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Abstract: Betanidin (Bd) is a nitrogenous metabolite with significant bioactive potential influenced
by pH. Its free radical scavenging activity and deprotonation pathway are crucial to studying its
physicochemical properties. Motivated by the published discrepancies about the best deprotonation
routes in Bd, this work explores all possible pathways for proton extractions on that molecule, by
using the direct approach method based on pKa. The complete space of exploration is supported by a
linear relation with constant slope, where the pKa is written in terms of the associated deprotonated
molecule energy. The deprotonation rounds 1, . . . , 6 define groups of parallel linear models with
constant slope. The intercepts of the models just depend on the protonated energy for each round, and
then the pKa can be trivially ordered and explained by the energy. We use the direct approximation
method to obtain the value of pKa. We predict all possible outcomes based on a linear model of the
energy and some related verified assumptions. We also include a new measure of similarity or dis-
similarity between the protonated and deprotonated molecules, via a geometric–chemical descriptor
called the Riemann–Mulliken distance (RMD). The RMD considers the cartesian coordinates of the
atoms, the atomic mass, and the Mulliken charges. After exploring the complete set of permutations,
we show that the successive deprotonation process does not inherit the local energy minimum and
that the commutativity of the paths does not hold either. The resulting clusterization of pKa can
be explained by the local acid and basic groups of the BD, and the successive deprotonation can be
predicted by using the chemical explained linear models, which can avoid unnecessary optimizations.
Another part of the research uses our own algorithm based on shape theory to determine the protein’s
active site automatically, and molecular dynamics confirmed the results of the molecular docking of
Bd in protonated and anionic form with the enzyme aldose reductase (AR). Also, we calculate the
descriptors associated with the SET and SPLET mechanisms.

Keywords: betanidin; linear model; cluster prediction; pKa prediction; Riemann–Mulliken distance;
deprotonation; shape theory

1. Introduction

Betalains are compounds that, in their basic structure, contain nitrogen. In this way,
they are also identified as chromoalkaloids and characterized by being soluble in water.
These compounds are present in a restricted number of plants of the order Caryophyllales
and some of the genus Basidiomycetes. For instance, in the genus Amaran-thaceae, betalains
can be found in leaves as well as flowers; in the genera Hylocereus, Stenocereus, and Opuntia,
it can be found in the fruits, and in the genera Beta and Rheum in the roots and stems,
respectively [1–3]. Moreover, betalains have a wide range of colors like yellow-orange
for betaxantins and red-purple for betacyanins. This situation gives them the potential
to be used as natural colorants [4]. Further, betalains can provide functional properties
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to the food, producing a beneficial effect on health [5,6]. In pharmaceutical and cosmetic
applications, betalains are stable in a pH range of 3.5 to 7. This characteristic gives them
value for being used in low acid and neutral products [6,7]. The betacyanins are immonium
conjugates of betalamic acid with 3,4-dihydroxyphenylalanine (cyclo-DOPA), forming
betanidin, which contains phenolic and cyclic amine groups, both of which are very good
electron donors, acting as antioxidants [8]. Hydrolysis of betacyanin produces betanidin,
and their conjugated double bond is associated with their color. The maximum light
absorption at 540 nm characterizes the red betacyanins. Betanin (Bn) is composed of
betanidin (Bd) and linked β-glycosidic with glucose at C5 [9,10], as can be seen in Figure 1.
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We present several studies that report the efficacy of betalains for preventing the oxi-
dation of biological molecules induced by active oxygen [8,11]. In addition, other studies
report that the antioxidant capacity of Bn is pH-dependent by TEAC (trolox equivalent
antioxidant capacity) assay; this situation was analyzed from the calculation of the phenolic
OH homolytic bond dissociation energy (BDE) and the ionization potential (IP). These pa-
rameters were obtained via DFT B3LYP/6-311+G** or B3LYP/6-31G** quantum-mechanical
calculations [10]. Other DFT studies report the reactivity in six pathways against some
ordinary radicals, such as hydroxyl, hydroperoxide, superoxide, and nitric oxide [12].

On the other hand, studies via DFT computations show the role of the hydroxyl group
position in the radical scavenging and antioxidant activity of some compounds to delineate
structure–reactivity patterns and therefore the most probable mechanism of interaction
between these compounds and free radicals. In this case, the most probable mechanism in
water is SPLET (sequential proton-loss electron transfer mechanism) [13].

The thermochemical parameter describing the hydrogen and electron donation ability
by betanin is OH bond dissociation energy (BDE), representing the ease of hydrogen atom
donation. Each mono-deprotonated form of betanin is a better H donor (lower BDE values)
than betanin in its cationic form [10]. However, betalains are rich in electron density,
which suggests that the mechanisms related to parameters representing electron donation
should be responsible for free radical-scavenging activity [14,15]. The bioactive potential of
betalains is influenced by factors such as pH, temperature, light, water activity, oxygen,
metal ions, and enzymatic action [16].

The pKa value is an important parameter to elucidate the oxidation mechanism of any
substance. Bd belongs to the general group of betalains. The experimental pKa values of
Bd were limited to a single deprotonation step. In this work, we have used the density
functional theory (DFT) and the density-based solvation model (SMD) to calculate the
corresponding pKa values. However, there are several methodologies for computing the
pKa; see, for example, [17–19].

Based on the information presented and the importance of betalains, we consider that
studies on the activity of these compounds are not yet sufficient. Therefore, the present
work aims to expand the research in this line by approaching the modeling of betanidin (Bd)
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through DFT methods in order to establish the molecular descriptors associated with the
free radical scavenging activity and the deprotonation pathway of the molecule in question.
First, we used the direct approach method to calculate the pKa values of Bd [20]. Then,
we explored the potential energy surface defined by all possible mono-deprotonations (at
the three carboxylic positions, the two hydroxyl groups, and N16) and the subsequent
deprotonations of Bd. Finally, we analyzed all three possible deprotonation routes of Bd
(1st: 6 paths, 2nd: 30 paths, 3rd: 120 paths) by implementing an invariant measure based
on shape theory, including atomic mass and Mulliken charges. The measurement of the
similarity or dissimilarity arises from shape theory using the concept of Riemann–Mulliken
distance (RMD); see [21–24] and the references therein. The exploration shows the commu-
tativity of the permutations of the deprotonations. However, it does not necessarily cause
the same energy after the optimization process, and the energy minima are not inherited.

Furthermore, shape theory has demonstrated similarities or differences between
molecules resulting from deprotonation processes. In this way, in previous work [25],
we were able to show that the lowest proton affinity between a set of molecules corre-
sponds to the one that is the closest geometrically to the parent molecule. We use this
formalism to establish comparisons between the geometries of the molecules and, with
them, determine parallelisms with the deprotonation routes based on the pKa values.

We consider the main reaction mechanisms of SET (single electron transfer) and
SPLET (sequential proton-loss electron transfer) analyzed in an aqueous medium. From
a thermodynamic point of view, it demonstrates which of them is the most favorable
mechanism for compound Bd and molecular descriptors calculated concerning energy–
orbital (Eo) methods: frontier orbitals, electronegativity (χ), hardness (η), electrophilicity
(ω), and softness (S) [13].

Returning to anti-radical activity, we consider analyzing the interactions between
Bd as the ligand and the enzyme aldose reductase (AR) as the receptor through docking
and molecular dynamics. Aldose reductase (AR) is a cytosolic oxidoreductase that uses
nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor. Moreover, it cat-
alyzes the reduction of glucose to sorbitol, the first step in the polyol pathway of glucose
metabolism. The next step in the pathway is catalyzed via sorbitol dehydrogenase (SDH),
in which sorbitol is oxidized to fructose using nicotinamide adenine dinucleotide (NAD+)
as a cofactor. This process impacts the NADPH/NADP+ ratio. NADPH is essential for
regenerating the reduced form of the intracellular antioxidant glutathione [26]. Factors
such as sorbitol accumulation and oxidative stress can complicate diabetes situations, and
the inhibition of aldose reductase can prevent these secondary complications [27].

The aldose reductase reaction, particularly the production of sorbitol, is vital for the
function of various organs in the body, such as the liver, lens, retina, and kidney [28]. Fur-
thermore, the literature has reported studies where several antioxidant compounds inhibit
this enzyme [29–31]. Finally, we employ our method based on shape theory formalism to
find active sites on the enzyme.

Regarding pKa, this work includes, among others, the following items: 1. Describe the
direct method in terms of a linear model that now better explains the pKa in terms of the
energy. 2. With the new model, we have been able to elucidate the deprotonation clusters
using a combinatorial result. 3. We have made progress in predicting less than half of the
calculations of all the routes in each round, an aspect that shows the importance of the
newfound model. 4. Regarding the discrimination method with Riemannian geometry, we
have defined a new distance that involves the Mulliken charges and the atomic masses.
With the new measure, the geometric optimization is related to the deprotonation chemistry,
and at the same time the pKa is studied. The previous four elements have been written in a
new model with their respective proofs.

This paper is organized as follows: In Section 2, Results and Discussion, we develop
the studies: DFT analysis; prediction model for clusterization and computation of pKa, with
the corresponding proof based on a chemical published argument; deprotonation route
via pKa and Riemann–Mulliken distance; exact linear model for pKa in terms of energy;
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molecular docking; and molecular dynamics. In the methods section, we have explained
the models and theories used in the calculations.

2. Results and Discussion
2.1. Analysis of the DFT Studies

Figure 1 shows that betanidin has three functional carboxyl groups (-COOH). Two
are attached to the respective heterocycle through an sp3 atom (C2 and C15). Moreover,
the third carboxylic group is attached to the C17 atom. Two hydroxyl groups (-OH) are
connected to the catechol group at the C5 and C6 positions. Another intramolecular
hydrogen bond is present at the dihydropyridine ring nitrogen. One end of the molecule
bears a catechol group. The other cyclic amino group is joined via a π-conjugated system,
generating an intramolecular electron transfer process [8,14]. The rings differ in the degree
of delocalization. For example, the pyrrole ring is self-contained, but delocalization occurs
in the carboxyl groups. This situation favors the movement of electric charges within the
same molecule and antiradical activity [10].

The length of the bonds in Å between the oxygen atoms and their respective hydrogen
susceptible to detaching from the molecule is the same for the case of carbonyl groups and
very similar for the case of hydroxyl groups, for nitrogen, it is slightly more remarkable;
the probability that these hydrogens will break off is quite close because the conditions are
similar for each case. Atomic charges in the betanidin were calculated by employing the
electronegativity–equalization method [32,33] and reported as a fraction of the electron’s
electric charge measured in coulombs (Figure 2).
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Figure 2. Partial charges in terms of the charge of the electron in C and bond lengths in Å.

Additionally, the above-mentioned hydrogens also present similar partial charges and
oxygens with which they bond. The electrostatic potential map analyzed the intramolecular
interaction; Figure 3 illustrates the molecule’s charge distribution and reactive sites.

Subtle traces of shades of red in the vicinity of the oxygen atoms located at the extreme
right of betanidin indicate a slight excess in electron density compared to the rest of
the molecule, and the blue region at the other extreme indicates an excess of positive
charge. The presence of conjugated systems with delocalization of the π orbitals and the
subsequent probability of charge transfer can be increased by incorporating donor and
acceptor substituents [14,34].

Other intermediate regions of the molecule and around the hydrogens of the carboxyl
groups also show electron deficiency. Throughout the molecule, the electron densities
are on average low or intermediate due to the presence of carbon atoms that have less
electronegativity. This indicates that the electrostatic potential is lower (green); from right
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to left, along the delocalization, the electronic deficiency increases. The hydrogens bonded
to the oxygens of the carboxyl groups indicate a possible site for a nucleophilic attack, most
likely for the group located at the C15 and C17 positions. On the contrary, an electrophilic
attack could occur in the hydroxyl groups, with a greater probability for the group found
in C5. We notice that an electrophilic attack is less likely to occur than a nucleophilic attack.
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2.1.1. Reactivity Descriptors

We calculated and recorded (see Table 1) the basic properties of the electronic structure.
We show the descriptors: ionization potential (vIP), vertical electron affinity (vEA), HOMO–
LUMO gap (HLG), electronegativity (χ), hardness (η), electrophilicity (ω), and softness (S).

Table 1. Molecular descriptors of Bd.

Descriptors Units (eV)

vIP 5.95
vEA 3.54
HLG 2.41

Electronegativity (χ) 4.75
Hardness (η) 1.20
Softness (S) 0.42

Electrophilicity (ω) 9.36

HOMO is the highest occupied molecular orbital. vIP is the negative of the (HOMO)
energy, LUMO is the lowest empty molecular orbital, and vEA is the negative of the (LUMO)
energy; the energy difference between the HOMO and LUMO is called the HOMO–LUMO
gap. Bd presented a value of 2.41 eV, which indicates that charge transfer occurs within
the molecule via the spacer system [34]. Therefore, the LUMO energy (−3.54 eV), HOMO
energy (−5.95), and the gap value below 3 eV, Bd, can become an electron acceptor; see
Figure 3.

Electronegativity indicates that the electron density of the system can vary. The
calculated electronegativity value indicates that Bd can attract a charge to it. So, in an
electron transfer opportunity, the Bd will accept and neutralize electrons from the radicals.
For example, Bd has a value of 4.75 eV and indicates that the molecule tends to attract
electrons. The hardness is related to the separation between the HOMO and LUMO. The
smaller the energy gap, the smaller the resistance to change in electronic distribution,
and vice versa. By presenting a hardness of 1.20 eV, the system under study implies a
tendency to receive electrons. Softness measures the degree of chemical reactivity of the
compound, which has a value of 0.83 eV and is the reciprocal of hardness. The high value
of the electrophilicity descriptor (9.36 eV) confirms the deficiency of electrons. Thus, Bd is
characterized by its high polarizability and by being an electron-accepting species.
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This compound is not rich in electron density, indicating that electron-related mech-
anisms should not be responsible for antiradical activity. However, we evaluate the SET
(single electron transfer) mechanism via the IP (ionization potential) descriptor. Further-
more, we compare it to the SPLET (sequential proton-loss electron transfer) mechanism
associated with the PA (proton affinity) and ETE (electron transfer enthalpy) descriptors to
verify which mechanism is more likely (Table 2).

Table 2. Molecular descriptors of Bd: IP, PA, and ETE.

Bond SET SPLET

IP PA ETE

C2 75 14.9 70.4
C15 14.2 70.6
C17 11.6 68.6
N16 23.2 60.6
C6 22.9 50.4
C5 25.8 49.6

When comparing the values of the descriptors, we observe that the values of PA
and ETE are lower than IP. The thermodynamically most likely reaction pathway is the
sequential transfer of electrons with loss of protons (SPLET). Furthermore, the lowest PA
value is obtained for hydrogen from the C17-COOH group, followed by the C15-COOH
and C2-COOH groups. For phenolic antioxidants, experimental and theoretical studies
have also confirmed the importance of the SPLET mechanism in polar solvents [35]. Results
show that the C17-COOH group deprotonates, followed by C2-COOH and C15-COOH,
according to some reports [36,37], and followed by C15-COOH and C2-COOH, according
to another author [20].

2.1.2. Deprotonation Route and pKa-Values

Betalains’ free radical scavenging activity is pH-dependent [10,12,38] and, in aqueous
solution, they have also been reported to be stable with a pH range of 3.5 to 7.0 [39]. In the
literature, alterations in charge of betanin and isobetanin have been suggested, generating
different forms of the compounds according to the pH of the medium, as follows: at a pH
below 2, it presents a cationic form equal to 2, and a zwitterion form; between 2 and 3.5, it
forms a mono-anion with deprotonated C2-COOH and C15-COOH groups; between 3.5
and 7 a dianion with deprotonated C2-COOH, C15-COOH, and C17-COOH groups; and at
a pH between 7.0 and 9.5, a trianion appears with all carboxyl groups deprotonated and a
phenolic C6-OH group [40,41]. Based on the solvent’s pH, betalains are found in several
different states, and it is relevant to estimate the most likely state or form. Experimental
pKa values are known for some betalains. We mention betanin (Bn), composed of Bd and
β-glucosidic linked to glucose at C5. We consider referenced-experimental pKa values in
the carboxyl groups. C2-COOH ranges from 1.1 to 1.5; C15-COOH and C17-COOH from
3.2 to 3.6; and for the phenolic OH group, from 8.5 to 8.9 [41,42].

The computational protocol DFT B3LYP/631+G(d,p) has been used widely since it
allows for an analysis of the systems under study quite well, and the most stable con-
formers have been obtained in comparison with other protocols [10,20]. We calculated
the pKa values using the direct approach method described in the methodology and the
deprotonation route for the carboxyl groups from these values. For a complete synchro-
nization with the newly implemented linear model proved in Section 2.2, we have used
our own optimization for the Bd parent, instead of the reference parent given in [20]. The
new Riemann–Mulliken distance in Section 2.3 has enriched the conclusions of a purely
geometric description using the Riemann distance. Thus, the subsequent analysis involves
a new chemical measure with atomic mass and the Mulliken charge.
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2.1.3. Direct Approach

We consider Bn a reference and assume that Bd appears in the form of a zwitterion,
mono-anion, and dianion. We calculated pKa values using the direct approach method
described in the methodology. Figure 4 shows the different states of mono-deprotonated
Bd ordered from lowest to highest according to pKa values.
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Figure 4. Optimized mono-deprotonated structures (a–c) in the three carboxylic positions and
calculated corresponding pKa-values.

According to the pKa value, the first hydrogen cation (H+) starts from the C17-COOH
group and is consistent with data reported by other researchers [20,36,37]. The theoretical
data obtained are close to the experimental data reported in terms of experimental val-
ues taken as reference. However, there are differences when it comes to the group that
deprotonates. To analyze the result, we considered the electrostatic potential surface of the
molecule in its zwitterionic form according to the lowest pKa (Figure 5).
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We observe that the electric charge is delocalized in the double and conjugated bonds
of the molecule. When the proton in any of the carboxyl groups is eliminated, the charge
density is delocalized towards the site of the missing proton.. To a lesser extent, the
hydrogen of the C17-COOH group causes the charge density to be affected less after
removing the corresponding proton.

2.2. Prediction Model for Clusterization and Computation of pKa

Consider the first round of deprotonation for the Bd. According to [12,20,42] (see also
our simulations), pKa can be split in two groups: the inferior cluster of pKa involves the
carboxyl groups C15-COOH and C17-COOH (placed in the dihydropyridine ring nitrogen)
and the carboxyl group C2-COOH (placed in the pyrrole ring). The superior cluster of pKa
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considers the hydroxyl groups C5-OH and C6-OH (placed in the catechol ring), and the
group HN16. The carboxyl groups are more acidic [12,20,42], and this can be one chemical
justification for this clusterization.

Denote the inferior and superior clusters of the ih round as Ii,j, i = 1, 2, 3; j = 1, 2, . . . , ni/2
and Si,j, i = 1, 2, 3; j = 1, 2, . . . , ni/2, respectively; where the subindex j = 1, 2, . . . , ni/2,
denotes the jth deprotonation route of round i, and n1 = 6, n2 = 30, n3 = 120.

Based on the chemical results given in [12,20,42]:

pKa,1(I1,j) < pKa,1(S1,l) (1)

for all j, l = 1, 2, 3.
Namely, the pKa of any deprotonation route of the inferior cluster in the first round

is strictly less than any deprotonation route of the superior cluster in the same round.
Therefore, the clusters of the first round are given by:

I1,. =
{

I1,j : I1,1 = C2, I1,2 = C15, I1,3 = C17
}

(2)

S1,. =
{

S1,j : S1,1 = C5, S1,2 = C6, S1,3 = N16
}

(3)

Under the same regularity and chemical conditions of the of the direct approach, the
predicted clusterizations for the second round are listed by the left multiplication of I1,. and
S1,. with all the non-repeated elements of the those sets, namely:

I2,. = {I1,1 I1,., I1,2 I1,., I1,3 I1,., S1,1 I1,., S1,2 I1,., S1,3 I1,.} (4)

S2,. = {I1,1 S1,., I1,2 S1,., I1,3 S1,., S1,1 S1,., S1,2 S1,., S1,3 S1,.} (5)

The same applies for the inferior cluster of the third route of deprotonation, where
each element of I1,. and S1,. multiplies I2,. by the left element (without repeated elements).
The superior cluster is also given by the left multiplication with S2:

I3,. = {I1,1 I2,., I1,2 I2,., I1,3 I2,., S1,1 I2,., S1,2 I2,., S1,3 I2,.} (6)

S3,. = {I1,1 S2,., I1,2 S2,., I1,3 S2,., S1,1 S2,., S1,2 S2,., S1,3 S2,.} (7)

Law for clusterization prediction: In general, the deprotonation route D1D2 . . . Di−1 I1,j,
i = 1, 2, . . . 6; j = 1, 2, 3. is located at the inferior cluster; for arbitrary previous deprotonations,
i.e., every route finishing in I1,j, i = 1, 2, . . . 6 is placed in the inferior cluster of pKa. In the
opposite way, the deprotonation route D1D2 . . . Di−1S1,j, i = 1, 2, . . . 6; j = 1, 2, 3. gets higher
pKa, and it is located at the superior cluster.

Moreover, assume that E
(

I1,jS1,l
)
≈ E

(
S1,l I1,j

)
, l, j = 1, 2, 3 (see the simulations); in

this case, the prediction of the high pKa values for S2,. can be obtained directly from the
energies of I2,. by using the linear model:

pKa,2(I1,jS1,l) = mr−mE
(

I1,j
)
+ mE

(
S1,l I1,j

)
(8)

If the pKa values for S2 are available, then we can predict the values for I2 by using the
opposite model:

pKa,2(S1,l I1,j) = mr−mE(S1,l) + mE
(

I1,jS1,l
)

(9)

In the same manner, we can predict the superior (inferior) clusters of pKa by using the
available energies under certain permutations, which are supported by the simulations.

Table 3 shows the equations for prediction of all the deprotonation routes based on
the parallel linear models with positive constant slope m. As before, each pair of successive
Equations ((10)–(11),(12)–(13),(14)–(15),(16)–(17)) is based on certain energy assumption
supported by the data of the complete exploration of the deprotonation routes.
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Table 3. Equations for prediction of all deprotonation routes based on the parallel linear models.

Verified Assumption Dependent
Variable Intercept Independent

Variable Cluster Eq.

E
(

I1,jS1,l I1,k

)
≈ E

(
I1,kS1,l I1,j

)
,

l = 1, 2, 3; j, k = 1, 2, 3, j 6= k.
pKa,3(I1,jS1,l I1,k) mr−mE

(
I1,jS1,l

)
E
(

I1,kS1,l I1,j

)
lower (10)

pKa,3(I1,kS1,l I1,j) mr−mE
(

I1,kS1,l
)

E
(

I1,jS1,l I1,k

)
lower (11)

E
(

S1,j I1,lS1,k

)
≈ E

(
S1,k I1,lS1,j

)
,

l = 1, 2, 3; j, k = 1, 2, 3, j 6= k.
pKa,3

(
S1,j I1,lS1,k

)
mr−mE

(
S1,j I1,l

)
E
(

S1,k I1,lS1,j

)
higher (12)

pKa,3

(
S1,k I1,lS1,j

)
mr−mE

(
S1,k I1,l

)
E
(
S1,l I1,lS1,k

)
higher (13)

E
(

S1,l I1,j I1,k

)
≈ E

(
I1,j I1,kS1,l

)
,

l = 1, 2, 3; j, k = 1, 2, 3, j 6= k.
pKa,3

(
S1,l I1,j I1,k

)
mr−mE

(
S1,l I1,j

)
E
(

I1,j I1,kS1,l

)
lower (14)

pKa,3

(
I1,j I1,kS1,l

)
mr−mE

(
I1,j I1,k

)
E
(

S1,l I1,j I1,k

)
higher (15)

E
(

I1,lS1,jS1,k

)
≈ E

(
S1,jS1,k I1,l

)
,

l = 1, 2, 3; j, k = 1, 2, 3, j 6= k.
pKa,3

(
S1,jS1,k I1,l

)
mr−mE

(
S1,jS1,k

)
E
(

I1,lS1,jS1,k

)
lower (16)

pKa,3

(
I1,lS1,jS1,k

)
mr−mE

(
I1,lS1,j

)
E
(

S1,jS1,k I1,l

)
higher (17)

Proof. The proof of this result just follows from the linear model for pKa in terms of
energies and the inequality for the corresponding energies:

E(I1,j) < E(S1,l)

for all j, l = 1, 2, 3. See the Supporting Information. �

Remark 1. In practical situations, we do not require the application of all the pairs of models; rather,
we just need to compute the energy in the expert software Gaussian for the lowest pKa. We prefer the
energy computation of the inferior clusters (more stable), which will provide the best deprotonation
route. Explicitly, the method recommends the computation in Gaussian of the following energies by
applying the definition:

pKa,3 = mr−mE2 + mE3

And the approximations for lowest energies verified in the second round:
E3 = E

(
S1,l I1,j I1,k

)
, l = 1, 2, 3; j, k = 1, 2, 3, j 6= k. and E2 = E

(
S1,l I1,j

)
provide 18

inferior deprotonations.
E3 = E

(
I1,lS1,jS1,k

)
, l = 1, 2, 3; j, k = 1, 2, 3, j 6= k. and E2 = E

(
I1,lS1,j

)
≈ E

(
S1,j I1,l

)
provide 18 inferior deprotonations.

E3 = E
(

I1,jS1,l I1,k
)
, l = 1, 2, 3; j, k = 1, 2, 3, j 6= k and E2 = E

(
I1,jS1,l

)
≈ E

(
S1,l I1,j

)
via Equation (10) provide 9 deprotonations.

Finally, if we include the 6 computations of E
(

I1,l I1,j I1,k
)
, l, j, k = 1, 2, 3; l 6= j 6= k.,

then only 51 of the 120 possible deprotonations can be performed if the conditions of the
linear model are accomplished.

There are several discrepancies in the best route of deprotonation. Reference [20]
suggests different best deprotonation routes that are reached in the carboxyl group, i.e.,
C17C2C15 (see Figure 6). However, according to [10,20] the pathway starting in H-N16 is
as possible as the referenced carboxyl routes.

It is easy to trace the source of this important assertion about H-N16 and C2-COOH in
a number of papers. With the addressed discrepancies related to C17-COOH, H-N16 and
C2-COOH, in general, there is not a consensus about the best deprotonation route.

We highlight, for example, the work [41] that supports the N16-H pathway by experi-
ments. Just as other areas propose other options without moving away from the chemical
context, they open the possibility of discovering different routes that are not classically pos-
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sible. The references are open to all the options of deprotonation routes from a theoretical
and/or experimental point of view.
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However, suppose we extend our observation to other possible routes generated by
the permutations of the order of the deprotonations. In that case, we can notice two aspects,
one related to the property of pKa commutativity and the other with the inheritance of the
local minimum of energy between the different extraction levels. Both properties will not
fulfill all the deprotonations.

This paper also advances the prediction of non-complete explored rounds. In par-
ticular, the model proved in Section 2.2 provides the location of higher deprotonation
routes by using the clusterization of the first round. As can be seen in the statement after
Equation (7), if we optimize an arbitrary deprotonation for 4, 5, and 6 rounds, we can
predict the corresponding cluster. Given that the pKa is just a simple linear model of the
energy, then any associated stable and reasonable value can be promoted to a valid pKa. We
submitted the addressed statement to a test of an interesting route, starting with a high pKa.
Figures 7 and 8 show the complete procedure of deprotonations, moving between superior
and inferior clusters. The evolution of the pKa is also described, and the final clusterization
is obtained as we have expected; see also Table 4. This simple law is useful for avoiding
unnecessary computations; we just need to select a priori deprotonation routes ending with
a carboxyl group, no matter the initial location of the first or middle deprotonations.

Table 4. Cluster prediction based on the linear model proved in Section 2.2.

Compound pKa Cluster Prediction

C6-OO-, N16-, C17-COO−, C2-OO- 5.29 SSII=SSI=SI=I
C6-OO-, N16-, C17-COO-, C2-OO-, C5-OO- 19.58 SSIIS=SSIS=SSS=SS=S
C6-OO-, N16-, C5-COO-, C2-COO- 5.76 SSSI=SSI=SI=I
C6-COO-, N16-, C5-COO-, C2-COO-, C17-OO- 6.02 SSSII=SSSI=SSI=SI=I
C5-COO-, C6-COO-, C2-COO-, C17-OO- 5.45 SSII=SSI=SI=I
C5-COO-, C6-COO-, C2-COO-, C17-OO-, C15-OO- 5.46 SSIII=SSII=SSI=SI=I
C5-OO-, C6-COO-, C2-COO-, N16- 19.56 SSIS=SSS=SS=S

For simplicity in the notation, and the left operation in the third column, we have
removed the sub-indexes; see the left multiplication operation after Equation (7).



Int. J. Mol. Sci. 2023, 24, 2923 11 of 34

Int. J. Mol. Sci. 2023, 23, x FOR PEER REVIEW 11 of 36 
 

 

Table 4. Cluster prediction based on the linear model proved in Section 2.2. 

Compound pKa Cluster Prediction 

C6-OO-, N16-, C17-COO−, C2-OO- 5.29 SSII=SSI=SI=I 

C6-OO-, N16-, C17-COO-, C2-OO-, C5-OO- 19.58 SSIIS=SSIS=SSS=SS=S 

C6-OO-, N16-, C5-COO-, C2-COO- 5.76 SSSI=SSI=SI=I 

C6-COO-, N16-, C5-COO-, C2-COO-, C17-OO- 6.02 SSSII=SSSI=SSI=SI=I 

C5-COO-, C6-COO-, C2-COO-, C17-OO- 5.45 SSII=SSI=SI=I 

C5-COO-, C6-COO-, C2-COO-, C17-OO-, C15-

OO- 
5.46 SSIII=SSII=SSI=SI=I 

C5-OO-, C6-COO-, C2-COO-, N16- 19.56 SSIS=SSS=SS=S 

For simplicity in the notation, and the left operation in the third column, we have 

removed the sub-indexes; see the left multiplication operation after Equation (7). 

 

Figure 7. Cluster prediction location of a fifth deprotonation route starting with a very high pKa; the 

evolution in the rounds clearly jumps between superior and inferior clusters. According to the state-

ment proved in Section 2.2, if the last deprotonation includes a hydroxyl group or NH16, then the 

route is placed in the superior cluster; otherwise, if the last deprotonation belongs to a carboxyl 

group, then the route is in the inferior cluster of low pKa. 

Figure 7. Cluster prediction location of a fifth deprotonation route starting with a very high pKa;
the evolution in the rounds clearly jumps between superior and inferior clusters. According to the
statement proved in Section 2.2, if the last deprotonation includes a hydroxyl group or NH16, then
the route is placed in the superior cluster; otherwise, if the last deprotonation belongs to a carboxyl
group, then the route is in the inferior cluster of low pKa.
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Figure 8. A different deprotonation route involving low pKa in the last stage. The pathway starts on
a high value in the first round. The proved statement of Section 2.2 guarantees the result; if the last
deprotonation includes a carboxyl group, then the route belongs to the inferior cluster.
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2.3. Alternative Clusterization of the Deprotonation Route via Riemann–Mulliken Distance

The literature does not explore all possible routes of deprotonation. It is assumed
that the local minima of the first deprotonation are successively inherited. The energy
or pKa is related to the locus of the molecules. A variable can measure similarity or
dissimilarity by using the geometry, the atomic mass, and the Mulliken charges. In this
case we defined the Riemann–Mulliken distance (RMD) to compare the parent and the
deprotonated configurations. It provides a descriptor using the recent theory of Riemannian
geometry of the shape.

This matter is wholly contextualized in the optimization problem because a small
change in the coordinates, mass, and charges of the molecules, concerning a reference,
implies a low RMD. From the chemical point of view, these few changes can be a slight
variation in the pKa. Therefore, we expect a relationship between the pKa and the RMD.
However, we do not enter into the details of this function; we will just provide some figures.
We will research this topic in a future study.

We have computed all the Energy-pKa, and RMD-pKa for the 156 deprotonation
routes (6, first round; 30 second round, and 120, third round); see Tables S2–S4, and see
Tables S18–S20 respectively in Supporting Information.

The variable pKa strongly depends on the energy; therefore, it is necessary to find
an independent variable to study this affinity. Furthermore, an easy-to-measure predictor
related to geometry, atomic mass, and Mulliken charges is also required. Due to this
situation and the previous analyses, the RMD satisfies the requirements because it can
detect minor differences in the geometric arrangement of a molecule and changes in the
mass and charge. These variations translate into changes in physicochemical properties.
Moreover, if we explore the entire energy surface, we can provide a non-statistical but
algebraic-geometric total population space, which allows general conclusions about the
deprotonation process. We start with the first deprotonation, and Figure 9 shows the
claimed relation.
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Figure 9. Relation between RMD and pKa values of Bd, and template for clusterization via RMD.
The low cluster involves the dihydropyridine ring nitrogen (C2, C15, C17), and the high cluster
corresponds to the catechol ring (C5, C6, N16).

However, we have obtained two clusters for pKa, which are explained by a chemical
argument [12,20,42]. The RMD is a good splitter for worst and better affinity. We notice that
this separation is an expected behavior in the deprotonation process. We can apply several
methods for clusterization, but according to the above-expected relation between pKa and
RMD of the parent (See Table S1 in Supporting Information) and optimized molecules, we
must demand an additional constraint for the two clusters; they must be parallel models.
This restriction, which we will not consider in the classical methods for clusterization,
motivates us to consider a new technique based on shape theory.
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To get to this end, we used algebraic statistics of the six points mixed with the Rie-
mannian geometry information of the population. Given that we expect two parallel linear
models, we find all the possible subsets of four points and consider a simple rectangle
as the template. The low Riemannian distance (RD) between the template and the four
polygons will separate the clusters. The Riemannian distance is not invariant under the
permutation of the landmarks. Then an additional step must involve orientable quadrilat-
erals. Figure 8 shows the orientable quadrilateral template. We have 15 possible orientable
quadrilaterals compared with the template via Riemannian distance. Note that we have
used the RD for the clusterization from a geometric point of view based on a large rectangle.
The result is the same as the pKa clusterization. However, we also use the enriched RMD
for a geometric-chemical descriptor of the pKa. In this case, the clusterization is reached by
grouping the extremal RMD shown in Table S18.

The automatic detection by the RD gives two clusters: 1 (low): corresponding to the
groups C2-COO-, C17-COO-, and C15-COO-; and 2 (high): C5-COO-, C6-COO-, and N16-
as expected.

According to Figure 9, C17-COO- is the best first deprotonation and also obtains the
minimum RMD. However, we do not consider any preferable way of getting the next best
deprotonation. To get to this end, we consider the second deprotonation. In this case,
we have 30 possible routes. Figure 10 shows the relationship between pKa and the RMD
between the parent and the deprotonated molecules.
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Figure 10. Relation between RMD and pKa values for all possible second deprotonations in Bd.
The inferior cluster (orange) is strictly constituted by all the permutations of the low cluster in the
first round (dihydropyridine ring nitrogen: C2, C15, C17). This cluster also involves all possible
combinations of the superior group of the first round, catechol ring: C5, C6, and N16; followed by
all possible combinations of the low cluster in the first round. The complementary set constitutes
the superior cluster (blue). Note that the second deprotonation follows a rule that can be used for
optimization of the computations. The superior cluster does not require computations because we
already know that the pKa will be high. However, note that the inferior cluster must be computed
completely because the addressed rule cannot provide the best route.

Again, note that the clusters can be easily listed: Each permutation finishing in C2,
C15, and C17 belongs to the inferior cluster; the remaining permutations belong to the
superior clusters and end with C5, C6, and N16.



Int. J. Mol. Sci. 2023, 24, 2923 14 of 34

We can obtain the same clusterization by using the RD applied to the rectangular
template of Figure 9. We compare the 27,405 oriented quadrilaterals with the same template
of the first round of deprotonation.

As in the first deprotonation, we found two clusters. Therefore, we apply the clus-
terization method via a perfect template and the RD of all possible quadrilaterals. See
classification in Table S19.

Note that the pKa is a linear function of the RMD. It is geometrically distinct on each
cluster of the second deprotonation.

Also observed is that the first and second deprotonation numbers have been uniformly
distributed in the two clusters. There is no preferable route of minimum energy, and the
results will not transferfrom the given first deprotonation.

The best second deprotonation route includes C2-COO- and C17-COO-; however,
C6-O-, C17-COO-, and C15-COO-, C17-COO- are also very near in pKa and RMD. The
table shows that the commutativity does not hold. For example, C17-COO- and C6-O-
reach one of the highest pKa; several other issues can be inferred from both clusters (see
Equations (8) and (9)). Finally, we considered the third deprotonation. Figure 11 again
shows two differentiated clusters.
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Figure 11. Relation between RMD and pKa values for all possible second deprotonation in Bd.

The inferior cluster (orange) is strictly constituted by all the permutations of the
low cluster in the second round (dihydropyridine ring nitrogen: C2, C15, C17) and the
superior and inferior cluster of the first round. The complementary set constitutes the
superior cluster (blue). Note that the third deprotonation follows a rule that can be used
for optimization of the computations. The superior cluster does not require computations,
because we know that the pKa will be high. According to the prediction model, we need to
compute 51 of the 60 deprotonation routes of the inferior clusters (see Section 2.2).

The RD of 8,214,570 orientable quadrilaterals with the template gives the two clus-
ters recognized in Table S20. Again, the permutations of each triple provide a uniform
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distribution around the two clusters. Non-expert behavior can be traced by knowing
only performance in the previous two deprotonations. Commutativity is also problematic.
The best third deprotonation route corresponds to C6-COO-, C15-COO-, and C17-COO-.
The prediction model of Section 2.2 guarantees this route because the last deprotonation
corresponds to a carboxyl group. The reader can verify that all the routes of the inferior
cluster finish in C2, C15, or C17.

Note also that the pKa is linearly related to the RMD. We will study this interesting
relation in future work.

Furthermore, the pKa commutativity of deprotonation is not maintained. For example,
if we switch the deprotonation of mono-anion C6-O-, C15-COO- in the second round, the
behavior of the mono-anion C15-COO-, C6-COO- is opposite since it ranks in the high
cluster. The respective pKa values are 3.30 and 10.44. Tables S21–S28 show the energy
differences under permutations. Only some equalities appear, supporting the hypothesis
of the prediction models given in Section 2.2. Of course, this is a simple consequence of the
prediction model in Section 2.2.

2.4. Exact Linear Model for pKa in Terms of Energy

One of the main results of this work corresponds to the elucidation of pKa as a simple
linear function of energy. All deprotonation paths of any round are represented by straight
lines on the pKa energy plane. The linear functions are parallel to each other (with constant
slope m) and only differ in the intercept, which in turn depends on the energy of the
previous round. The literature reports different deprotonation routes for Bd. In some
cases, it is difficult to determine the correct pKa ranges; however, with the new linear
model in terms of energy, the description of the deprotonation process simply depends on
reasonable and stable energy. The calculation of the 156 deprotonations for rounds 1, 2, and
3 shows us that all the energies obtained are plausible and therefore the pKa are reasonable.
Tables S2–S4 of the Supporting Information show the pKa in terms of energy for all rounds
1, 2, and 3 deprotonations. The corresponding linear models are shown in Figures 12–14.
The mathematical support for the model has been described in Section 3.4.
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Figure 12. pKa calculation used a direct approach for the first round of deprotonation. Two subclus-
ters are formed: I1 with C2, C15, and C17; S1 with C5, C6, and N16.

Note that the pKa is divided into the same two clusters defined by the RMD. The best
deprotonation path is located at the lowest energy of all, which in turn corresponds to
the line with the highest intercept. The cluster prediction rule applies again here. If you
want to know the cluster for each deprotonation route, it is enough to observe the last
deprotonation. If the pathway ends in a carboxyl group, then it belongs to the lower cluster.
If the route ends in a hydroxyl group or N16, it is located in the upper cluster.
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This exact linear model (Section 3.4, derived from Equations (21)–(24)) is the support
for the pKa predictions that will be presented in the next section.

pKa Predictions for Deprotonation Rounds 1, 2 and 3

In Section 2.2 we described a law for the prediction of the upper and lower pKa clusters
for any round. Table 3 of Section 2.2 also allows for the prediction of pKa values from
certain approximations between the energies of some subclusters. The 156 optimizations
carried out in Gaussian support such suppositions.

Supporting Material Table S5 shows the dual pathway pKa predictions for the second
round. Figure 15 shows the excellent prediction of the respective subclusters in the second
round and how the points are on a perfect prediction straight line with slope 1.
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Figure 15. pKa calculation using a direct approach for the first round of deprotonation. Two subclus-
ters are formed: I1, with C2, C15, and C17; S1, with C5, C6, and N16.

Tables S6–S17 of the Supporting Information and Figures 16–19 show the various sub-
cluster predictions for the third deprotonation. The equations that govern the predictions
are detailed in Table 3 of Section 2.2. The predictions of the third round consider the results
of the second round; therefore, the error is enlarged given the assumption for the equality
of the energies. It is necessary to include three predictions for each route based on the
minimum, the mean, and the maximum of the corresponding energies.

2.5. Molecular Docking

We carried out in silico molecular docking studies to identify binding residues in
the active site of the enzyme aldose reductase (AR) in a complex with Bd. Applying this
process, the binding affinity of the first ligand pose was −9.6 kcal/mol. The results show
that the studied compound interacts favorably with the target through various non-bonded
interactions, such as hydrophobic and hydrogen-bonding interactions. Figure 20 represents
the close-up view of the AR active site bound with Bd in the binding pocket.

We can observe that four donor/acceptor hydrogen-bonding interactions are formed
between the receptor residues Cys80, Leu300, His110, and Trp111 and carboxyl groups
C17-COOH, C15-COOH, and C3-COOH, respectively. In addition, electrostatic pi–cation
interactions occur between the dihydropyridine ring nitrogen and Trp111. Other hydropho-
bic or van der Waals contacts are formed by the spacer C12 of Bd and amino acids Trp111,
Cys298, and Leu300. Finally, the catechol group presents a π-Alkyl with Val47. The car-
boxylate bound to C2 interacts with charged nicotinamide through hydrogen. In Table 5,
we record information about the observed interactions.
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C5, C6, and N16. Predictions are marked as gray (max), orange (mean), and green (min).
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C2, C15, and C17. Predictions are marked as gray (max), orange (mean), and green (min).
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C6. Predictions are marked as gray (max), orange (mean), and green (min).

Int. J. Mol. Sci. 2023, 23, x FOR PEER REVIEW 21 of 36 
 

 

 

Figure 19. pKa prediction for the third deprotonation. Subclusters S1I1S1 based on C2, C17, and C15. 

Predictions are marked as gray (max), orange (mean), and green (min). 

2.5. Molecular Docking 

We carried out in silico molecular docking studies to identify binding residues in the 

active site of the enzyme aldose reductase (AR) in a complex with Bd. Applying this pro-

cess, the binding affinity of the first ligand pose was −9.6 kcal/mol. The results show that 

the studied compound interacts favorably with the target through various non-bonded 

interactions, such as hydrophobic and hydrogen-bonding interactions. Figure 20 repre-

sents the close-up view of the AR active site bound with Bd in the binding pocket. 

 

Figure 20. AR structure and molecular basis of potential active site interactions with Bd. 

Figure 19. pKa prediction for the third deprotonation. Subclusters S1I1S1 based on C2, C17, and C15.
Predictions are marked as gray (max), orange (mean), and green (min).



Int. J. Mol. Sci. 2023, 24, 2923 20 of 34

Int. J. Mol. Sci. 2023, 23, x FOR PEER REVIEW 21 of 36 
 

 

 

Figure 19. pKa prediction for the third deprotonation. Subclusters S1I1S1 based on C2, C17, and C15. 

Predictions are marked as gray (max), orange (mean), and green (min). 

2.5. Molecular Docking 

We carried out in silico molecular docking studies to identify binding residues in the 

active site of the enzyme aldose reductase (AR) in a complex with Bd. Applying this pro-

cess, the binding affinity of the first ligand pose was −9.6 kcal/mol. The results show that 

the studied compound interacts favorably with the target through various non-bonded 

interactions, such as hydrophobic and hydrogen-bonding interactions. Figure 20 repre-

sents the close-up view of the AR active site bound with Bd in the binding pocket. 

 

Figure 20. AR structure and molecular basis of potential active site interactions with Bd. Figure 20. AR structure and molecular basis of potential active site interactions with Bd.

Table 5. Interactions between Bd and the receptor pocket.

Name Distance (Å) Category/Type

Cys80:H–Bd:O 3.06 Hydrogen Bond
Leu300:N–Bd:O 2.83 Hydrogen Bond
His110:H–Bd:O 3.15 Hydrogen Bond
Trp111:H–Bd:O 2.56 Hydrogen Bond

Bd:N–Trp111 4.21 Electrostatic/π-Cation
Bd:N–Trp111 4.68 Electrostatic/π-Cation

Trp111–Bd 5.04 Hydrophobic/π-Alkyl
TRP111–Bd 4.60 Hydrophobic/π-Alkyl
Cys298–Bd 5.11 Hydrophobic/Alkyl
Bd–Leu300 4.36 Hydrophobic/Alkyl

Interactions of the complex AR enzyme with other ligands have been reported, con-
sistent with our results. Therefore, with the residue, His110 appears in lidorestat [43],
sulindac [44], citronellel [45], dehydrobenzoxazinone [29], and betanidin. The residue
Leu300 appears in lidorestat, sulindac, and betanidin. The residue Trp111 corresponds to
lidorestat [43] and betanidin. The residue Cys298 appears in sulindac [44], dihydrobenzox-
azinone [29], and betanidin.

Figure 21 represents some physicochemical properties of binding through surfaces
covering the pocket area of the protein and the ligand. In Figure 21a, the faint blue
represents the active site’s basicity. Amber surfaces are regions with hydrophobic binding
properties; the molecule occupies the receptor’s active site in the partly polar binding
pocket primarily composed of Val47 andLeu300 (Figure 21b). Hot pink and lime green
shades represent hydrogen bond donor and acceptor regions, respectively (Figure 21c).

To better understand the binding details and point out the relevance of medium acidity
in an aqueous solution, we considered the charge alterations of Bd on pH changes proposed
in the literature [42]. It was suggested that at 3.5 < pH < 7.0, a dianion with deprotonated
C17-COOH, C15-COOH, and C2-COOH groups appears. Additionally, all carboxyl groups
are dissociated in an environment of implicit water at physiological pH, and stabilized
conjugated structures favor the type of scavenging reactions [12]. The molecular docking
schema to analyze the interactions between the deprotonated Bd and the active site of the
receptor can be seen in Figure 22.

The molecular docking schema to analyze the interactions between the deprotonated
Bd and the active site of the receptor can be seen in Figure 22. The deprotonated carboxylate
attached to the pyrrole ring interacts with NADP+ and forms an H-bond with Trp111 and
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His110. The other two deprotonated carboxylates also form H-bonds with Cys80 and
Leu300. Residues Ala299 and Thr113 interact via H-bond with the ligand. Trp111 residue is
in contact with the dihydropyridine ring’s nitrogen and the carboxylic group’s oxygen via π-
cation and π-anion interactions, respectively. Hydrophobic interactions occur between the
C12 spacer and the Cys298, Trp111, and Leu300 residues. Another hydrophobic interaction
occurs between the catechol group and Val47. Table 6 includes information about the
observed interactions.
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Figure 22. Molecular basis of potential active site interactions with deprotonated Bd (C17C15C2-COOH).

Table 6. Interactions between the deprotonated Bd (C17C15C2-COOH) and the receptor pocket.

Name Distance (Å) Category/Type

His110:H–Bd:O 2.21 Hydrogen Bond
Trp111:N–Bd:O 2.52 Hydrogen Bond
Cys80:H–Bd:O 3.09 Hydrogen Bond

Leu300:H–Bd:N 2.98 Hydrogen Bond
Ala299–Bd:O 3.47 Hydrogen Bond

Thr113:H–Bd:O 2.09 Hydrogen Bond
Bd:N–Trp111 3.71 Electrostatic/π-cation
Bd:O–Trp111 3.89 Electrostatic/π-anion
Cys298–Bd 5.11 Hydrophobic/Alkyl
Trp111–Bd 4.58 Hydrophobic/π-Alkyl
Bd–Val47 5.40 Hydrophobic/π-Alkyl

Bd–Leu300 4.33 Hydrophobic/Alkyl
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Further, the binding affinity of the first ligand pose was −9.3 kcal/mol. The receptor
amino acids interacting with the ligand are similar to those analyzed for the protonated
molecule. However, both structures insert themselves deep into the pocket through mainly
hydrogen bonding, electrostatic, and van der Waals interactions. However, it is not a
coincidence that all the amino acids participate in these interactions.

Finally, we show the interaction between the deprotonated molecule (C6C15C17-
COOH) and the protein’s active site. Figure 23 shows these interactions.
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The binding affinity of the ligand was −9.5 kcal/mol. The interactions presented are
of the hydrogen bond type between the ligand and the residues Trp111 (2.42 Å), Leu300
(3.10 Å), Cys303 (3.40 Å), and Tyr48 (3.50 Å). In addition, the NADP+ molecule also interacts
via H-bond with Bd (2.38 Å).

In all cases, the interactions between the receptor and the ligand are consistent with
those previously reported. Therefore, we selected the conformation of the AR-lidorestat
complex. As a reference, according to our results and those previously reported, the
molecule interacts with residues Cys80 and Trp111 through hydrogen bonds and with
Leu300, Trp20, and Cys298 through van de Waals contacts. Additionally, it interacts
with amino acids Trp79, Phe122, and His110 via another type of contact [29,43]. The
results obtained from the AR-Bd complex’s behavior agree with those referred to as the
AR-lidorestat complex.

Search for Active Sites in Automatic Molecular Docking via Shape Theory

We use a new method to automatically search protein pockets to study the protein-
ligand system’s molecular coupling. This method allows us to determine a reference
system with Riemann geometric information to analyze the receptor–ligand complex.
It is based on the formalism of shape theory and a Lennard–Jones (L–J) potential 6–12
and 6–10. We reported the details of this method in a previous article (under review),
and it was implemented in R, a free software environment for statistical computing and
graphics [46]. We applied the algorithm for the automatic search of cavities in the protein
and the classification of the pose of the ligand in the protein pocket according to the potential
value. The ligands used correspond to betanidin in dianion form with deprotonated
C17C15C2-COOH (Ligand 1) and C6C15C17-COOH (Ligand 2).

Figures 24 and 25 show the cavity in which Ligand 1 and Ligand 2 geometrically fit
with the corresponding pocket of the same protein and energetically present favorable
interactions. Both figures show results consistent with those obtained in conventional
software to perform molecular docking. The ligand is surrounded by dots representing the
amino acid atoms surrounding the ligand, indicating favorable interactions between the
ligand and the receptor’s active site. Although the method is purely geometric, it allows us
to visualize the residues that come into contact with Ligand 1: Histidine 306, Tryptophan
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219, 20, and 111, Cysteine 298 and 303, and Leucine 300. Ligand 2: Cysteine 80 and 303,
Leucine 300, Histidine 110 and 306, Tryptophan 111, Phenylalanine 115, and Valine 47.
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Figure 25. Molecular basis of potential active site interactions with deprotonated Bd (C6C15C17-
COOH) via our method founded on shape theory.

The approach has allowed us to identify the cavities and establish the interactions of
the pose of each ligand, which we present in Tables 7 and 8.

Table 7. Interactions between the deprotonated Bd (C17C15C2-COOH) and the receptor pocket.
Complex established by our method (founded on shape theory).

Name Distance (Å) Category/Type

Bd:O–His306 4.95 Electrostatic/π-Anion
Bd:O–Trp219 4.17 Electrostatic/π-Anion

Trp20–Bd 3.89 Hydrophobic/π-π T-shaped
Trp111–Bd 3.83 Hydrophobic/π-Alkyl
Trp111–Bd 3.43 Hydrophobic/π-Alkyl
Bd–Cys298 4.16 Hydrophobic/π-Alkyl
Cys303–Bd 4.24 Electrostatic/π-cation
Bd–Leu300 3.89 Hydrophobic/Alkyl
Bd–NDP 5.17 Hydrophobic/π-Alkyl
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Table 8. Interactions between the deprotonated Bd (C6C15C17-COOH) and the receptor pocket.
Complex established by our method (founded on shape theory).

Name Distance (Å) Category/Type

Cys80:S–Bd:O 3.48 Hydrogen Bond
Leu300:N–Bd:O 2.85 Hydrogen Bond

Bd:N–His110 3.87 Electrostatic/π-Cation
Bd:O–His306 3.96 Electrostatic/π-Anion

Cys80–Bd 4.96 Hydrophobic/Alkyl
Cys303–Bd 4.57 Hydrophobic/Alkyl
Trp111–Bd 3.67 Hydrophobic/π-Alkyl
Phe115–Bd 5.36 Hydrophobic/π-Alkyl
Bd–Trp111 3.36 Hydrophobic/π-Alkyl
Bd–Val47 4.93 Hydrophobic/π-Alkyl

Our method automatically predicted the AR pocket and the possible interactions
between the active site amino acids and the ligands (Ligand 1 and Ligand 2). In general,
the interactions are hydrophobic for both cases with amino acids Trp111 ([29,43]) and
Cys303 [47]. In Ligand 1, the deprotonated C17 carboxylate oxygen interacts electrostatically
with His 306. This same interaction occurs between Trp219 [44] and the deprotonated C2
carboxyl group oxygen. For Ligand 2, it occurs similarly with the C17 carboxylate. This
type of interaction is also generated with Trp219 for Ligand 1 and His110 for Ligand 2.
Hydrogen bonds are present in Ligand 2 with Cys80 and Leu300 [43,47,48]. Cys80 and
Val 47 [44] interact hydrophobically with the same ligand. Ligand 1 forms a hydrophobic
interaction with NADP+ [43] and Trp20 [44].

Ligand 2, as mentioned before, represents a deprotonation pathway predicted by
the geometric approach and located on the receptor and exhibits mainly π-alkyl type
interactions at the catalytic site. The carboxylate groups are firmly attached to the active
site by hydrogen bonding and electrostatic interaction [48]. Ligand 1 presents electrostatic
interactions but not hydrogen bonds. Not much variation in protein conformation would
be expected when interacting with Ligand 1 and Ligand 2, but moderate changes were
presented regardless of the computational method used, by applying either conventional
molecular docking or the one proposed by us. This situation may be because this protein
has presented different binding site conformations for different inhibitors [43,44,49–51]. To
investigate the flexibility of the aldose reductase binding site predicted by our method, we
perform molecular dynamics (MD) simulations and report them below.

2.6. Molecular Dynamics

In this section, we present the molecular dynamics analysis applied to the receptor–
ligand complex obtained by our method. In the Supporting Information, we include
this information for receptor–ligand models from conventional software for molecular
docking calculations.

The molecular dynamics study’s objective is to simulate the local conformational
changes in the complex that result from the binding between the protein pocket and the
ligand. The procedure gives flexibility to the ligand and the protein residues to arrive at a
conformation in a steady state. We chose for molecular dynamics the best conformation
obtained from the molecular docking stage via our proposed method. We used the NAMD
program, and the force field used was CHARMM36m, which can calculate parameters of
bound or unbound molecules. Then we created an environment to put the molecule in to
interact with the water. In this case, the protein is in a rectangular system with the correct
amount of water molecules needed to solvate the box. We added KCl 0.15 M to the solution,
which is necessary to eliminate electrostatic interactions between dissolved molecules.

At the end of the simulation, a file with the extension *.dcd was obtained, containing
the residues’ trajectories during molecular dynamics. These trajectories are crucial to
calculating the protein’s RMSD during the simulation, which is a widely used measure
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to quantify the structural deformation of the protein compared to the initial reference
point. Figure 26a,b shows that the complexes formed with Ligand 1 (C17C15C2-COO-)
and Ligand 2 (C6C15C17-COO-) during the molecular dynamics (DM) simulations have
high stability during the simulation time. We can see that the structure does not vary
significantly; there is an increase in the RMSD until reaching a point where the values
fluctuate between 0.50 and 1.49 Å of RMSD (root mean square deviation), in the case of the
protein associated with Ligand 1. For the other system, the RMSD value is between 0.44
and 1.77 Å. We can observe in Figure 26 that the deviations are within normality.

Figure 26. RMSD of the protein backbone during simulation of MD trajectories, (a) for the protein
related to Ligand 1, and (b) for the protein related to Ligand 2.

The average RMSD measure is similar for both structures: 1.14 and 1.32, respectively.
Therefore, neither of the two complexes suffered a loss of structure during the simulation.

We calculated the deviation for Ligand 1 and Ligand 2 and presented a difference
between the maximum and minimum value of RMSD below 5 Å, 0.95 and 1.01 for each
molecule. Figure 27 shows the RMSD of Ligand 1 and Ligand 2. The average of this
measure is similar for the two compounds, 0.94 and 1.37, respectively. For a system in
equilibrium, the deviations have a maximum difference of 5 Å from RMSD, a situation
fulfilled for these simulations, indicating that the compounds are in equilibrium.

Figure 27. RMSD of the compounds during simulation of MD trajectories: (a) Ligand 1 and (b) Ligand 2.

Figure 28 depicts the potential interactions of the AR enzyme with Ligand 1 after
molecular dynamics (last frame).

Figure 28 shows the amino acid residues of the active site interacting with the ligand.
The green segmented lines show that the hydroxyl groups act as acceptors for forming
hydrogen bonds, like the carboxyl groups of the dihydropyridine ring. We observe that
Ligand 1 nests well on site after molecular dynamics and exhibits hydrophobic interactions
with residues such as Trp20 (4.49 Å), Leu300 (5.24 Å), Trp11 (4.68 Å), and Cys298 (5.09 Å).
Hydrogen bonds are with amino acids Leu300 (Å), Cys303 (Å), Cys80 (Å), and Ala299
(Å) [29,43].
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Figure 28. The DM study obtained the interactions of π and hydrogen bonds of the Ligand 1
compound with AR.

Figure 29 shows the distances and interactions for the residues involved with Lig-
and 2. The hydrogen bond interactions correspond to residues Leu300 (2.29 Å), Cys303
(2.91 Å–2.5 Å), and Pro310 (2.69 Å). On the other hand, we can visualize a π-alkyl type
interaction marked by a segmented pink line with the Trp111 (5.08 Å), Leu124 (Å), Leu300
(5.09 Å), Phe122 (5.22 Å), and Cys302 (4.67 Å) residues, as well as other hydrophobic
interactions with Phe122 and Cys303 [29,43].
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Once we apply molecular dynamics, the stability of each system obtained from our
method [52] is verified, which is an alternative that automatically includes an exhaustive
search of possible active sites.

Figures S1 and S2 show that the complexes formed with Ligand 1 (C17C15C2-COO-)
and Ligand 2 (C6C15C17-COO-) during the molecular dynamics (DM) simulations have
high stability during the simulation time. Figures S3 and S4 represent the potential interac-
tions of the Ligand 1-AR and Ligand 2-AR complexes.
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3. Materials and Methods
3.1. Computational Details

The capacity to scavenge free radicals through hydrogen atom transfer (H•) has been
mainly approached through three mechanisms that are often discussed in the literature [13,53].
We consider the SET (single electron transfer) and the SPLET (sequential proton loss electron
transfer) mechanisms.

The SET mechanism consists of one step defined by Equation (18). Here, an electron is
transferred to a free radical, forming a radical cation.

ArOH + R• → ArOH•+ + e− (18)

The SPLET mechanism consists of two steps (see Equations (19) and (20)). The first
step refers to deprotonation, and the second is an electron transfer to a radical.

ArOH → ArO− + H+ (19)

ArO− → ArO• + e− (20)

The proton affinity (PA) and the electron transfer enthalpy (ETE) descriptors are
shown to the SPLET mechanism and are obtained from PA = HArO

− + HH
+ − HArOH and

ETE = HArO
• + He− − HArO

−, respectively. The ionization potential (IP) descriptor is identi-
fied to the SET mechanism and is calculated according to IP = HArOH

•+ + He
− −HArOH [53].

Previous reports reveal the following: the enthalpy of the proton H(H+) is
−259.00 kcal/mol; the enthalpy of the electron H(e−) is −55.61 kcal/mol; and the en-
thalpy of the hydrogen atom H(H−) is −314.65 kcal/mol. We consider these values and,
additionally, all enthalpies were calculated at 298 K and 1.0 atm [53].

The computational study starts with a conformational analysis using the software
ArgusLab [54] to identify the most stable structure. The optimization of the molecular
geometry was performed by using the computational program Gaussian 09 package [55].
Examination of free radical-scavenging activity will be carried out with different protocols,
and various reports have stated that the computational level DFT B3LYP/631+G (d, p)
has allowed analysis of the system quite well at a low computational cost [10,20,53]. The
geometries were optimized at the B3LYP level of theory and with the 6-31+G (d, p) basis
set. The radical or ionic structures were optimized starting from the optimized geometries
of the parent molecules by applying the available method UB3LYP/6-31+G (d, p), which is
the SMD implicit solvation model [56]. The stability of the structures was confirmed by
not obtaining imaginary frequency modes at the calculated vibrational frequencies. We
determined the energies corresponding to the molecular orbitals of the HOMO/LUMO
border, and from there, we obtained the values of the reactivity descriptors.

We find all possible permutations of the extractions of the hydrogens of interest in
mono-deprotonation and subsequent deprotonations. It allows for the study of the different
Riemann distances and their relationship with the deprotonation pathway and pKa values.
R is the package used in this step [46].

3.2. Deprotonation Routes and pKa Values

Deprotonation routes have been studied, considering all possible combinations at each
stage for each carboxyl and hydroxyl group within the molecule under study and their
respective pKa values. The pKa values were calculated using different methods.

3.3. Direct Approach

Continuum solvent pKa calculations utilize a thermodynamic cycle also known as the
direct method, in which the deprotonation of the acid (HAq) in its conjugate base (Aq−1)
and the isolated proton (H+) are considered, and the acid charge HAq is represented by q
(See Equation (21)) [17,18].
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This approach combines accurate gas-phase acidity with solvation-free energies from
various solvent models. The free energy of the dissociation reaction of the acid in solution
(∆Gaq*) is calculated from the sum of the corresponding free energy of deprotonation in the
gas phase of the acid (∆Gg*) and the increase of free energies of solvation of the reagents
and products involved (∆∆Gsolv). The free energy in the gas phase of the dissociation
reaction (∆Gg*) is given by the expression observed in Equation (22).

The last term of numeral 1 corresponds to the energy variation associated with the
change from the standard state from 1 atm to 1 M (∆G1 atm→M = 1.89 kcal/mol). The value
of the free energy in the gas phase of the proton at 298 K and 1 atm is −6.28 kcal/mol [18].

The increase in free energy of solvation between reactants and products can be calcu-
lated according to Equation (23).

This equation requires the value of the aqueous phase solvation free energy of the
proton, ∆Gaq,solv* (H+), which must be determined experimentally. The considered value
of energy is −265.9 kcal/mol [57]. The superscripts in Equations (21)–(23), “*” and “o”,
denote that the thermochemical quantities are computed with respect to a standard state of
1mol L-1 and 1 atm, respectively. From them, we arrive at the deprotonation energy of the
acid AHq in solution, and the corresponding pKa is calculated according to Equation (24),
in which Gaq*(Aq−1) and Gaq*(HAq) are the standard free energy of deprotonated and
protonated species in the aqueous medium, respectively. All pKa calculations are given in
the Supporting Information.

HAq(aq)
∆G∗aq→ A−(aq) + A+(aq) (21)

∆G∗gas = G0
g
(

H+
)
+ G0

g

(
Aq−1

)
− G0

g(HAq) + RTLn(24.46) (22)

∆∆Gsolv = ∆G∗aq,solv
(

H+
)
+ ∆G∗solv

(
Aq−1

)
− ∆G∗solv(AHq) (23)

pKa =
∆G∗aq

RTLn(10)
=

G0
g
(

H+
)
+ ∆G∗aq,solv

(
H+
)
+ ∆G1atm→M + G∗aq

(
Aq−1)− G∗aq(HAq)

RTLn(10)
(24)

3.4. The Linear Model for pKa

In this work, Equation (24) is written as a linear model of the pKa in terms of the
deprotonation energy, as follows:

pKa =
1

RTln(10)

[
G0

g(H+) + ∆G∗aq,solv(H+) + ∆G1 atm→M
]
− 1

RTln(10)

[
G∗aq(HAq)

]
+ 1

RTln(10)

[
G∗aq
(

Aq−1)]
The slope of the model is:

m =
1

RTln(10)

There is a constant r for all the models:

r = G0
g
(

H+
)
+ ∆G∗aq,solv

(
H+
)
+ ∆G1 atm→M

Then the linear models is given by:

pKa,i+1 = mr−mEi + mEi+1, i = 0, 1, 2.

Finally, the intercept-slope equation takes the form:

pKa,i+1 = bi+1 + mEi+1, i = 0, 1, 2.
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bi+1 = mr−mEi, i = 0, 1, 2

where Ei, i = 0, 1, 2 is the reference energy in kcal/mol for the deprotonation i + 1 with
energy Ei+1, i = 0, 1, 2. Given that the slope m is the same for all the rounds, then the
intercept bi+1, i = 0, 1, 2 defines parallel linear models for each pKa,i+1 in terms of the
independ variable Ei+1, i = 0, 1, 2. This implies that the deprotonation routes for a given
round i + 1, i = 0, 1, 2 are easily shown in a graph of pKa,i+1 vs. Ei+1, i = 0, 1, 2, where
all the lines are parallel and can be ordered according to the intercept bi+1, i = 0, 1, 2;
therefore, the best deprotonation route is obtained in the lowest line.

Instead of discussion about reasonable pKa,i+1, the above equations allow the treat-
ment of all the deprotonation processes of every round i+ 1, i = 0, 1, 2 as a simple problem
of minimum energy selection. This quantity involves the physicochemical parameters asso-
ciated with various deprotonation states [17–19] and the route to be carried out [20], a fact
that makes a deprotonation reasonable if the corresponding deprotonated molecules are
stable (negative reasonable energies).

In other words, this paper moves the study of the rounds of pKa,i+1 into the simple
and acceptable world of stability and energy classification. As can be checked in the
Supporting Information, all the deprotonations in every round are reasonable because
the corresponding energies are acceptable from the chemical point of view using the
implemented theory.

3.5. Prediction Model for Clusterization and Computation of pKa

In the result section, we have provided a model that predicts the inferior and superior
cluster of any deprotonation round based on the chemical clusterization for the first round
via the direct approach of pKa.

3.6. The Riemann–Mulliken Distance

The geometric properties of pre-optimized (protonated) and optimized (deprotonated)
molecules are not usually correlated. The literature does not reveal studies for clarifying
the relationship between the resulting energy and the involved clusters before and after
the optimized process of interest. In this case, we ask for a possible relationship from
the geometry aspect based on a distance function between the molecules, including two
important chemical elements: the atomic masses and the Mulliken charges. To achieve this
end, we summarize the molecules in non-scaled matrices containing the x-y-z coordinates
in the first three columns, followed by fourth and fifth columns with the atomic masses
and the Mulliken charges. Each matrix represents the geometric and chemical information
of the pre-optimized (protonated) and optimized (deprotonated) molecules. In this setting,
the molecules are points in a quotient space (size-and-shape space), and distances among
such points represent the similarity and dissimilarity of the parent and optimized molecules
after deprotonation [21,25,52,58].

Given that the spatial coordinate matrices also involve Mulliken’s charges and atomic
masses, then the Riemann–Mulliken distance (RMD) is appropriate for registering the
discrepancies in the deprotonation process. We do not consider the RDM as a new chemical
method for characterization of pKa; rather, we open the perspective to future research, mov-
ing the analysis of deprotonation to some interesting quotient spaces susceptible of useful
invariances for the optimization process. Explicitly, we ask for a possible relationship in the
RMD distribution of all possible extractions of a parent molecule with the corresponding
distribution when the parent is protonated. The mathematics behind the RDM can be seen
in the context of the well-known Riemannian distance in size and shape spaces provided
by [21], among others. A number of applications in chemistry, physics, engineering, and
biology have used similar concepts on Riemannian theory; see, for example, [21–25,52].

In this preliminary work about the emergent RMD, we have noted that some linear
relationships with the pKa can be explored in the future. Finally, we used the free software
for statistical computing R [46] to implement our algorithms, which contain the new RMD
and the linear models for prediction and clusterizations of the pKa.
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3.7. Molecular Docking

For the development of this study, we selected the enzyme aldose reductase (AR). Its
importance lies in the fact that the polyol pathway contributes to the production of oxygen
reagents and can generate oxidative stress. This pathway is activated when the glucose
concentration becomes too high in the cell; in this case, aldose reductase catalyzes the
conversion of glucose into sorbitol, and sorbitol is oxidized to fructose. The accumulation
of sorbitol increases the osmotic pressure, and this situation can participate in the progress
of various complications associated with diabetes [59].

We explored the possible interactions between the enzyme aldose reductase (AR)
and the compound under study through molecular modeling using the AutoDock Vina
version program [58]. In molecular docking studies, we used the crystal structure of
aldose reductase in complex with tolmetin, whose code is 1Z3N (Protein Data Bank: http:
//www.rcsb.org/pdb, accessed on 1 January 2022) [43]. Polar hydrogens were attached to
the protein atoms, then partial Kollman charges of bonded atoms were assigned. We built
and optimized the 3D structure of the Bd compound with Gaussian software [30]. To carry
out the docking simulations, we defined a grid box with dimensions 18 Å × 18 Å × 18 Å
and a center set at the point x = 15.0, y = −7.0, z = 11.0 to enclose the reported active
site [47]. We selected the representation of the most favorable binding mode predicted by
the AutoDock Vina calculations according to the coupled model with the best score (lowest
coupling energy) and analyzed it with the VMD (Visual Molecular Dynamics) [60] and
Discovery Studio programs [61]. With an algorithm that we implement in R [46] and that is
based on shape theory, we carry out the automatic search for active sites and analyzed the
docking. This proposed model is detailed in a previous work that has been submitted [52].

3.8. Molecular Dynamics

We carried out the molecular dynamic calculations with NMAD (Nanoscale Molecular
Dynamics), a molecular dynamics package designed for high-performance simulations
of movement of biomolecules over time [62], and CHARMM-GUI (Chemistry at Harvard
Macromolecular Mechanics-GUI), a web-based graphical user interface for generating
various input files and standardization of atomic coordinate and dynamic trajectory analysis
and manipulation techniques [63]. We used one of the conformations with the highest score
obtained from the molecular docking coupling for molecular dynamics calculations. The
graphical user interface that we used has the CHARMM36m force field integrated, which
we used with the TIP3P water model [64].

The simulation ran in 2.5 ns. The first phase of equilibration with NVT assembly
aims to stabilize the system temperature; later, in the second phase with NPT assembly,
the system pressure is stabilized via the periodic boundary conditions with the Particle–
Mesh Ewald (PME) method to model electrostatic effects throughout the simulation. The
simulations were run in a one-step heating process at a temperature of 303.15 K. All
simulation steps’ time-step were set to 2 fs.

We used the VMD and Discovery Studio programs to analyze the protein–ligand
complex, molecular dynamics (MD) simulation trajectory, and ligand–enzyme interactions.
At the end of the simulation, we obtained a file with the extension *.dcd, which contains
the trajectories of the residues during the molecular dynamics.

The corresponding video of the molecular dynamics can be seen at Ramirez Velásquez,
Iliana; Bedoya-Calle, Álvaro H.; Velez, Ederley; Caro-Lopera, Francisco J. (2022), “Disso-
ciation Mode of the O-H Bond in betanidin, pKa-clusterization Prediction and Molecular
Interactions via Shape Theory and DFT Methods”, Mendeley Data, V5, www.doi.org/10.1
7632/hdrgfbzjcn.5, see Supplementary Materials.

4. Conclusions

Based on a linear model of pKa in terms of energy, this work has proposed a prediction
law for the upper and lower clusters. The 156 optimizations of the first three rounds

http://www.rcsb.org/pdb
http://www.rcsb.org/pdb
www.doi.org/10.17632/hdrgfbzjcn.5
www.doi.org/10.17632/hdrgfbzjcn.5
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have ratified the assumptions of the model and have allowed for double prediction of the
pKa values.

We show that the local minimum of energy is not inherited by successive deprotonation
processes. It is possible to find a local minimum in posterior deprotonations starting from a
high pKa in the first deprotonation. Commutativity is not also holding for these processes.

All the simulations in Bd based on the linear model of the pKa are supported by
a published chemical argument that allows for the prediction of the superior or inferior
clusters. In terms of the groups of the Bd, the model established that if the last deprotonation
includes a hydroxyl group or NH16, then the route is placed in the superior cluster of high
pKa. Otherwise, if the last deprotonation involves a carboxyl group, then the route belongs
to the inferior cluster of low pKa. The addressed law was verified in all the possible 6,
30, and 120 deprotonation routes of rounds 1, 2, and 3, respectively. It held also in some
random deprotonation routes of the fourth and fifth round.

Our computational studies have allowed us to conclude that the thermodynamically
most likely reaction pathway for betanin is sequential electron transfer with loss of protons
(SPLET). In addition, the lowest PA value is obtained by hydrogen from the C17-COOH
group, followed by the C15-COOH and C2-COOH groups.

One of the possible uses of predictions based on the linear model and the RMD
descriptor enables in situ spectroscopy of biological substances in an indirect measurement
of pH assisted by fluorescence spectroscopy.

The linear model described for pKa and its predictions for Bd can be used as a biological
marker or fingerprint of the substance under study.

The analysis of the behavior of protonated and deprotonated betanidin in the active
site of the enzyme aldose reductase shows that it interacts with residues Trp111, His110,
Cys298, Leu300, Val47, Trp20, Phe122, and Trp20 and involves van der Waals, H-bond, and
electrostatic interactions. These results are consistent with previously published reports.

When applying our method in searching for cavities in the AR enzyme and classifying
deprotonated Bd ligand poses, it was possible to predict the pocket in which the previously
analyzed interactions occurred. In addition, it has been possible to report other cavities
that have not been studied in the biological field.

Betanidin is a promising material in green synthesis design as it has an HLG of 2.44 eV
for solar cells that corresponds to an acceptor semiconductor.

Supplementary Materials: The supporting information can be downloaded at: www.doi.org/10.17632
/hdrgfbzjcn.5.
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