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Table S1. Summary of in vitro tested conditions and cellular response of stem cells upon IGF-1 administration (sorted alphabetically according to cell species). Key:  = increased,  
= decreased,  = no change , AA = Ascorbic acid, ASC = adipose-derived stem cells, BSA = bovine serum albumin, col = collagen, COMP = cartilage oligomeric matrix protein, DCN 
= Decorin, DMEM = Dubelco’s Modified Eagle Medium, EGR1 = early growth response protein 1, FCS = fetal calf serum, Ham’s F12 = Tenocyte culture medium, LLLT = low-level 
laser therapy, MSC = bone marrow-derived stem cells, ON = Osteonectin, SCX = scleraxis, TNC = tenascin-C, TNMD = Tenomodulin, TSC = tendon-derived stem cells.  

In vitro model IGF-1 
[ng/mL] 

Administration Time point Cellular response Gene expression 

Canine MSCs [1] 10 

3D high-density cul-
tures on a nitrocellu-
lose filter on a steel 

grid 

7 d, 14 d 

Similar morphology, intercellular contacts and 
extracellular organization like tenocytes 

Protein synthesis: 
col I no 

col III no 
DCN no 

TNMD no 
SCX no 

 

Equine bone marrow MSCs [2] 100 

On tendon matrix, 
high-glucose 

DMEM with 10 % 
FBS 

7 d 
Proliferation  

Matrix proteins, col synthesis  
GAG synthesis  

COL1 
COL3 

COMP  

Equine bone marrow MSCs [3] 10 

High-glucose 
DMEM with 10 % 

FCS and 37.5 µg/mL 
AA on a col I hydro-

gel 

10 d 
Matrix proteins: 

GAG  
Gel contraction  

COL1 
COL3 
DCN  
BGN  
SCX  

Equine peripheral blood 
MSCs [4] 

10 DMEM with 20 % 
FCS, + / - LLLT 

5 d  
DCN  
TNC  
EGR1  

Human ASCs [5] 10, 50, 100 
Ham’s F12 media 
with 0.2 % BSA 3 d 

Proliferation  
(best with 50 ng/mL)  

Rat TSCs [6] 1, 10, 100 Basal tendon cell 
medium 

14 d, 28 d 

Proliferation  (any dose) 
Maintenance of stem cell phenotype 

 (d 28; 10 & 100 ng/mL) 
Protein expression (same treatment over time): 

col I  (d 14); 
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 (d 28, 10 & 100) 
col II  (d 28), 
 (10 & 100) 
SCX  (d 28) 

DCN  (d 28, 1);  
TNC  (d 28, 10);  

ON  (d 14,); 
 (d 14, 100);  

(same time point compared to control): 
col I  (d 14); 
 (d 28) 

col II  (d 14), 
 (d 28, 10 & 100) 

SCX  
DCN  (d 14);  (d 28) 

TNC  (d 28, 10);  
ON  (d 14);  (d 28) 

Rat ASCs [7] 10, 50, 100 

Reseeding in a ten-
don-specific hydro-
gel from human ca-

daver tendons in 
ECM solution with 

10 % FCS 

5 d Proliferation  
(best with 100 ng/mL) 

 

 
 
 
 

  



Int. J. Mol. Sci. 2023, 24, 2370  4 of 16 
 

 

Table S2. Summary of in vitro tested conditions and cellular response of tenocytes and tendon fibroblasts upon IGF-1 administration (sorted alphabetically according to cell species). 
Key:  = increased,  = decreased,  = no change , α-MEM = α-MEM α-MEM Medium, AA = ascorbic acid, AbAm = antibiotic antimycotic, ACAN = aggrecan, ALP = alkaline 
phosphatase, BAPN = beta-aminopropionitrile, BSA = bovine serum albumin, col = collagen, COMP = cartilage oligomeric matrix protein, DCN = Decorin, dd = dose-dependent, 
DMEM = Dubelco’s Modified Eagle Medium, GAG = glycosaminoglycan, FBS = fetal bovine serum, M-199 = name of medium Mki67 = marker of proliferation Ki-67, mRNA = 
messenger ribonucleic acid, SCX = scleraxis, SOX9 = SRY-box transcription factor 9, TNC = tenascin-C, TNMD = Tenomodulin, RUNX = runt-related transcription factor. 

In vitro model IGF-1 
 [ng/mL] Administration Time point Cellular response Gene expression 

Avian tendon epitenon surface 
cells and tendon internal fibro-

blasts [8] 

0.076, 
0.38, 
0.76 

DMEM without 
FCS, mechanical 
load (1 Hz, 0.05 

max. strain for 8 h) 

1 d Proliferation  (higher with load than with-
out; dd)  

Equine tendon cells [2] 100 

On tendon matrix, 
high-glucose 

DMEM with 10 % 
FBS and 37.5 µg/mL 

AA 

7 d 

Proliferation  
Matrix proteins : 
col synthesis  

GAG synthesis   

COL1 
COL3 

COMP  

Equine tenocytes [9] 10, 50, 200 

Anisotropic GAG 
scaffolds, 

serum-free, non-
supplemented 

DMEM 

1 d (Chemotaxis) 
7 d (Proliferation, 
gene expression) 

Proliferation  (dd) 
Metabolic activity  (dd) 

Migration  (dd) 
Soluble col   

COL1 
COL3 
SCX  

DCN  (low dose) /  
TNC  (low dose) /  

COMP  

Equine explant culture from su-
perficial digital flexor ten-

dons [10] 

250, 
+/- 3 mg BAPN 

Explant culture in 
M-199 media con-
taining 100 µg/mL 
AA and 5 % FBS 

10 d 

Proliferation  
Matrix proteins : 

col synthesis  ; GAG content  
In situ hybridization: 

col I & col III mRNA  

 

Human tenocytes [11] 10, 50 
α-MEM with 0 % 

FBS 
(control: 10 % FBS) 

14 d 

Survival of tenocytes without FBS for 14 days 
but no proliferation col layers less aggregated 

and weaker than control cells 
Very low col synthesis 

Spindle-shaped morphology 

 (50 ng/mL) 
SCX  
COL1 

TNMD  
DCN  



Int. J. Mol. Sci. 2023, 24, 2370  5 of 16 
 

 

Human fibroblasts, and 
tenocytes [5] 10, 50, 100 

Ham’s F12 media 
with 0.2 % BSA 

3 d 
Proliferation  (both cell types, best with 50 

ng/mL)  

Human tenocytes [12] 2.5 x 108 

DMEM / F12 with 
0.5 or 10 % FBS in-
coated plates with 
~1.5 ml SYLGARD 

7 d, 14 d, 10 d, 
21 d, 28 d 

Fibril diameter  
(d 21, not d 28) 

Mean col content  

 (0. 5% FCS, d 10, 14) 
COL1 
COL3 
SCX  

TNMD  
(10 % FCS, d 21, 28) 

COL1 
COL3 
SCX  

TNMD  

Mouse tenocytes [13] 100 Low-glucose DMEM 
with 1 % AbAm 

1, 2, 6, 24 h 

Proliferation  
(highest after 24 h) 

 
 

 (1h, 2h, 6h, 24 h) 
COL1A1 
COL1A2 

COL3 (6 & 24 h ) 
ki 67  (6 & 24 h) 
SCX  (1 & 2 h) 

TNMD  
BGN  

COMP  
Rabbit tendon cells 

(synovial sheath (S), epitenon 
(E), endotenon (T)) [14] 

10, 50, 100 Serum-free Ham’s 
F12 with 0.2 % BSA 

3 d Proliferation  
(dd only synovial sheath cells) 

 

Rat tenocytes [15] 10, 50, 100 DMEM / F12 with 
0.5 % FBS 3 d 

Proliferation  
(at any dose) 

col deposition  
(only with 10 ng/mL)  

COL1 
COL3 
DCN  

TNMD  
SCX  

RUNX  
ALP  

ACAN  
SOX9  
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Table S3. Summary of in vitro tested conditions and cellular responses on stem cells upon administration of IGF-1 in combination with other growth factors (sorted alphabetically 
according to cell species). Key:  = increased,  = no change,  = decreased,  ,AA = ascorbic acid, ASC = adipose-derived stem cells, bFGF = basic fibroblast growth factor, BMP-12 
= bone morphogenic protein-12 (= GDF-7), col = collagen, CTGF = connective tissue growth factor, BGN = Biglycan, BSA = bovine serum albumin, DCN = Decorin, ECM = extra cellular 
matrix, GAG = glycosaminoglycan, EGR1 = early growth response protein 1, FCS = fetal calf serum, LLLT = low-level laser technology, MSC = bone marrow-derived stem cells, PDGF-
BB = platelet-derived growth factor, SCX = scleraxis, TGFβ = transforming growth factor beta, TNC = Tenascin-C, TNMD = Tenomodulin. 

In vitro model Growth factor 
[ng/mL] Administration  

Time point Cellular response Gene expression 

Canine MSCs [1] IGF-1: 5 
TGFβ1: 5 

3D high-density cul-
tures on a nitrocellu-
lose filter on a steel 

grid 

7 d, 14 d 

Similar morphology, as tenocytes (spindle-
shaped morphology, intercellular contacts, ex-

tracellular organization) 
Protein synthesis: 

col I yes 
col III yes 
DCN yes 

TNMD yes 
SCX yes 

 

Equine peripheral blood 
MSCs [4] 

IGF-1: 10 
bFGF: 10 

DMEM with 20 % 
FCS, + / - LLLT 5 d 

Proliferation  
 

DCN  
TNC  
EGR1  

Equine bone marrow MSCs [3] 

IGF-1 & BMP-12: 
10 & 50 

IGF-1 & TGFβ1: 
10 & 5 

High-glucose 
DMEM with 10 % 

FCS and 37.5 µg/mL 
AA on a col I hydro-

gel 

10 d 

Matrix protein: 
GAG content  (both conditions) 

Gel contraction  (IGF-1 & TGFβ1) 
  

a) both conditions 
BGN  
SCX  

COL1  
COL3 

b) IGF-1 & BMP-12 
DCN  

c) IGF-1 & TGFβ1 
DCN  

Human ASCs [5] 
IGF-1: 50, 100 

bFGF: 5, 10 
PDGF-BB: 10, 50 

Ham’s F12 media 
with 0.2 % BSA 

3 d 
Proliferation  

(best with 50 ng/mL IGF-1, 5 ng/mL bFGF, and 
50 ng/mL PDGF-BB) 

 

Human ASCs [5] 
IGF-1: 50 
bFGF: 5 

PDGF-BB: 50 

Repopulation on 
tendon scaffold in 

Ham’s F12 
3 d 

Proliferation  col production of reseeded cells 
continues on tendon scaffold after incubation of 

12 days 
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Human ASCs and MSCs [16] 

IGF-1: 50 
with BMP-12, 
CTGF, TGFβ3, 

AA, b-FGF 

High-glucose 
DMEM with 1 % 

FCS 
3 d, 10 d  

In IGF-1-free medium 
(both cell types) 

SCX  
DCN  

Rat ASCs [7] 
IGF-1: 50, 100 

bFGF: 5 10 
PDGF-BB: 50, 100 

Reseeding in a ten-
don-specific hydro-
gel from human ca-

daver tendons in 
ECM solution with 

10 % FCS 

5 d 

Proliferation  
(best with 

100 ng/mL IGF-1, 
10 ng/mL bFGF, 

100 ng/mL PDGF-BB) 
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Table S4. Summary of in vitro tested conditions and cellular responses on tenocytes and fibroblasts upon administration of IGF-1 in combination with other growth factors (sorted 
alphabetically according to cell species). Key:  = increased,  = decreased,  = no change, AA = ascorbic acid, bFGF = basic fibroblast growth factor, BMP-12 = bone morphogenic 
protein (= GDF-7), BSA = bovine serum albumin, col = collagen, COMP = cartilage oligomeric matrix protein, CTGF = connective tissue growth factor, DCN = Decorin, dd = dose-
dependent, GAG = glycosaminoglycan, GDF-5 = growth differentiation factor, FBS = fetal bovine serum, FCS = fetal calf serum, PDGF-BB = platelet-derived growth factor, SCX = 
Scleraxis, TGFβ = transforming growth factor beta, TNC = tenascin-C, TNMD = Tenomodulin. 

In vitro model Growth factor 
[ng/mL] Administration Time point Cellular response Gene expression 

Avian tendon epitenon surface 
cells and tendon internal fibro-

blasts [8] 

IGF-1: 0.76 
PDGF-BB: 

0.24, 1.2, 2.4 

DMEM without 
FCS, mechanical 
load (1 Hz, 0.05 

max. strain for 8 h) 

1 d Proliferation  (higher with load than 
without, PDGF-BB; dd)  

Equine tenocytes [9] 

IGF-1 pairings: 
IGF-1: 50 
bFGF: 5 

GDF-5: 500 

Anisotropic GAG 
scaffolds, 

serum-free, non-
supplemented 

DMEM 

1 d (Chemotaxis) 
7 d (Proliferation, 
gene expression 

Proliferation  (not as high as combina-
tions of bFGF and GDF-5 with PDGF-BB) 

 
 

Metabolic activity  (not as high as combi-
nations of bFGF and GDF-5 with PDGF-

BB) 
 
 

Soluble col  
(higher with GDF-5 than with bFGF) 

a) IGF-1 & bFGF 
COL1  
COL3 
SCX  
DCN  
TNC  

COMP  
b) IGF-1 & GDF-5 

COL1  
COL3 
SCX  
DCN  
TNC  

COMP  

Human tenocytes [11] IGF-1: 10, 50 
TGFβ3: 1, 10 

α-MEM with 0 % 
FBS 

(control: 10 % FBS) 
14 d 

Survival of tenocytes without FBS for 14 d 
(no proliferation) 

Spindle-shaped morphology 
Cell alignment and col fibril morphology 

similar to control cells 
col synthesis increased with combination 

of IGF-1 (50  ng/mL) and TGFβ3 
 (10 ng/mL) but still lower than control 

cells 

 Combination of IGF-1 
(50 ng/mL) and TGFβ3 

(10 ng/mL) 
SCX  

COL1  
TNMD  
DCN  
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Human fibroblasts and 
tenocytes [5] 

IGF-1: 50, 100 
bFGF: 5, 10 

PDGF-BB: 10, 50 

Ham’s F12 media 
with 0.2 % BSA 3 d 

Both cell types: 
Proliferation  

(best with 50 ng/mL IGF-1, 5 ng/mL bFGF, 
50 ng/mL PDGF-BB) 

 

Human fibroblasts and 
tenocytes [5] 

IGF-1: 50 
bFGF: 5 

PDGF-BB: 50 

Repopulation on 
tendon scaffold in 

Ham’s F12 
3 d 

Both cell types: 
Proliferation  

col production of reseeded cells continues 
on tendon scaffold after incubation of 12 d 

 

Human tendon cells [16] 

IGF-1: 50 
in different com-

binations with 
BMP-12, CTGF, 

TGFβ3, AA, 
bFGF 

High-glucose 
DMEM with 1 % 

FCS 
3 d, 10 d  

In IGF-1-free medium: 
SCX  
DCN  

Rabbit tendon cells 
(synovial sheath (S), epitenon (E), 

endotenon (T)) [14] 

IGF-1: 10, 50, 100 
PDGF-BB: 1, 10, 

50 
bFGF: 1, 5 

Serum-free Ham’s 
F12 with 0.2 % BSA 3 d 

Proliferation  (best with 
100 ng/mL IGF-1, 

5 ng/mL bFGF, 
50 ng/mL PDGF-BB) 

 

 
 
 

 

  



Int. J. Mol. Sci. 2023, 24, 2370  10 of 16 
 

 

Table S5. Overview of in vivo experiments and outcomes after IGF-1 or GH administration, key:  = increased,  = decreased,  = no change, - = not assessed, col = collagen, DNA 
= desoxy ribonucleic acid, FSR = fractional synthesis rates, GH = growth hormone, H&E Hematoxylin&Eosin, HSR = heavy slow resistance, m = mimic, mRNA = messenger ribonucleic 
acid, PINP = procollagen type I N-terminal propeptide, PRF = platelet rich fibrin, PRP = platelet rich plasma, HSR = heavy slow resistance, rhGH = recombinant human growth factors 
VISA-P = Victorian Institute of Sport Assessment–Patella, GH = growth hormone, FSR = fractional synthesis rates, PINP = procollagen type I N-terminal propeptide, H&E 
Hematoxylin&Eosin . Outcomes noted in brackets are not statistically significant. 

In vivo model Growth factor 
concentration 

Administra-
tion 

Time point Biomechanics Histology Other outcomes 

Rat Achilles tendon full 
transection [17] 

 

25 µg LR3-IGF-1; 1 mg 
Carrageenan 

Inert 4 % 
methyl-

cellulose gel 
15 d 

IGF-1: 
Time until functional recovery  

(Failure with surgery ) 
Tendon length and 
circumference  
Failure loads  

Failure deformation  
Transection: 

Gross stiffness  
 

Transection: 
Altered tendon 

structure 
Inflammatory reaction 

 

IGF-1: 
Achilles index  

Functional deficit  
Neutrophilic 
invasion  

Rat Achilles ten-don 
full transection [18] 

2 mg/kg bodyweight 
GH 

 
1 U Botox/Muscle 

Daily injection 
divided in 2 

injections 
10 d 

Loaded + GH + transection: 
Peak force, peak stress, elastic 

modulus, cross sectional area  
Stiffness  

Loaded + GH + sham: 
Peak force, peak stress, elastic 
modulus, cross sectional area, 

stiffness  
Unloaded + transection: 

Peak force, peak stress, stiffness 
elastic modulus  
Unloaded + sham: 

Peak force, peak stress, stiffness 
elastic modulus  

 
 
 
 
 
 
 
 
 
 
 
 
- 
 

 
 
 
 
 
 
 
 
 
 

Loaded + GH: 
Anabolic effect 

 
Unloaded + GH: 
Anabolic effect 

 



Int. J. Mol. Sci. 2023, 24, 2370  11 of 16 
 

 

Rat rotator cuff tear 
 [19] 

rh-IGF-1, PEG-IGF-1m, 
IGF-1m 

Matrix with 
incorporated 

IGF-1, sutured 
onto defect 

4, 8 w 

PEG-IGF-1m: 
Failure load, stiffness, work to 

failure, strength, Young’s 
Modulus, toughness  

Intervention: 
Tissue healing  

Cellularity  
remodeling  
PEG-IGF-1m: 

Col organized  
Round cell morphology 

 
Cellularity  

Col maturation  
PEG-IGF-1m, 

IGF-1m: 
Cellular orientation  

 
PEG-IGF-1m: 

Tendon typical 
appearance  

Cross sectional area  
 

Horse Flexor tendinitis 
 [20] 

2 µg rhIGF-1 
 

1 injection 
divided into 4 

small injections 
every second 

day for 10 
times 

0, 2, 3, 4, 6, 8 
w 
 

Load, load normalized by body 
weight, stress  

IGF-1: 
(Stiffness ) 

Cellularity  
IGF-1: 

Individual H&E scores 
for cell morphology, col 

fiber linearity, 
crimping, uniformity, 
density, inflammatory 

cells, 
neovascularisation, 

epitenon thickening  
(Total H&E score ) 

 

IGF-1: DNA and 
hydroxyproline  

GAGs  
col I and col III  

Limb circumference  
Swelling  

Lesion size  
 

Rabbit Achilles tendon 
defect [21] 0.5 cm3 PRF 

Applied into 
defect 6 w - 

PRF: Repair zone filled 
with heterogeneous 

tissue, 
elongated cells 
High cellularity 
Dense collagen 

 

PRF: 
Aligned tendon fibers 

 
Continuous fibrillary 

appearance  
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Rabbit Patellar Tendon 
Defect [22] 

25 µg rhIGF-1 
4 ng  

TGF-β1 

Fibrin sealant 
gel into the 

wound  
 

2, 6 w 

IGF-1: 
Force at failure, ultimate stress, 
energy uptake, stiffness  w 2 
Force at failure, ultimate stress, 
energy uptake, stiffness  w 6 

IGF-1: 
Vessel number  

Plump shaped 
tenocytes  w 2,  w 6 
( Orientation of repair 

tissue ) 

- 
 

Rabbit Patellar Tendon 
Defect [23] 

PRP enough to fill 
defect 

Applied into 
defect 

1, 2, 3 and 4 
w 

- 

PRP: 
Appearance of repair 

site  w 1-2 
Denser tissue 

Less elastic fibers  
Tenocyte orientation  
Immature tissue  w 3 
Completely healed w 4 

PRP: 
IGF-1 in epitenon & 
endotenon  w 1-3 
IGF-1 in endotenon 

 w 4 
IGF-1 in 

epitenon  w 1-4 
Control: 

IGF-1 in epitenon 
 w 1-3 

IGF-1 in endotenon  
compared to epitenon 

 w 4 

Human patellar 
tendon [24] 1 mg rhIGF-1 

Injection on 
day 1 and 2 d 2 - - 

IGF-1: 
Interstitial tissue [IGF-

1] locally  
Higher interstitial [IGF-
1] than circulating [IGF-

1] 
Collagen FSR  

1.5 – 4.5 h 
PINP expression  2-3 

h 

Human patellar 
tendon [25] 

0.1 mL of rhIGF-1 
(10 mg/mL)  

 

Injection at w 0, 
1 and 2 

12 w follow-
up 

- 
 
 

- 

Tendinopathic: 
COL1A1 &  COL3A1  

(IGF-1Ea ) 
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HSR training  
 

Total mRNA 
IGF-1 : 

Doppler activity 
 w 12 

Tendon thickness  
Sports activity  

Placebo: 
Tendon thickness , 

VISA-P  w 0 and 1 y 

Human patellar 
tendon [26] 

33.3 µg/kg and 
50 µg/kg bodyweight 

rhGH 

Daily injection 
for 2 x 7 d, 5 

months apart  
 

d 1 - 7:  
33.3 µg/kg 

d 8 - 14: 
50 µg/kg 

d 14 - - 

GH: 
Serum GH  

Serum IGF-1  
Serum IGFBP-1  
Serum IGFBP-3  
IGF-1Ea mRNA 
IGF-1Ec mRNA  

COL1A1mRNA and 
COL3A1 mRNA  

Tendon col protein FSR 
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Figure S1 
 

 

Figure S1: Proliferation of tenocytes as a function of IGF-1 concentration; smaller range of [IGF-1] compared to Figure 2B, in order to better distinguish the values between 10 and 

100 ng/mL [2,5,11,14,15]. 
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