathway (Figure 2), has been linked
to cognitive decline in AD patients and contributes to AD-related oxidative stress [144,145].
In the context of betaine, another methyl-donor, human studies showed that betaine sup-
plementation in AD patients results in: decreased levels of homocysteine, phosphorylated
tau, and amyloid beta accumulation; a reduction in blood inflammatory markers such
as interleukin-1 beta (IL-1β) and tumor necrotic factor-alpha (TNF-α); an increase in the
levels of memory-related proteins such as NR1, NR2A, and NR2B (NMDA receptors); an
increase in the levels of synaptic proteins such as synaptophysin, synaptotagmin, and
phosphorylated synapsin I [146].

What about choline? Choline is the main precursor for betaine and serves as a methyl
donor for the formation of SAM via the methionine cycle. Choline is neuroprotective, can
be derived from food, has essential functions related to the production of neurotransmitters
such as acetylcholine that regulates cholinergic signaling, and maintains the integrity of
cellular membranes via the formation of phosphatidylcholine [147] (Figure 2). Dietary
supplementation of choline in the amyloid precursor protein/presenilin1 (APP/PS1) mouse
model of AD improved spatial memory in the Morris water maze and reduced the pro-
cessing of APP to amyloid beta peptides with a reduction in microglia activity, which is
known to play a role in neuroinflammation, seen in AD, suggesting the potential benefits
of diets rich with choline on brain function [148]. Since acetylcholine is quite essential
for cholinergic signaling in the brain, acetylcholine esterase inhibitor, the enzyme that
degrades acetylcholine, is currently used as a drug for AD treatment, although its use
showed side effects and did not prevent AD progression due to low efficacy [149]. Choline
perinatal supplementation (fetal and early postnatal) in AD mouse models showed positive
improvements at several levels. These mice showed in the hippocampus: reduced levels
of amyloid beta proteins; reduction in amyloid plaque accumulation; elevation of choline
acetyltransferase (ChAT), the enzyme that forms acetylcholine from choline; a decrease in
the levels of glial fibrillary acidic protein (GFAP) proteins, a marker of gliosis, suggesting
the importance of choline intake during pregnancy and shortly after birth [150]. Another
study demonstrated the beneficial effects of choline supplementation in an AD mouse
model (APP/PS1 mice) during adulthood. Supplementing these mice from 2 to 11 months
of age with choline resulted in reduced anxiety and improved spatial and learning memory
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in several behavioral tests. This correlated with reducing amyloid beta accumulation in the
cortex and the hippocampus with a decrease in the levels of microglia activation markers,
restoration of choline and acetylcholine levels in the cerebral cortex and the hippocampus,
and increased ChAT-positive cholinergic neurons in the basal forebrain and amygdala.
Moreover, choline effects on synapses were also determined. Choline supplementation
increased the levels of synaptophysin and the postsynaptic density protein (PSD95) in the
hippocampus of this AD mouse model [151].

5. Conclusions

Early life stress can have adverse long-term effects on health with an increased pos-
sibility of developing neuropsychiatric disorders later in life. The ability to respond and
react to stress involves the regulation of the HPA axis and the involvement of brain regions
and neuronal networks that belong to the limbic system. Our mental health such as our
adaptation to stress and our resilience in the face of adversity is dependent on the time of
exposure to stressors during development, the duration, intensity, and the type of stressor.
It also includes the genetic make-up of an individual and other environmental factors.
These factors greatly impact brain health across the lifespan. Epigenetic mechanisms are
considered plausible mechanisms that explain this intricate relationship between our genes
and our environment that may impact behavior and brain health. Studies have shown that
supplementation of methyl donors during early life is essential for normal brain growth
and development and has long-lasting effects on mental health. The regulated consump-
tion of these nutrients later in life has been shown to improve cognitive functions and
mitigate the symptoms of neurodegenerative disorders when used with other pharmaceu-
tical interventions. The micronutrients of methyl donors in the one-carbon metabolism
have been reported to be neuroprotective, can cause global or gene-specific changes by
epigenetic mechanisms, and could be used in a regulated manner to mitigate the symptoms
of neurodegenerative diseases and stress-related disorders at early stages of prognosis. The
dosage and the timing of intake of these micronutrients in healthy individuals should be
monitored by a health professional to prevent unwanted side effects or overdosage, as
these micronutrients play crucial roles in many physiological processes and may have an
impact on brain health.
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