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Abstract: In spite of consistent progress at the level of basic research and of clinical treatment, acute
myeloid leukemia (AML) still represents an unmet clinical need for adult and pediatric patients. To
improve the outcomes of these patients, it is necessary to identify new therapeutic targets. IL3RA
(CD123, alpha subunit of the interleukin 3 receptor) is a cell membrane protein overexpressed in
several hematologic malignancies, including AML blastic plasmocytoid dendritic cell neoplasms
(BPDCN). Given the higher expression of CD123 on leukemic cells compared to normal hematopoietic
cells and its low/absent expression on normal hematopoietic stem cells, it appears as a suitable and
attractive target for therapy. Various drugs targeting CD123 have been developed and evaluated
at clinical level: interleukin-3 conjugated with diphtheria toxin; naked neutralizing anti-CD123
antibodies; drug–antibody conjugates; bispecific antibodies targeting both CD123 and CD3; and
chimeric antigen receptor (CAR) T cells engineered to target CD123. Some of these agents have shown
promising results at the clinical level, including tagraxofusp (CD123 conjugated with diphtheria toxin)
for the treatment of BPDCN and IMGN632 (anti-CD123 drug-conjugate), and flotetuzumab (bispecific
anti-CD123 and anti-CD3 monoclonal antibody) for the treatment of AML. However, the therapeutic
efficacy of CD123-targeting treatments is still unsatisfactory and must be improved through new
therapeutic strategies and combined treatments with other antileukemic drugs.

Keywords: acute myeloid leukemia; blastic plasmocytoid dendritic cell neoplasm; interleukin-3;
interleukin-3 receptor; CD123; targeted therapy

1. Introduction

Acute myeloid leukemia (AML) is a heterogeneous malignant hematological dis-
ease characterized by the clonal proliferation of hematopoietic stem and progenitor cells
(HSCPs) and blockade of differentiation of myeloid precursor cells that accumulate in bone
marrow at the expense of normal hematopoiesis. The development of high-throughput
sequencing techniques has consistently contributed to defining the genetic heterogeneity
and complexity of AMLs, revising diagnostic and prognostic criteria, and identifying new
therapeutic targets.

AMLs can be classified into three different groups depending on their origin: de
novo, secondary (sAML), and therapy-related AMLs (tAML), which correspond to different
clinical subtypes. According to the WHO classification of myeloid neoplasms: de novo
AMLs are those occurring in the absence of prior predisposing events; sAMLs are defined as
AMLs occurring after an antecedent myeloid neoplasia, such as myelodysplastic syndromes
or myeloproliferative neoplasms; tAMLs are defined as AMLs occurring as the consequence
of mutagenic events caused by cytotoxic chemotherapy and/or radiotherapy [1].

AMLs have been classified according to their clinico-biological properties [2]. The
most adopted risk classification of AMLs is the ELN 2022 (European Leukemia Network)
stratification that proposed the classification of AML patients into one of the three risk
groups, such as favorable, intermediate, and adverse. The favorable prognosis group
includes AMLs with acute promyelocytic leukemia (APL) t(15;17), balanced translocations
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t(8;21), biallelic mutated CEBPA and inv(16), and mutated NPM1 without FLT3-ITD. The
intermediate group comprises mutated NPM1 with FLT3-ITD, WT-NPM1 with FLT3-ITD
(without adverse-risk genetic lesions), t(9;11), MLLT3-MLL, and cytogenetic abnormalities
neither favorable nor adverse. The adverse AML group comprises AMLs with complex
karyotype, inv(3)(q21q26)/t(3;3)(q21;q26), DEK-NUP214 t(6;9)(p23;q34), RPN1-EVI1, BCR-
ABL1 t(9;22)(q34.1;q11.2), KATA6-CREBBP t(8;16)(p11.2;p13.3), t(6;11), −5 or del(5q), −7 or
abnormal (17p) or monosomal karyotype, TP53 mutations, RUNX1, ASXL1, BCOR, EZH2,
SF3B1, STAG2, U2AF1, and ZRS2 mutations [2].

Considerable progress has been made in the characterization of the molecular abnor-
malities underlying AMLs with the identification of recurrent chromosomal alterations
and gene mutations, allowing the classification of these leukemias into various subgroups
characterized by different genetic alterations and responses to current treatments [3–7].

The development of molecular analysis of AMLs has provided new fundamental
knowledge on molecular pathogenesis of these disorders in genomic diagnostics and in
the assessment of measurable residual disease; furthermore, these studies have greatly
contributed to the identification of therapeutic targets and of new therapeutic agents, such
as FLT3, IDH2, IDH2, and BCL2 inhibitors [8,9]. However, in spite of this consistent
progress, the survival of AML patients remains low, particularly for patients older than age
60 [8,9].

Therefore, there is an absolute need to identify new therapeutic targets and new thera-
peutic approaches. In this context, an area of growing interest consists in the development
of targeted antibody-based immunotherapeutic agents; targets of interest include CD33,
CD47, CD70, CD123, FLT3, and CLL-1 for their high expression on the surface of leukemic
blasts and leukemic stem cells [10].

2. CD123

CD123, the alpha chain of the human interleukin-3 receptor (IL-3R), is a member of the
beta common (βC) cytokine family, including the GM-CSFR and the IL-5R. These cytokine
receptors are characterized by their heterodimeric structure, composed of a specific alpha
chain and a common beta chain, which is involved in cell signaling. CD123 expression in
normal human hematopoiesis is lineage-specific, in that this receptor is expressed at the
level of the majority of CD34+ hematopoietic progenitors and its expression is lost during
megakaryocytic and erythroid differentiation, while it is maintained in cells differentiating
along granulocytic and monocytic lineage [11]; CD123 is expressed only in a part of normal
hematopoietic stem cells [12].

IL-3R expression was extensively explored in hematologic malignancies. This recep-
tor is not mutated but frequently overexpressed in several hematological malignancies,
including AMLs. Initial studies have shown that CD123 is overexpressed in leukemic
CD34+/CD38− leukemic stem/progenitor cells compared to the normal counterpart [13].
Testa et al. in 2002 reported the results of a first systematic analysis of CD123 in AML,
showing an overexpression in about 45% of cases associated with increased cycling activity
of leukemic blasts, increased cellularity (white blood cell count) at diagnosis, and increased
responsiveness to cell signaling triggered by IL3 and poor prognosis [14]. These findings
were confirmed in subsequent studies [15,16].

AMLs overexpressing CD123 are characterized by some peculiar immunophenotypic
features, including low CD34 expression and high CD11b and CD14 expression, and by
the frequent occurrence of FLT3-ITD mutations [17,18]. Furthermore, a subset of AMLs,
characterized by FLT3 overexpression but absent FLT3 mutations, frequently overexpress
CD123 [19].

Other studies have confirmed the frequent overexpression of CD123 in FLT3-ITD-
mutated AMLs and in NPM1-mutated AMLs; in particular, Rollins-Raval and coworkers
reported a CD123 overexpression in 83% of FLT3-ITD-mutated AMLs and in 62% of NPM1-
mutated AMLs [20]; Brass and coworkers in a large screening on more than 200 AML
samples confirmed that the highest CD123 expression was observed in FLT3-ITD and
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NPM1-mutated AMLs [21]. Perriello and coworkers analyzed a large cohort of NPM1-
mutated AML patients and confirmed that CD123 is highly expressed in these leukemias,
particularly at the level of the CD34+/CD38− cell population [22]. Other studies have
confirmed the particularly high expression of CD123 observed in double-mutated NPM1-
mutated/FLT3-ITD AMLs [23].

In FLT-ITD-mutant AMLs, CD123 expression was particularly pronounced at the level
of the CD34+/CD38− leukemic cell population, enriched in LSCs [24,25]. These findings
were confirmed in a larger number of FLT3-ITD patients through the isolation of both
leukemic progenitors and precursors and showing that both of these cell populations
express CD123 [26].

Recent studies carried out in pediatric patients showed that also in some subsets of
childhood AML, CD123 expression is particularly pronounced [27]. According to the level
of CD123 expression, the leukemic population was subdivided into four CD123 expression-
based quartiles: importantly, AMLs with the highest CD123 expression (quartile 4) had a
higher prevalence of high-risk FLT3-ITD mutations and KMT2A rearrangements and lower
prevalence of low-risk t(8;21), inv(16) and CEBPA mutations [27]. Interestingly, considering
FLT3-ITD-mutated AMLs, more than 60% display quartile 4 expression [27]. Quartile
4 CD123 expression was associated with poor prognosis (reduced overall survival and
event-free survival) compared to quartiles 1–3 expression [27].

A cell population with the CD34+/CD38−/CD123+ phenotype was detectable in about
75% of AMLs [28]. The frequency of these cells in the leukemic blasts is predictive of the
clinical outcome [29]. Hermann and coworkers explored the immunophenotypic features
of CD34+/CD38− cells purified from a large set of AML and CML patients and observed
that CD123, as well as CD33, are clearly more expressed on leukemic cells compared to the
normal CD34+/CD38− counterpart [30].

Vergez and coworkers have extensively investigated the immunophenotypic features
of two very large cohorts of AML patients and have identified in these cells six different
stages of arrest of leukemic cell differentiation, resembling the features observed for nor-
mal hemopoietic progenitor cells: HSC (hemopoietic stem cell, 0.8%), MPP (multilineage
progenitor, 21.3%), CMP (common myeloid progenitor, 30.1%), GMP (granulo-monocytic
progenitor, 17.4%), MP (monocytic progenitor, 24.2%), and GP (granulocytic progenitor,
6.2%) [31]. The proportion of CD34+/CD38−/CD123+ cells progressively decreases in these
AMLs subdivided according to the stage of leukemic arrest [31].

Haubner and coworkers explored the expression levels of surface LSC markers CD123,
CD33, CLL1, TIM3, CD244, and CD47 in a large cohort of 356 AML patients at diagnosis,
and in 54 of these patients at relapse; CD123, CD244, CLL1, and TIM3 were expressed
both at diagnosis and at relapse [32]. This study confirmed also that CD123 expression
was higher in NPM1-mutated and in FLT3-ITD AMLs compared to NPM1 and FLT3-WT
AMLs [32].

Houtsma et al. explored the expression of CD123, as well as of other LSC surface
markers in CD34+ cells of 256 AML samples; a significantly increased CD123 expression
compared to normal bone marrow cells was observed in de novo AMLs and in tAMLs
but not in sAMLs [33]. The positivity for CD123 and for other LSC markers, such as
CD82, CD97, FLT3, IL1RAP, TIM3, and CD25 after two courses of intensive chemotherapy
predicted a shorter relapse-free survival [33]. Interestingly, this study showed a significant
association between CD123 and CD25 expression in leukemia CD34+ cells [33]. Another
study showed the occurrence of CD123+/CD25+ cells in 18% of AML cases, in association
with poor outcome (shorter overall survival compared to negative cases) [34].

In conclusion, the expression of CD123 at various stages of the leukemic process from
diagnosis to relapse supports CD123 as a suitable therapeutic target for AML.

3. General Considerations on CD123 Therapeutic Targeting in Hematologic Malignancies

Preclinical studies have supported the possible therapeutic targeting of CD123 in some
hematologic malignancies, such as AMLs and blastic plasmocytoid dendritic neoplasms
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(BPDCNs) overexpressing this membrane receptor. Since CD123 is just overexpressed and
not mutated in hematological malignancies, its therapeutic targeting must involve the
use of agents that specifically interact with this receptor, such as its natural ligand IL3, or
monoclonal antibodies that either vehiculate cytotoxic agents into CD123+ leukemic cells
and induce their killing or trigger an immune response, activating the immune system. To
this end, numerous agents have been developed, including IL3 conjugated with cytotoxic
agents, naked neutralizing anti-CD123 antibodies, antibody–drug conjugates, radioimmune
anti-CD123 conjugates, and bispecific antibodies targeting both CD123 and a molecule
of the immune system (Figure 1). Bispecific antibodies include a considerable variety of
molecular constructs characterized by the property of simultaneous binding of a surface
target on leukemic cells (such as CD123) and of molecules like CD3 on T cells, triggering an
HLA-independent, immune response against leukemic cells [35]. Basically, three types of
bispecific antibodies were generated: (i) Bispecific antibodies (BiTEs) are composed by a
single heavy and light chain of the variable region of an antileukemia-associated antigen
(CD123) and of CD3, inducing the formation of a cellular complex between T cells, and
leukemic cells bridged by a bispecific antibody; in BiTEs, the two antibodies are connected
by a linker molecule that contributes to the flexibility of the molecular complex. (ii) Dual-
affinity re-targeting molecules (DARTs) have a structure similar to BiTEs but include a
disulfide linker to increase the stability of the molecular complex. (iii) Bispecific killer cell
engagers (Bikes) and trispecific killer cell engagers (Trikes) are formed by two (Bike) or
three (Trike) variable antigen-binding regions and activate natural killer cells though the
binding to CD16 (Figure 1) [35].
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The development of the technology for chimeric antigen receptor T cell therapy offered
a new opportunity of targeting and killing of leukemic cells bearing CD123 on their surface.
CARs are different receptors that provide the capacity to T cells to recognize specific tumor
antigens and to induce a cytotoxic reaction against tumor cells bearing these antigens and
cause their death [36]. CARs are composed by four basic elements: (i) an antigen recognition
domain, usually represented by a single-chain variable fragment (scFv) composed of heavy
and light chains derived from a monoclonal antibody; (ii) the hinge domain, an extracellular
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structure bridging the antigen recognition domain and the transmembrane domain; (iii)
the transmembrane domain anchoring the CAR to the cell surface membrane; and (iv)
the intracellular signaling domain, containing a costimulatory domain and an activation
domain [36].

4. Ligand–Toxin Conjugates
SL-401 (Tagraxofusp)

One of the approaches for inducing the selective killing of leukemic cells overexpress-
ing CD123 consisted in the generation of conjugates between the ligand IL-3 and a toxin. In
this context, initial studies were based on the generation of a genetically engineered fusion
toxin (DT388) composed by the first 388 amino acid residues of diphtheria toxin (DT) with
a His–Met (H–M) linker, fused to human IL-3, that exerted a pronounced cytotoxic effect
against CD123+ leukemic blasts [37] and was tolerated in primates up to 100 ug/Kg [38,39].
The level of cytotoxicity exerted on the AML blast directly correlated with the level of
CD123 expressed on the surface of these cells [40], and was exerted also at the level of
leukemic cells with phenotypic and functional properties of leukemic stem cells [41]. Subse-
quently, a more potent fusion protein was generated, DT388IL-3[K116W], and the resulting
compound, SL-401 (tagroxofusp) was introduced in phase I/II clinical studies [42].

Tagraxofusp acts through a two-step process, with a first step involving the IL-3
mediated binding to CD123 and then the internalization, and with a second step involving
the cytoplasmic localization of the internalized DT, inducing ADP phosphorylation of the
histidine 715 on e2F, with consequent blocking of protein synthesis and finally, cell death.

One of the therapeutic targets of tagraxofusp is represented by blastic plasmocytoid
cell neoplasm (BPCDN), a rare hematologic malignancy characterized by the proliferation
of leukemic blasts with unique phenotypic features, including also a particularly elevated
expression of CD123; at clinical level, this malignancy is characterized by the invasion of
some extramedullary compartments implying frequent cutaneous involvement and central
nervous system dissemination [43]. This malignancy is associated with poor outcomes
and, until recently, the only available treatment consisted of chemotherapy and stem cell
transplantation limited to younger patients who achieved a response to chemotherapy [43].

Initial phase I/II studies supported an acceptable safety profile of SL-401, with a
maximum tolerated dose of 12.5 ug/Kg/day; a phase II study on 32 BPDCN patients
showed 84% of objective responses, with 59% of complete responses [44]. In 2018, the
results of a phase II, open label, multicohort study have provided support for the FDA
approval of tagraxofusp for the treatment of adult and pediatric BPDCN patients [45]
(Table 1). In particular, this study reported the results on 45 BPDCN patients with untreated
or relapsed disease treated with 7 or 12 ug/Kg of SL-401 on day 1 or 5 of each 21-day cycle:
29 patients received 12 ug of tagraxofusp as a first-line treatment and 15 as a second-line
and third-line treatment [45]. In untreated patients, 72% achieved a complete response
and subsequently underwent stem cell transplantation, with a survival rate of 52% at
24 months, while in the treated patients, the response rate was 67% with an overall survival
of 8 months [45].

SL-401 was evaluated also in pediatric BPDCN patients. Sun et al. reported the results
of three pediatric BPDCN patients treated with SL-401: one of these patients was resistant,
while the two others exhibited a significant response to treatment [46]. Recently, Pemmaraju
reported the results on eight pediatric BPDCN patients (five patients in first-line treatment
and three patients in second- and third-line treatment) treated with tagraxofusp: three out
of five first-line patients achieved a complete response and five patients, three in first-line
and two in second-line treatment, were bridged to stem cell transplantation [47] (Table 1).
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Table 1. Clinical trials in BPDCN and AML patients involving CD123 targeting. Abbreviations: AZA:
azacitidine; VEN: venetoclax; CR: complete remission; PR: partial remission; R/R: relapsed/refractory;
FL: front line.

Target Drugs Phase Disease Outcome Adverse Events

CD123 Tagraxofusp III
BPDCN
32 untreated
13 prev. treated

CR+CRi 54%; in untreated
patients 72%; 52% OS at
24 months

Capillary Leak
Syndrome 21%

CD123 Tagraxofusp I 40 R/R AML
5 R/R MDS

AMLs: CR 2.5%; PR 2.5%
MDS: PR 2.5%

Capillary Leak
Syndrome 31%

CD123
BCL2

TAG+AZA
TAG+AZA+VEN I

14 AML (FL)
12 R/R AML
3 R/R BPDCN
4 MDS

TAG-AZA: AML (FL) CRi
20%; R/R AML CR 0%
TAG-AZA-VEN: AML
(FL) CR+CRi 89%; R/R
AML CR 0%; R/R BPDCN
CR+CRi 66%

Capillary Leak
Syndrome 33%

CD123
IMGN632
(Pivekimab
Sunirine)

I 67 R/R AML CR+CRi 20% Cytokine Release
Syndrome 16%

CD123
BCL2

IMGN632
AZA
VEN

Ib/II 35 R/R AML CR+CRi 31% Cytokine Release
Syndrome 37%

CD123 IMGN632 I 23 R/R BPDCN CR+CRi 22%
PR 8%

Cytokine Release
Syndrome 22%

CD123
CD3

APV0436
(BiTE) I 22 R/R AML, either

pAML or sAML CR+CRi 32% Cytokine Release
Syndrome 18%

CD123
CD3

XmAb 14045
(Vibecotamab)
(BiTE)

I 104 R/R AML
CR+CRi 14% (evaluated in
51 patients at
optimal dose)

Cytokine Release
syndrome 59%

CD123
CD3

Flotetuzumab
(DART) I/II 88 R/R AML

CR+CRi 30% (evaluated in
46 patients at
optimal dose)

Cytokine Release
Syndrome 13%

CD123
CD3

Flotetuzumab
(DART) I 17 R/R pediatric AML CR+CRi 12%

PR 6%
Cytokine Release
Syndrome 9%

CD123 UniCAR-T I 14 R/R AML

Blast cell count reduction
(10 patients), CRi
(2 patients), CR with MRD
negativity (1 patient)

Cytokine Release
Syndrome (12/14)

CD123 Anti-CD123
allogeneic CAR-T I 16 R/R AML

SD (2/16), blast cell count
reduction (1 patients), CR
with MRD negativity
(1 patient)

Cytokine Release
Syndrome (15/16)

CD123 CAR-T I 12 R/R pediatric AML Blast cell count reduction
(1 patient), CR (1 patient)

No grade 2
cytokine release
syndrome

Long-term analysis (median follow-up of 34 months) of the results observed in the
clinical study led to the FDA approval of SL-401 for the treatment of BPDCN patients,
including also some additional patients (65 treatment-naïve and 19 relapsed/refractory) [11].
For treatment-naïve patients, the ORR was 75%, 57% achieved CR+cCR, and the median
duration of response was 24.9 months; 51% of patients achieving a CR were bridged to
stem cell transplantation [48]. Capillary leak syndrome occurred in 21% of patients [48].
Furthermore, a sub-analysis of the BPDCN patients enrolled in the phase I/II trial (NCT
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02113982) showed that tagraxofusp as a first-line treatment was efficacious in all cohorts of
patients, including older patients and patients with significant baseline disease [49].

BPDCN may occur concurrently or with other prior hematologic malignancies (PCHM,
10–20% of patients); therefore, it seemed important to compare the response to tagraxofusp
in patients without and in those with PCHM: patients with PCHM (50% of CR) displayed a
high rate of response as well as those with no PCHM (58% of CR) [50].

Central nervous system involvement occurs frequently in BPDCN patients, being
estimated in the order of 10% at baseline and 30% at first relapse. A recent study showed
that tagraxofusp administered concomitantly with intrathecal chemotherapy in patients
with BPDCN who either have or are considered at high risk to develop CNS disease is a
safe procedure and effective treatment strategy [51].

A recent study retrospectively evaluated 100 BPDCN patients treated either with front-
line chemotherapy HCVAD (hyper fractionated cyclophosphamide, vincristine, adriamycin,
and dexamethasone, 35 patients) SL-401 (37 patients) or other regimens (28 patients), show-
ing the following results: overall survival 28.3 vs. 13.7 vs. 22.8 months, respectively;
complete remission rate 80% vs. 50% vs. 43%; rate of stem cell transplantation 51% vs.
49% vs. 38% [52]. These observations supported a continued value of HCVAD-based
chemotherapy in BPDCN, even in the actual targeted-therapy era [52].

Lane et al. reported the preliminary results of a phase Ib study exploring the safety
and efficacy of combining tagraxofusp with azacitidine, or azacitidine and venetoclax, in
CD123-positive AML, MDS, or BPDCN patients; in this report, three relapsing/refractory
BPDCN patients were included and were treated with the triplet tagraxofusp, azacitidine,
and venetoclax: two of these patients responded to this treatment, achieving a CR or CRi
response and were bridged to allo-stem cell transplantation [53] (Table 1). The addition of
the BCL2 inhibitor venetoclax to azacitidine and tagraxofusp is fully justified by several
recent studies showing both at the preclinical and clinical level the sensitivity of BPDCN to
venetoclax used either as monotherapy or in combination with azacitidine [54–56].

Another set of clinical studies explored the possible use of tagraxofusp in the therapy
of AMLs. The results of a phase I clinical study carried out in 45 AML patients receiving a
single infusion of tagraxofusp showed a low rate of responding patients, limited to one
CR and two PRs [57] (Table 1). More recently, Lane and coworkers reported the results
of a phase Ib study evaluating the safety and the efficacy of tagraxofusp administered in
combination with azacytidine or azacitidine and venetoclax. Fourteen AML patients were
treated with tagraxofusp plus azacitidine: in five AML patients in first-line treatment, one
CR was observed, and in nine relapsing/refractory AML patients, no objective responses
were observed [53]. Twelve AML patients were treated with tagraxofusp, azacytidine,
and venetoclax: in nine patients in first-line treatment, five complete responses and three
complete responses with incomplete hematological recovery were observed; in nine re-
lapsing/refractory AML patients, no objective responses were observed [53] (Table 1).
Importantly, 50% of the responding patients were bridged to stem cell transplantation;
among the responding patients, two had TP53 mutations and adverse karyotype, and three
had secondary AMLs [53].

An ongoing clinical trial is evaluating the response to tagraxofusp plus azacitidine
of secondary AML patients who have failed to respond to hypomethylating agents [58].
Another ongoing clinical trial is evaluating the capacity of tagraxofusp in combination with
azacytidine to eradicate minimal residual disease prior to allogeneic stem cell transplanta-
tion [59].

A significant proportion of leukemic patients are resistant to tagraxofusp and other
patients develop resistance after an initial response; therefore, the presence or the develop-
ment of resistance mechanisms represents a major limitation to CD123 targeting through
tagraxofusp. Stephanski and coworkers have shown the existence of a resistance mecha-
nism not related to CD123 expression. In fact, in both sensitive and resistant leukemic cells,
SL-401 treatment does not alter CD123 expression. Furthermore, they observed in resistant
leukemic cells a downregulation of the expression of DPH1 (diphthamide biosynthesis 1),
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the enzyme responsible for the conversion of histidine 715 on eEF2 to diphthamide, the
direct target of ADP ribosylation diphtheria toxin [60,61]. The exploration of leukemic
blasts of patients treated with SL-401 and resistant to this drug showed decreased DHP1
expression; furthermore, downmodulation of DHP1 expression in leukemic cells decreased
their sensitivity to SL-401 [62,63]. Interestingly, azacitidine, a DNA methyltransferase
inhibitor used in the treatment of AMLs, induced a reversion of DHP1 expression and
restored the sensitivity to SL-401 [60,61]. These studies suggest that the combination of
tagraxofusp with azacitidine could represent a rational drug association in the treatment of
BPDCN. Preliminary studies based on few BPDCN patients support this hypothesis. Thus,
a case report showed the successful treatment with tagraxofusp and azacitidine of an older
patient with relapsed BPDCN after allogeneic stem cell transplantation [62].

A recent case report described a new mechanism of development of tagraxofusp
resistance related to a marked downmodulation of CD123 expression in BPDCN relapsing
leukemic cells [63].

5. Naked Antibodies
CSL362

Unmodified monoclonal antibodies were explored at therapeutic level for their capac-
ity to inhibit the binding of IL3 to its receptor and to activate innate immune mechanisms
mediating the clearing of cells expressing CD123. An example of these antibodies is
represented by the neutralizing anti-CD123 7G3 monoclonal antibody, first humanized
and affinity matured, and then engineered at the level of the Fc-domain to potentiate its
cytotoxicity-inducing capacity against AML cells; the antibody thus modified was called
CSL362 and was explored first in preclinical studies and then in clinical trials in AML
patients [64]. Preclinical studies have shown the capacity of CSL362 to target CD123+

AMLs and to induce ADCC-dependent lysis of AML blasts [65]. CSL362 was evaluated in a
phase I clinical trial in 40 AML patients with refractory/relapsing disease and only two of
these patients displayed a clinical response [66]. A second phase I study was performed in
a cohort of AML patients achieving a first or second remission but who were not candidates
for stem cell transplantation: 11 of these patients displayed minimal residual disease that,
in four cases, was converted to negativity after treatment with CSL362 [67].

However, two more recent studies failed to show a significant benefit in AML patients
treated with CSL362 (investigated with the commercial name of talacotuzumab) [68,69].

Following these negative results, the program of clinical development of talaco-
tuzumab was discontinued by Johnson and Johnson Company, New Brunswich, New
Jersey, USA.

6. Antibody–Drug Conjugates
6.1. IMGN632

Miller et al. developed a procedure for the generation of antibody–drug conjugates
(ADCs) with high therapeutic indices and favorable toxicities [70]. This strategy was based
on a new DNA cross-linking agent (DNA-cross-linking pyrrolobenzodiazepine compounds
as the payload) [70]. A further improvement of this technology consisted in changing
the mechanism of action from a cross-linker to a DNA alkylator: this change resulted in
the development of ADCs containing the DNA alkylator with similar in vitro potency,
but improved bystander killing and in vivo efficacy, compared with those of the cross-
linker [71]. Using this technological approach, a CD123 antibody 4723A was linked to
DNA mono-alkylating payload of the indolinobenzodiazepine pseudodimer (IGN) class of
cytotoxic compounds [72]. The activity of IMGN632 was compared with X-ADC, the ADC
compound developed utilizing the G723A antibody linked to a DNA cross-linking IGN
payload. Both of these compounds, IMGN632 and X-ADC, exhibited the same potency
against AML cell lines and primary AML blasts, but X-ADC exposure was >40-fold more
cytotoxic to the normal myeloid progenitors than IMGN632 [72]. Importantly, IMGN632
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displayed a cytotoxic effect on AML samples at doses not exerting negative effects on
normal myeloid progenitors [72].

Initial studies have reported the evaluation of IMGN632 as a monotherapy in AML
patients with relapsing/refractory disease [73]. In the evaluable AML population composed
by 66 patients, 55% of them displayed a reduction of leukemic blasts, and 20% an objective
response; most responders failed prior intensive therapies [73] (Table 1).

Preclinical studies have shown a consistent antileukemic synergism of the combina-
tion of IMGN632 and venetoclax, a BCL-2 inhibitor approved for elderly AML patients
in combination with azacitidine [74]. The synergistic interaction between IMGN632 and
venetoclax was shown both in leukemic cell lines and in AML PDX (patient-derived
xenograft) [74]. These observations have supported clinical studies involving the adminis-
tration of IMGN632 in combination with venetoclax and azacitidine. A phase Ib/II study
was designed to evaluate the safety and the efficacy of a triplet regimen based on IMGN632,
azacitidine (AZA), and venetoclax (VEN): the triplet escalation phase of the study involved
five cohorts of patients, four cohorts dosed IMGN632 on day seven of each cycle and one
cohort dosed IMGN632 on day one of each cycle [75]. A recent report on this study at the
ASH Meeting, December 2022, reported the preliminary safety data on 71 AML patients
with relapsed/refractory disease (30% with secondary AML, 32% with primary refractory
disease; 44% received prior VEN treatment and 22% had prior allogeneic bone marrow
transplant) and the efficacy data on 61 patients: concerning safety, the treatment was well
tolerated with 30% of patients displaying febrile neutropenia and 21% infusion-related
reactions; concerning efficacy, 51% of patients displayed an objective response, with 31%
complete responses [76] (Table 1). Interestingly, VEN-naïve patients exhibited an ORR and
CCR of 62% and 47%, compared with 37% and 11%, respectively, in patients with prior
VEN treatment [76].

Other clinical studies have explored the efficacy of IMGN632 in patients with BPDCN.
Thus, Naver et al. explored in a preliminary study the efficacy of IMN632 in seven relaps-
ing/refractory BPDCN patients and reported that three of these patients achieved objective
responses, two patients had stable disease, and two patients had clinical progression; in-
terestingly, the three patients exhibiting an objective response received prior treatment
with SL-401 [73] (Table 1). The CADENZA clinical trial (NCT 03386513) is enrolling two
expansion cohorts for adult patients with CD123-positive BPDCN: one cohort is enrolling
patients with frontline/untreated BPDCN disease; the other cohort is enrolling patients
with relapsed/refractory BPDCN which may have had up to three lines of prior therapy,
including CD123 targeting and stem cell transplantation [77]. The patients were treated
at the IMGN632 dose of 0.045 mg/kg once every three weeks. An update provided by
Immunogen Company on September 2022 on the first patients treated in the context of
the CADENZA trial reported that: (i) four patients with de novo BPDCN treated with
IMGN632 showed a CR or a clinical CR; (ii) of the six patients with BPDCN who had prior
or concomitant hematologic malignancy, four experienced a CR, clinical CR, or CR with
partial hematological recovery [78]. The final results of this study are expected for the end
of 2024.

6.2. Other ADCs

Another study reported the development of SNG -CD123A, an ADC CD123 antibody
obtained using the pyrrolobenzodiazepine dime (PBD) linker and a humanized CD123
antibody with cysteines for site-specific conjugation [79]. SGN-CD123A induced apoptosis
of CD123-expressing leukemic cells and resulted to be active against myeloid leukemic cell
lines and primary AML blasts and in patient-derived xenograft models [79].

Han and coworkers reported the development of optimized ADC based on a novel
DNA-damaging payload, cyclopropa[c]pyrrolo[3,3-e]indole-4 one dimer (CPI dimer), that
is bound to an engineered Y296Q residue in the antibody heavy chain via transglutaminase
mediated conjugation, enabling an ADC preparation consisting of a homogeneous load of
drug to antibody ratio of two [80]. Using this approach, it was shown that this platform
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allows the production of ADC with a higher therapeutic index [80]. Furthermore, the
head-to-head comparison of two AML surface proteins, CD123 and CD33, showed that
CD123-ADCs display an efficacity comparable to that of CD33-ADCs, but a better safety
profile in nonhuman primates [80].

7. Bispecific Antibodies
7.1. Flotetuzumab

The bispecific antibody binds to a tumor-specific antigen using one epitope and to
immune cell receptors such as CD3, CD16, CD64, and CD89 with the other epitope, with
the objective of stimulating cell immune responses against tumor cells. Initial studies
have reported the generation of bispecific antibodies with specificities for the extracellular
domain of CD3 and for the N-extracellular domain of CD123. The antibodies induced
both in vitro and in vivo activation of T lymphocytes and killing of CD123+ leukemic
blasts [81,82]. In 2015, MacroGenics (Rockville, MD, USA) reported the development
of MGD 066, a CD3xCD123 DART (dual-affinity re-targeting) protein composed of anti-
human CD123Fv and humanized mouse anti-human CD3; this molecule exerted a potent
antileukemic activity both in vitro and in vivo [83,84]. The preclinical studies carried out
using MDG-006 supported the development of a clinical program of evaluation of this
molecule, introduced with the commercial name of flotetuzumab. A phase I study enrolled
30 AML patients with refractory/relapsed disease, providing evidence of antileukemic
activity in 67% of patients, with 19% of complete responses (31% among patients with
refractory disease, but 0% in patients with relapsing disease) [85] (Table 1). Analysis of
the immune activation status in these patients suggested that an immune-enriched gene
signature could correlate with response to flotetuzumab [86,87].

In 2021, Uy et al. reported the results of a phase I/II study on 88 AML patients with
refractory/relapsed disease treated with flotetuzumab as salvage therapy: 42 patients
pertains to a dose-finding segment and 46 to a group treated with the recommended dose
of flotetuzumab (500 mg/kg/day) [88]. Of these patients, 26.7% displayed a complete
remission/complete remission with incomplete hematological recovery; the overall survival
in patients who achieved a CR was 10.2 months [88].

Vadakekolathu and coworkers, through the analysis of three large cohorts of AML
patients, identified immune-infiltrated and immune-depleted classes of AMLs; they also
identified interferon-γ-related mRNA profiles that were predictive of chemoresistance and
of response to flotetuzumab immunotherapy [89].

Interestingly, the study of TP53-mutated AMLs, a subgroup associated with a very
poor outcome, showed that these leukemias are characterized by a higher expression
of IFN-γ, FOXP3, immune checkpoints, and markers of immune senescence; seven out
of 15 patients (47%) with refractory/relapsed AML and TP53 abnormalities achieved a
complete response following immunotherapy with flotetuzumab [90]. TP53-mutated AML
patient responders to flotetuzumab therapy had significantly higher tumor inflammation
signature, FOXP3, CD8, inflammatory chemokine, and PD1 gene expression scores at
baseline compared with non-responders [90].

Recent preclinical and clinical studies have explored the use of flotetuzumab in pe-
diatric AML. At preclinical level, the efficacy of fotetuzumab was shown in combination
with cytarabine in PDX models of pediatric AML [91]. A recent phase I trial reported
the safety profile and preliminary activity of flotetuzumab in pediatric patients with re-
lapsed/refractory AML: flotetuzumab appeared to be tolerable in these patients at the rec-
ommended dose of 500 ng/kg/day and induced 20% of responses, including CR+PR [92].

A recent study based on the analysis of primary AML blasts of AML patients relapsed
after hematopoietic stem cell transplantation incubated in vitro with flotetuzumab or of
refractory/relapsed AML patients treated in vivo with flotetuzumab showed an increase
in major histocompatibility class II (MHC-II) expression induced by IFN-γ production [93].
These observations suggest that flotetuzumab may induce the killing of refractory/relapsed
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AML cells through MHC-dependent mechanisms mediated through local increase of IFN-
γ [93].

7.2. MGD024

Recently, MacroGenics reported the development of a new CD3-engaging bispecific
molecule targeting CD123, MGD024 [94]. MGD024 is an Fc-bearing CD123xCD3 DART
molecule designed for prolonged circulating half-life and intermittent delivery; further-
more, MGD024 was engineered with a CD3-binding arm exhibiting reduced affinity to
decrease the tendency to induce cytokine release compared to flotetuzumab [94]. At struc-
tural level, MGD024 was identical to flotetuzumab, sharing identical CD123 and CD3
Tv arms, with the exception for the introduction of a mutation in the anti-CD3 arm of
MGD0124 decreasing its affinity for the CD3-epsilon chain; however, at variance with
flotetuzumab, MGD024 contains an Ala-Ala mutated human IgG1 Fc, extending its cir-
culating half-life [94]. In preclinical models, MGD024 demonstrated reduced in vitro
and in vivo potency compared to flotetuzumab and requires the administration of higher
doses compared to flotetuzumab; furthermore, reduced cytokine release was observed with
MGD024 compared to flotetuzumab [93]. Studies in animal models of AML have supported
the possible co-administration of MGD024 with cytarabine or venetoclax or azacitidine,
showing complete or near-complete elimination of tumor cells using the combination of
MGD024 with cytarabine or with venetoclax [94]. These observations have supported the
clinical exploration of MGD024 in refractory/relapsed AML patients. Thus, a classical
phase I dose-escalation study was proposed to evaluate the safety of MGD024 in some
refractory/relapsed hematologic malignancies, including AML and BPDCN [95].

7.3. Other Bispecific Antibodies

Other bifunctional CD3-CD123 monoclonal antibodies have been developed and are
under evaluation in AML clinical trials. XmAb14045 (known by the commercial name
vibecotamab) is a bispecific antibody targeting both CD123 and CD3 that stimulates tar-
geted T cell-mediated killing of CD123-expressing cells; at variance with other bifunctional
constructs (DART or BiTE), XmAb14045 is a full-length immunoglobulin molecule designed
to be dosed intermittently [96]. A phase I clinical study enrolled 104 relapsed/refractory
AML patients treated with vibecomatab dosages from 0.003 to 12 ug/Kg; in the group
of patients treated at higher dose levels (0.75 ug/Kg), a 14% overall response rate was
observed, including also five CRs [97] (Table 1). Biomarker analysis suggested that re-
sponding patients harbored a lower burden of disease and specific T cell subtypes [97]
(Table 1).

APV0436 is a humanized bispecific antibody that targets both CD123 and CD3. It is
composed of two binding domains linked to a human IgG1 Fc domain. The CD123 binding
domain is a fully human scFv directed against human CD123; the CD3 binding domain is a
humanized scFv that binds human CD3; the Fc region has been engineered to minimize
complement fixation and interaction with Fcγ receptors [98,99]. Preclinical studies in
primates have shown the in vivo efficacy and the safety of APV0436, thus supporting
a program of clinical development. A phase Ib clinical study supported the safety and
defined the optimal dose for subsequent studies (0.2 ug/Kg) of APV0436 and provided
preliminary data on its efficacy in a population of relapsed/refractory AML and MDS
patients [100]. A recent report showed the preliminary results of the expansion phase
of this phase Ib study; the expansion phase of this trial was complex and involved five
cohorts of patients: cohorts three and five APV0436 in monotherapy, while cohorts one,
two, and four involve combination therapy of APV0436 with chemotherapy, venetoclax,
and azacitidine, respectively [101]. Preliminary results are available only for cohorts one,
two, and three with a rate of response of 33%, 40%, and 20%, respectively [101].

A first-in-human study evaluated the safety and the clinical efficacy of JNJ-63709178, a
CD123/CD3-targeting antibody, in a group of relapsed/refractory AML patients; either
intravenous or subcutaneous administration of the antibody was evaluated [102]. Both
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intravenous and subcutaneous dosing of JNJ-63709178 were associated with suboptimal
drug exposure, unfavorable safety profiles, and limited clinical efficacy [102].

A recent study reported the development of a bispecific antibody, IGM-2537, a novel
IgM antibody-based CD123 × CD3 bispecific T cell engager, designed to potentiate the
antitumor activity and to lower cytokine release; this molecule has 10 binding sites for
CD123, and a single binding site for CD3 through single chain Fv domain (scFv) fused to
a joining chain, thus allowing high-affinity and high-avidity binding to CD123-positive
leukemic cells and engagement of CD3 T cells inducing T cell-induced cytotoxicity with
reduced cytokine release [103]. In vitro and in vivo assays showed a potent antileukemia
activity with minimal cytokine induction [103]. These observations support a program of
clinical development for this molecule.

A trispecific molecule is represented by SAR443579, a trifunctional natural killer
cell engager (NKCE) targeting CD123 on leukemic cells and CD16a and NKp46 on NK
cells [104]. Preclinical studies have shown that SAR443579 induced potent antileukemic
activity against AML blasts, promoted NK cell activation, and induced cytokine release in
the presence of AML cells [104]. A phase I study was proposed to evaluate the safety and
the efficacy of SAR443579 in relapsed/refractory AML and B-ALL patients [104].

8. CD123 Chimeric Antigen Receptor T Cell Therapy

Antitumor adoptive cellular therapies represent an important tool in the treatment
of tumors. In this context, studies carried out in the last decade have evaluated the
safety and potential therapeutic impact of adoptive cellular therapies based on the use of
genetically engineered cells. Two different types of therapies have been developed using
genetically modified T cells: (i) T cell receptor-engineered cells enabled to recognize specific
membranes in a HLA-constricted context; (ii) CART transduced T cells that interact with
specific membrane antigens in an HLA unrestricted and antibody-specific manner [105].

The procedure of generation of CAR-T cells evolved over time with five different CAR-
T generations, from the first procedures in late 1990 to the most recent developments [105]
(Figure 2). The first generation of CAR-T was based on CD3ζ intracellular signalling
domain, in the absence of costimulatory domains; the second generation of CAR-T cells
contained in the intracellular domain a costimulatory domain, such as CD28; the third
generation was based on the presence of multiple costimulatory domains; the fourth gener-
ation involved the production of T cells redirected for general universal cytokine-mediated
killing(TROCKs), a property obtained through IL-12 production, either constitutive or
after CAR-T activation; the fifth generation included also a STAT3 binding site required
for the generation of three activation signals acting on the cell signalling, costimulatory
and cytokine signalling domains [105]. The last generations of CAR-T cells showed a
superior in vivo persistence and antitumor effects in models of leukemia or of solid tumors
as compared to initial CAR-T cell generations and are expected to demonstrate superior
antitumor effects with reduced toxicity in the clinic [106].

Mardiros et al. reported the development of second-generation CD123 CAR-T cells
using a vector containing a single-chain variable fragment, a IgG4 linker, a CD28 co-
stimulatory domain, and a CD3 zeta domain used to engineer either autologous or donor-
derived T lymphocytes; these cells exhibited potent effector activity against primary AML
cells and exerted only a limited cytotoxicity in vitro against hematopoietic progenitor
cells [107]. Using this methodology, Mustang Bio Inc generated a clinical drug called
MB02 and evaluated it in the context of a phase I clinical trial; nine patients (seven refrac-
tory/relapsed AML patients previously receiving allogeneic stem cell transplantation and
two BPDCN patients were treated with MB-02: 2 AML patients were treated at dose zero
(50 × 106 CAR-T) and one of the two achieved a morphologic leukemic-free state; five
AML patients were treated at dose one level (200 × 106), with one patient achieving com-
plete remission with incomplete marrow recovery, another patient showing a morphologic
leukemic-free state and three patients displaying stable disease; two BPDCN patients were
treated at dose zero, with one patient achieving a complete response [108].
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In 2017, Cartellieri and coworkers reported the development of a novel modular
universal CAR platform technology called UniCAR that allows a reduction of the risk of
on-target side effects of CAR-T by inducing a rapid and reversible control of CAR-T cell
reactivity [109]. Two components are required in the UniCAR system: (i) a CAR for an
inert manipulation of T cells; and (ii) specific targeting modules for redirecting UniCAR-T
cells in a personized time-independent and target-dependent manner [109]. The rapidly
switchable universal CAR-T platform was adapted to target CD123 and the resulting 123-
UniCART: these 123-UniCAR exerted in vitro and in vivo in patient-derived xenograft
models a marked antileukemic activity; furthermore, using a hematotoxicity mouse model,
it was shown that CD123UniCAR exerted reversible toxicity toward hematopoietic cells
compared to CD123CAR-T [110,111]. These UniCAR-T CD123 cells were evaluated in a
phase I clinical trial (NCT 04230265) in relapsed/refractory AML patients with the aim
of evaluating the safety profile and for obtaining preliminary data on clinical efficacy. In
2021, the results on the first three treated patients were reported; the treatment schedule
involved UniCAR-T cell administration on day 1 and intravenous infusion of soluble
TM123 from days 0 to 24 [112]. All three patients displayed a clinical response, with two
patients achieving complete remission with incomplete hematologic recovery and one
patient showing a partial response [112]. The results of the first 14 AML patients treated
with UniCAR2-T-CD123 were recently reported at the 2022 ASH Meeting showing that:
(i) the treatment was generally well tolerated with a limited number of treatment-related
adverse events; (ii) 10 patients showed a decrease in blast cell counts, including two CRi,
one patient with MRD positive CR converted to level of negativity, and four PR [113]
(Table 1). These results supported further clinical investigation, with an implementation of
expansion cohort at the most appropriate dosage [113].

Qin et al. reported a new methodology to improve the quality of targeting domains
included into the structure of CAR-T: using this approach, they identified and characterized
domains specific for CD123 and incorporated these domains into CAR-T exhibiting potent
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T cell activation and cytolysis of CD123-expressing leukemic cells, inducing complete
durable remission in two AML xenograft models [114].

Epigenetic modulators used for AML treatment modulate the activity of CD123 Car-T
cells. Thus, You et al. showed in preclinical AML models that decitabine enhances the
antileukemia efficacy of CD123 CAR-T cells in vitro and in vivo [115].

The use of allogeneic T cells for the generation of CD123-CAR-T cells is obviously
associated with the risk of generating a graft vs. host disease. To decrease this risk, TALEN
gene-editing technology was used to produce a TCRαβ-negative allogeneic CD123 CAR
(UCART 123); these CAR-T cells preferentially eliminate AML over normal cells with
minimal toxicity to normal hematopoietic stem/progenitor cells [116]. Furthermore, as a
safety feature, these cells were engineered to express RQR8 to allow their elimination with
rituximab [116].

UCAR123 v1.2 was evaluated in the context of the AMELI-01 phase I clinical trial
involving the enrolment of relapsed/refractory AML patients; UCART123 v1.2 was admin-
istered by escalating dose after lymphodepletion with either fludarabine and cyclophos-
phamide (FC), or FC plus alemtuzumab in patients with relapsed/refractory AML. In-
complete lymphodepletion was achieved with FC. In the eight patients lymphodepleted
with FC 1, stable disease and one morphological remission was achieved; in the eight
patients lymphodepleted with FCA I, stable disease and one complete remission with
MRD-negativity (persisting after 8 months of follow-up) were observed [117].

A recent study reported the first results of a Phase I clinical trial investigating the
safety and efficacy of autologous third generation CD123 CAR-T cells generated with a
vector containing a CD123-CAR with a CD28 signaling domain and a CD20 safety switch
in a population of pediatric AML patients with relapsed/refractory disease [118] (Table 1).
The treatment schedule involved four treatment dosages: DL1 at 3 × 105 cells/Kg, DL2
at 1 × 106 cells/Kg, DL3 at 3 × 106 cells/Kg, and DL4 at 1 × 107 cells/Kg [118]. In two
patients infused on DL1, no responses were observed; in three patients infused on DL2, no
response was observed in one patient, reduction in blast percentage in one patient, and
complete remission in one patient were observed [118]. CD123 CAR-T cell expansion in
patients on DL2 but not in those on DL1 was observed [118].

HLA-independent T cells have emerged as a promising candidate for their peculiar
immunological properties, related to their cytotoxic activity, release of immunostimulating
cytokines, and recruitment of other immune cells to the tumor site. Thus, Martinez et al.
reported the development of CD123 CAR-T delta one T (DOT) cells using γδ T lymphocytes
transduced with a 4-1BB-based CAR DOT directed against the IL-3Rα [119]. CD123 CAR-
DOT cells displayed a pronounced cytotoxic activity against CD123-positive leukemic cell
lines and primary blast cells, superior to control CD123 CAR-T cells [119]. Alternatively,
Caruso et al. reported the generation of allogeneic NK cells engineered to express a
second-generation CAR targeting CD123: these CD123 CAR-NK cells displayed a strong
cytotoxicity in vitro against primary AML blasts and in vivo in immunodeficient mice
AML models [120]. Importantly, CD123 CAR-NK cells are clearly less cytotoxic than CD123
CAR-T cells against normal bone marrow cells, as evaluated in immunodeficient mice
grafted with human hematopoietic cells [120].

Finally, Boucher et al. have recently reported the generation of CD123/CD33 bispecific
CAR-T cells that seem to have a considerable therapeutic potential and will be evaluated in
clinical trials in relapsed/refractory AML patients [121].

Several attempts have been pursued in the development of fourth-fifth generation
CAR-T cells. Transgenic expression of IL15, a γ-cytokine, in CAR-T cells retains these cells
in a less differentiated state and improves their expansion and in vivo survival in a pre-
clinical xenograft model [122]. Particularly, CD123 CAR-T cells engineered to secrete IL15
displayed higher anti-AML activity, remained in a less differentiated state, and showed
a significant survival advantage in AML xenograft and in autologous patient-derived
xenograft models [123]. It is of interest to note that, despite the improved anti-AML activity
of CD123-CAR-IL15-T cells, leukemia eventually progressed in PDX-AML models; this
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late therapeutic failure seemed to be due to a decreased CD123 expression post CD123
CAR-T cell therapy [123]. This important observation implies two considerations derived
from current studies on CAR-T cells: (i) optimal antigen density on tumor cells is a funda-
mental requirement for CAR-T cell activity and strategies for enabling CAR recognition
of low antigen cells are required [123]; (ii) preclinical studies have shown that strategies
to target multiple antigens expressed in AML cells are needed to achieve optimal ther-
apeutic responses [124,125]. To generate CAR-T cells with multiple antigenic reactivity,
a strategy was proposed based on the transduction of T cells with a synthetic agonistic
receptor (SAR) composed of an inert extracellular domain (EGFRvIII) acting as an antigen
receptor fused to intracellular T cell-activating domains that can be specifically activated
by an engineered bispecific antibody [126,127]. This procedure allowed the generation of
SAR-CAR-T specific for CD123 and CD33 [127]. Furthermore, AML cells have a direct
immunosuppressive effect that limits in many patients the success of CAR-T cell-mediated
therapy [128]. T cell derangements (immune exhaustion and senescence) are common
in AML and affect the response of these patients to chemotherapy, molecularly targeted
therapies, and immunotherapies [129].

9. Conclusions

The first-in-class CD123-targeting therapy, tagraxofusp, has shown its efficiency and
was approved for treatment of BPDCN. The efficacy of this therapy is well evident; however,
the results obtained in terms of overall survival are still not optimal and comparable to
those that can be achieved with intensive chemotherapy. Therefore, other CD123-targeting
strategies are in development, including bispecific antibodies and combination therapies
including tagraxofusp; adoptive T cell therapy using CAR-modified T cells targeting CD123
are under evaluation in BPDCN patients.

The preclinical and clinical studies have shown that the targeting of CD123 is a
rational approach for the treatment of some hematologic malignancies, including AML.
The chances to obtain complete eradication of the leukemic process using only CD123
targeting as a therapeutic approach are mainly dependent on the expression of IL-Rα
at significantly elevated levels on the surface of all leukemic cells that can maintain the
leukemic process. The results obtained at clinical level using the various agents targeting
CD123 as monotherapy have shown their incapacity to completely eradicate the leukemic
process in the patients responding to this treatment; this failure may be due to various
mechanisms: (i) a part of leukemic cells does not express CD123; (ii) a part of leukemic cells
express CD123 at low/very low levels that cannot be efficiently targeted; and (iii) leukemic
cells present at the level of body compartments escape CD123 targeting because they are
not efficiently reached by CD123-targeting agents.

Particularly interesting are the results observed with the bispecific antibody flote-
tuzumab in TP53-mutated AML patients [89,90]. In fact, tumor inflammation signature,
IFN-γ pathway, chemokines, and lymphoid signature scores were higher in TP53-mutated
AMLs than in complex karyotype AMLs with WT-TP53; furthermore, expression of im-
munosuppressive genes, such as FOXP3, IFNG, CD8A, LG3, and GZMB and of immune
checkpoints (PD-L1 and TIGIT), is high in TP53-mutated AMLs [89,90]. These observations
have suggested that TP53-mutant AMLs have an immunosuppressed tumor microen-
vironment, a condition that makes these leukemias more sensitive to immunotherapy
with flotetuzumab [89,90]. These observations must be confirmed in a larger cohort of
TP53-mutated AMLs and the therapeutic effects obtained with flotetuzumab need to be
consolidated through an association of flotetuzumab with other antileukemia agents active
against TP53-mutant AMLs.

Future studies of CD123 targeting in AML patients have to carefully consider all these
elements and should be based on: (i) the evaluation of combination therapies based on the
use of a CD123-targeting drug with antileukemic drugs such as venetoclax or chemotherapy
both in first-line and second-line treatment; (ii) the evaluation of CD123-targeting therapies
in selected subpopulations of AML patients that are expected to be more sensitive to these
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treatments; (iii) the evaluation of CD123-targeting therapies in an attempt to eradicate the
minimal residual disease; and (iv) the development of strategies to reduce the toxicity of
CD123-targeting therapies.
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