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Abstract: The breeding of salt-tolerant rootstock relies heavily on the availability of salt-tolerant
Malus germplasm resources. The first step in developing salt-tolerant resources is to learn their
molecular and metabolic underpinnings. Hydroponic seedlings of both ZM-4 (salt-tolerant resource)
and M9T337 (salt-sensitive rootstock) were treated with a solution of 75 mM salinity. ZM-4’s fresh
weight increased, then decreased, and then increased again after being treated with NaCl, whereas
M9T337′s fresh weight continued to decrease. The results of transcriptome and metabolome after
0 h (CK) and 24 h of NaCl treatment showed that the leaves of ZM-4 had a higher content of
flavonoids (phloretinm, naringenin-7-O-glucoside, kaempferol-3-O-galactoside, epiafzelechin, etc.)
and the genes (CHI, CYP, FLS, LAR, and ANR) related to the flavonoid synthesis pathway showed
up-regulation, suggesting a high antioxidant capacity. In addition to the high polyphenol content (L-
phenylalanine, 5-O-p-coumaroyl quinic acid) and the high related gene expression (4CLL9 and SAT),
the roots of ZM-4 exhibited a high osmotic adjustment ability. Under normal growing conditions, the
roots of ZM-4 contained a higher content of some amino acids (L-proline, tran-4-hydroxy-L-prolin,
L-glutamine, etc.) and sugars (D−fructose 6−phosphate, D−glucose 6−phosphate, etc.), and the
genes (GLT1, BAM7, INV1, etc.) related to these two pathways were highly expressed. Furthermore,
some amino acids (S-(methyl) glutathione, N-methyl-trans-4-hydroxy-L-proline, etc.) and sugars (D-
sucrose, maltotriose, etc.) increased and genes (ALD1, BCAT1, AMY1.1, etc.) related to the pathways
showed up-regulation under salt stress. This research provided theoretical support for the application
of breeding salt-tolerant rootstocks by elucidating the molecular and metabolic mechanisms of salt
tolerance during the early stages of salt treatment for ZM-4.

Keywords: integrated analysis; Malus; molecular mechanism; salt tolerance

1. Introduction

“The fruit trees go up the hill and down the beach, do not compete for land with
grain and cotton” has become a policy that must be implemented over the long term.
The utilization of the “four wastelands” (barren hills, waste valleys, barren hillocks, and
desolated beaches) is an important strategic measure for the development of new orchards.
This could improve the efficiency of land utilization while simultaneously safeguarding the
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environment. Soil salinization is one of the primary factors preventing the effective use of
land for fruit trees in the “four wastelands” areas. It is predicted that by the year 2050, land
will have been degraded by 50% due to soil salinization [1]. The selecting and breeding
of salt-tolerant plants is a sustainable way to deal with soil salinization. Up to date, the
apple dwarfing rootstocks widely used at home and abroad, M26, MM106, M9, and others,
are not tolerant to salt [2]. In order to breed salt-tolerant apple rootstocks, it is necessary to
understand the metabolic and molecular mechanisms of apple salt-tolerant resources.

Salt stress impedes plant growth and development, crop productivity, and geographic
distribution by imposing ionic toxicity and disrupting the cellular osmotic potential due to
the excessive accumulation of Na+, affecting apple trees [3–7]. Combating the ion toxicity
and osmotic stress caused by salt stress has been demonstrated to occur through the main
mechanisms of modulating ionic homeostasis, relieving osmotic stress, and mitigating
reactive oxygen species (ROS) accumulation [8,9]. Superoxide dismutase (SOD), peroxidase
(POD), ascorbate peroxidase (APX), and catalase (CAT) are the primary enzymes involved
in ROS scavenging. Some secondary metabolites can also eliminate ROS when a plant is
subjected to salt stress [10–12]. Understanding the salt-tolerant plant pathway is a basic
requirement for using salt-tolerant plants. The salt overly sensitive (SOS) pathway was
the first abiotic stress signaling pathway established in plants. It is essential for ion stress
signal transduction and is composed of three key parts: SOS1, SOS2, and SOS3. High
Na+ stress initiates a calcium signal that activates the SOS3–SOS2 protein kinase complex,
which regulates the expression level of SOS1, a salt tolerance effector gene encoding a
plasma membrane Na+/H+ antiporter with the function of Na+ exclusion [13–16]. Osmotic
signal transduction, which includes the mitogen-activated protein kinase (MAPK) cascade,
activated phospholipid signaling, and ABA-dependent osmotic stress signaling, is another
important pathway in response to salt stress [11,15,17–19]. In addition to the pathways
mentioned above, other related genes and substances (such as AtHKT1, IPT5b, ASP3,
ASN1, NIT3, GLN1-1, CAT1, DREB2B, CBF3, ICE1, NHX1, MhNPR1, MhSHN1, MdRGLG3,
MdNAC047, cyclic nucleotide-gated channels (CNGCs), MdERF3, MdERF4, MzPIP2;1,
MdMYB3, MdY3IP1, MdMYB46, etc.) have been shown to be involved in the process of
salt tolerance in plants, including Malus plants [20–34].

There have been no reports of salt-tolerant apple rootstocks being bred with Malus
zumi, despite the fact that it is the most salt-tolerant Malus germplasm resource with a
tolerance to 0.6% salt content in soil [27,35,36]. The soil salt content in certain regions in
north and northwest China exceeds 0.4% [37–39], and these areas are important options
for developing new orchards. The calcium-dependent protein kinase (CDPK) pathway
was found to be the primary signaling pathway in early studies, but the calcineurin B-like
protein-interacting protein kinase (CIPK) and MAPK pathways may also be used during
the salt stress response in Malus zumi [40]. However, the transcriptional and metabolic
mechanism of salt tolerance is still poorly understood, which severely limits its application
in the breeding of salt-tolerant rootstocks. As a result of testing Malus zumi for salt tolerance,
we were able to obtain the superior ZM-4 variety. To learn how ZM-4 reacts to salt stress,
we used cutting-edge transcriptome sequencing and metabolomic technology here. The
results will provide a theoretical basis for the application of ZM-4 in apple salt-tolerant
rootstock breeding.

2. Results
2.1. Comparison of Salt Tolerance between ZM-4 and M9T337 in Response to Salt Stress

The fresh weights of the hydroponic seedlings of ZM-4 and M9T337 were obtained
at 0 h, 24 h, 48 h, 72 h, 96 h, 120 h, and 144 h after the NaCl treatments. The fresh weight
of ZM-4 increased from 0 h to 24 h after the NaCl treatments, decreased until 96 h, and
then increased again from 96 h to 144 h (13.40 g, 14.26 g, 13.41 g, 13.11 g, 12.87 g, 13.01 g,
and 13.05 g at 0 h, 24 h, 48 h, 72 h, 96 h, 120 h, and 144 h, respectively). However, after
being exposed to the NaCl solution, M9T337’s fresh weight decreased steadily from 0 h
to 144 h (14.88 g, 114.46 g, 13.53 g, 12.90 g, 12.37 g, 12.41 g, and 11.88 g at 0 h, 24 h, 48 h,
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72 h, 96 h, 120 h, and 144 h, respectively). The fresh weight of ZM-4 was heavier than that
of M9T337 after 48 h of NaCl treatments, despite the fact that the initial fresh weight was
lower (Figure 1a).
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2.2. Comparison of Transcriptional Profiling between ZM-4 and M9T337 in Response to Salt Stress

In total, 94,658,998, 101,837,367, 86,395,002, 93,715,794, 102,432,303, 122,548,755, 91,373,496,
and 115,531,236 clean data points (reads) were identified in the leaves of M9T337 at 0 h (M-CKL),
the roots of M9T337 at 0 h (M-CKR), the leaves of M9T337 at 24 h (M-TL), the roots of M9T337
at 24 h (M-TR), the leaves of ZM-4 at 0 h (Z-CKL), the roots of ZM-4 at 0 h (Z-CKR), the leaves
of ZM-4 at 24 h (Z-TL), and the roots of ZM-4 at 24 h (Z-TR) from the RNA-seq, respectively.
On average, the ratio of the Q30 and GC content in the eight libraries were 94.60% and 46.31%.
After mapping to the apple reference genome, the percentages of the total mapped reads were
52.90%, 65.06%, 50.68%, 70.15%, 51.07%, 70.66%, 51.09%, and 70.95% for M-CKL, M-CKR,
M-TL, M-TR, Z-CKL, Z-CKR, Z-TL, and Z-TR, respectively (Tables S1 and S2). The Pearson
correlation coefficient was used to evaluate sample repeatability, and the results revealed that
the repeatability among the biological replicates was reliable (Figure S1).

Genes were identified as novel if they were not already known from comparison to
the reference genome. Overall, we were able to pinpoint 41,575 unique genes across all
of our samples. The average numbers of genes found in M-CKL, M-CKR, M-TL, M-TR,
Z-CKL, Z-CKR, Z-TL, and Z-TR were 33,692, 35,569, 33,633, 35,687, 33,901, 35,716, 33,640,
and 35,441, respectively (Table S3). A total of 2307 novel genes were identified from the
samples, 126 of which were annotated in the KEGG pathway and 240, 305, and 314 of
which were annotated in GO in terms of the cellular components, molecular functions, and
biological processes, respectively (Table S4).

2.2.1. DEG Analysis in Leaves in Response to Salt Stress for ZM-4 and M9T337

DEGs were used to identify the key genes involved in salt tolerance. There were 1217,
862, 4711, and 4550 DEGs for M-CKL vs. M-TL, Z-CKL vs. Z-TL, M-CKL vs. Z-CKL, and
M-TL vs. Z-TL, respectively (Figure 1b, Table S5). The number of DEGs between ZM-4
and M9T337 with the same treatments was significantly higher than that of the different
treatments for the same samples.

In comparison with the DEGs at 0 h and 24 h after the NaCl treatment for the GO term
in leaves, the top 20 GO terms for the DEGs in M-CKL vs. M-TL were biological processes
and molecular functions, with five and fifteen GO terms for them, respectively. The top
three terms with a high rich factor were the ionotropic glutamate receptor activity (GO:
0004970), extracellular ligand-gated ion channel activity (GO: 0005230), and glutamate
receptor activity (GO: 0008066) (Figure 2a and Figure S2). While the top 20 GO terms for
the DEGs in Z-CKL vs. Z-TL differed from those of M9T337, including biological processes,
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molecular functions, and cellular components, the top three terms with a high rich factor
were the nucleosome (GO: 0000786), FANCM-MHF complex (GO: 0071821), and protein
heterodimerization activity (GO: 0046982) (Figure 2b and Figure S3). The 20 top GO terms
for the DEGs in M-TL vs. Z-TL were biological processes and molecular functions, with
the ionotropic glutamate receptor activity (GO: 0004970), extracellular ligand-gated ion
channel activity (GO: 0005230), and ADP binding (GO: 0043531) being the top three terms
with a high rich factor (Figure 2c and Figure S4).

The top 20 DEG pathways in M-CKL vs. M-TL, according to the KEGG pathway
analysis, were metabolism, environmental information processing, and organismal
systems. The top three pathways with a high rich factor were the synthesis and
degradation of ketone bodies (ko00072), monoterpenoid biosynthesis (ko00902), and
galactose metabolism (ko00052) (Figure 3a and Figure S5). The top 20 pathways for the
DEGs in Z-CKL vs. Z-TL were different from those of M9T337. These were metabolism,
genetic information processing, cellular processes, and organismal systems. The top
three pathways with a high rich factor were DNA replication (ko03030), linoleic acid
metabolism (ko00591), and sesquiterpenoid and triterpenoid biosynthesis (ko00909)
(Figure 3b and Figure S6). The top 20 pathways for the DEGs in M-TL vs. Z-TL were
metabolism, cellular processes, and organismal systems. The top two pathways with a
high rich factor in M-TL vs. Z-TL were aflatoxin biosynthesis (ko00254) and linoleic
acid metabolism (ko00591) (Figure 3c and Figure S7).

A Venn diagram among M-TL vs. Z-TL, M-CKL vs. M-TL, Z-CKL vs. Z-TL, and
M-CKL vs. Z-CKL was constructed. The results showed that 136 DEGs were coexpressed
in the first three combinations, which could be a response to salt stress for both ZM-4 and
M9T337. Of these 136 DEGs, two DEGs (MD02G1120200 (LOX1.5) and MD03G1138500
(XA21)) were enriched in the MAPK signaling pathway, and nine DEGs were enriched
in the biosynthesis of secondary metabolites, such as starch and sucrose metabolism,
brassinosteroid biosynthesis, phenylpropanoid biosynthesis, and so on (Figure 4a, Table
S6). While 95 DEGs were identified in response to salt stress 24 h after the NaCl treatment
of ZM-4, the same was not true for M9T337. Among the 95 DEGs, 12 DEGs were enriched
in the biosynthesis of secondary metabolites. In addition to the above pathways, flavonoid
biosynthesis (MD15G1024100 (DFR), MD11G1059500 (CYP), and MD10G1311100 (ANR))
and ascorbate and aldarate metabolism (MD15G1201000 (MIOX2)) are unique pathways
that may be the main genes for the salt tolerance of the leaves of ZM-4.

2.2.2. DEG Analysis of Roots in Response to Salt Stress for ZM-4 and M9T337

A total of 1259, 565, 7035, and 6594 DEGs for M-CKR vs. M-TR, Z-CKR vs. Z-TR,
M-CKR vs. Z-CKR, and M-TR vs. Z-TR were identified, respectively (Figure 1b, Table S5).
However, the number of DEGs in roots was greater than that in leaves.

The DEGs at 0 h and 24 h after the NaCl treatment were compared for the GO term
in roots. The top 20 GO terms for the DEGs in M-CKR vs. M-TR were biological pro-
cesses, molecular functions, and cellular components, and the top three terms with a high
rich factor were the pectin catabolic process (GO:0045490), pectin metabolic process (GO:
00045488), and cellular hormone metabolic process (GO: 0034754) (Figure 2d and Figure S8).
While the top 20 GO terms for the DEGs in Z-CKR vs. Z-TR were biological processes and
molecular functions, the top three GO terms for the DEGs in Z-CKR vs. Z-TR were the
hyaluronan metabolic process (GO: 0030212), mucopolysaccharide metabolic process (GO:
1903510), and threonine-phosphate decarboxylase activity (GO: 0048472) (Figure 2e and
Figure S9). The top 20 GO terms for the DEGs in M-TR vs. Z-TR were biological processes
and molecular functions, and the top three GO terms for the DEGs in M-TR vs. Z-TR
were ADP binding (GO: 0043531), peptide:proton symporter activity (GO: 0015333), and
proton-dependent peptide secondary activity (GO: 0022897) (Figure 2f and Figure S10).
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for DEGs in M-CKL vs. M-TL. (b) The top 20 KEGG pathways for DEGs in Z-CKL vs. Z-TL. (c) The
top 20 KEGG pathways for DEGs in M-TL vs. Z-TL. (d) The top 20 KEGG pathways for DEGs in
M-CKR vs. M-TR. (e) The top 20 KEGG pathways for DEGs in Z-CKR vs. Z-TR. (f) The top 20 KEGG
pathways for DEGs in M-TR vs. Z-TR.

The KEGG pathway analysis showed that the top 20 pathways for the DEGs in M-
CKR vs. M-TR were metabolism, environmental information processing, and organismal
systems. The top two pathways with a high rich factor were flavone and flavonol biosyn-
thesis (ko00944) and zeatin biosynthesis (ko00908) (Figure 3d and Figure S11). The top
20 pathways for the DEGs in Z-CKR vs. Z-TR were different from those of M9T337. These
were metabolism and environmental information processing. The top three pathways with
a high rich factor were glucosinolate biosynthesis (ko00966), cyanoamino acid metabolism
(ko00460), and glycosaminoglycan degradation (ko00531) (Figure 3e and Figure S12). The
top 20 GO terms for the DEGs in M-TR vs. Z-TR were metabolism, environmental informa-
tion processing, and organismal systems, and the top three pathways with a high rich factor
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in M-TR vs. Z-TR were zeatin biosynthesis (ko00908), diterpenoid biosynthesis (ko00904),
and carotenoid biosynthesis (ko00906) (Figure 3f and Figure S13).
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The Venn diagram results for roots showed that 63 DEGs were coexpressed in
M-TR vs. Z-TR, M-CKR vs. M-TR, and Z-CKR vs. Z-TR, which may be a response
to salt stress for both ZM-4 and M9T337. Five DEGs were enriched in the biosyn-
thesis of secondary metabolites, including phenylpropanoid biosynthesis, cysteine
and methionine metabolism, and tyrosine metabolism. One DEGs (MD15G1007000
(P4H3)) was found to be enriched in arginine and proline metabolism. While 113 DEGs
were identified as a response to salt stress 24 h after the NaCl treatment for ZM-4,
this was not true for M9T337. Two DEGs (MD01G1158500 (PYL4) and MD07G1227100
(PYL4)) were enriched in the MAPK signaling pathway, one was enriched in plant
hormone signal transduction, and seven DEGs were enriched in the biosynthesis of
secondary metabolites, including zeatin biosynthesis, riboflavin metabolism, linoleic
acid metabolism, and so on, which may be the main genes for the salt tolerance of the
roots of ZM-4 (Figure 4b, Table S6).

2.3. Comparison of Metabolic Profiling between ZM-4 and M9T337 in Response to Salt Stress

In total, 1264 metabolites were obtained from the leaves of ZM-4 and M9T337, in-
cluding alkaloids (85), amino acids and their derivatives (108), flavonoids (331), lignans
and coumarins (42), lipids (118), nucleotides and their derivatives (69), organic acids (88),
phenolic acids (247), tannins (9), terpenoids (44), and others (123) (Table S7). The roots of
ZM-4 and M9T337 yielded a total of 1389 metabolites, including alkaloids (109), amino
acids and their derivatives (116), flavonoids (320), lignans and coumarins (40), lipids (149),
nucleotides and their derivatives (75), organic acids (104), phenolic acids (284), tannins (13),
terpenoids (64), and others (115) (Table S8). The heatmap displayed a clear hierarchical
clustering of the samples according to their resources and whether or not they had been
treated with NaCl for ZM-4 and M9T337 (Figure S14a,b). The grouping of the QC samples
and the separation of the other groups in the PCA plot was indicative of similar metabolic
profiles and the overall stability and repeatability of the analysis (Figure 5a,b).

2.3.1. DAM Analysis in Leaves in Response to Salt Stress for ZM-4 and M9T337

Differential accumulated metabolites (DAMs) in the leaves showed that there were
112 (78 up and 34 down), 93 (65 up and 28 down), 147 (75 up and 72 down), and 158 (68
up and 90 down) DAMs for M-CKL vs. M-TL, Z-CKL vs. Z-TL, M-CKL vs. Z-CKL, and
M-TL vs. Z-TL, respectively (Figure 6a, Table S9).
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The KEGG pathway analysis of M-CKL vs. M-TL revealed that DAMs were primarily
enriched in the biosynthesis of secondary metabolites, biosynthesis of amino acids, phenyl-
propanoid biosynthesis, ABC transporters, flavonoid biosynthesis, and so on (Figure S15).
The top three VIP values of metabolites were quercetin-3-O-galactoside, 1-O-p-coumaroyl-
β-d-glucose, and kaempferol-3-O-arabinoside, and salt stress induced the accumulation of
quercetin-3- O -galactoside and 3-hydroxy-3-methylpentane-1,5-dioic acid (Figure 7a, Table
S9). The KEGG pathway analysis of Z-CKL vs. Z-TL showed that DAMs were enriched in
the biosynthesis of secondary metabolites, biosynthesis of amino acids, flavonoid biosyn-
thesis, 2-oxocarboxylic acid metabolism, and so on (Figure S16). The top three VIP values of
metabolites were 1-O-p-coumaroyl-β-d-glucose, luteolin-3’-O-glucoside, and kaempferol-
3-O-rhamnoside. However, the accumulation of 3-O-galloyl-d-glucose was induced by
salt stress in ZM-4 (Figure 7b, Table S9). The KEGG pathway analysis of M-TL vs. Z-TL
showed that the DAMs were similar with Z-CKL vs. Z-TL (Figure S17). The top three VIP
values of metabolites were sieboldin, dihydrokaempferol-7-O-glucoside, and eriodictyol-
3’-O-glucoside. Daempferol-3-O-robinobioside, kaempferol-3- O -neohesperidoside, and
3’,5,5’,7-tetrahydroxyflavanone-7-O-glucoside were only accumulated in Z-TL, and not in
M-TL (Figure 7c, Table S9).

The Venn diagram results revealed that 11 metabolites were produced in re-
sponse to salt stress in the leaves of both ZM-4 and M9T337, including four flavonoids
(quercetin-3-O-sambubioside, quercetin-3-O-apiosyl(1→2)galactoside, kaempferol-3-
O-rhamnosyl(1→2)glucoside, and quercetin-7-O-(6”-malonyl)glucoside), three phe-
nolic acids (5-O-caffeoylshikimic acid, 5-O-p-coumaroylquinic acid, and 3-O-p-coum-
aroylquinic acid), three organic acids (2-isopropylmalic acid, 3-isopropylmalic acid,
and 2-propylmalic acid), and one amino acid and its derivative (L-arginine). Five
metabolites were unique in response to the salt stress for ZM-4, including one pheno-
lic acid (2-hydroxycinnamic acid), one flavonoid (quercetin-3-O-robinobioside), one
nucleotide and its derivative (2’-deoxyinosine-5’-monophosphate), and two amino
acids and their derivatives (L-asparagine and L-aspartic acid) (Figure 8a, Table S10).

2.3.2. DAM Analysis in Roots in Response to Salt Stress for ZM-4 and M9T337

The DAMs in roots showed that there were 113 (80 up and 33 down), 78 (31 up and 47
down), 147 (88 up and 59 down), and 155 (66 up and 89 down) DEMs for M-CKR vs. M-TR,
Z-CKR vs. Z-TR, M-CKR vs. Z-CKR, and M-TR vs. Z-TR, respectively (Figure 6b, Table S9).
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tin-3-O-sambubioside, quercetin-3-O-apiosyl(1→2)galactoside, 
kaempferol-3-O-rhamnosyl(1→2)glucoside, and quercetin-7-O-(6″-malonyl)glucoside), 

Figure 7. The top 15 DAMs based on the values of VIP in different combinations. (a) The top
15 DAMs based on the values of VIP in leaves of M-CKL vs. M-TL. (b) The top 15 DAMs based on the
values of VIP in leaves of Z-CKL vs. Z-TL. (c) The top 15 DAMs based on the values of VIP in leaves
of M-TL vs. Z-TL. (d) The top 15 DAMs based on the values of VIP in roots of M-CKR vs. M-TR.
(e) The top 15 DAMs based on the values of VIP in roots of Z-CKR vs. Z-TR. (f) The top 15 DAMs
based on the values of VIP in roots of M-TR vs. Z-TR.
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The KEGG pathway analysis of M-CKR vs. M-TR showed that DAMs were mainly
enriched in the metabolic pathways, biosynthesis of secondary metabolites, biosynthe-
sis of antibiotics, biosynthesis of amino acids, and so on (Figure S18). The top three
VIP values of metabolites were L-arginine, chlorogenic acid, and cryptochlorogenic
acid. LysoPC 18:3 and lysoPC 18:1 were induced to accumulate by salt stress in M9T337
(Figure 7d, Table S9). The KEGG pathway analysis of Z-CKR vs. Z-TR showed that
DAMs were enriched in the metabolic pathways, biosynthesis of secondary metabolites,
microbial metabolism in diverse environments, biosynthesis of antibiotics, and so on
(Figure S19). The top three VIPs of metabolites were 3-hydroxyphloretin, L-norleucine,
and L-leucine. L-cysteine and sanguisorbigenin were induced to accumulate by salt
stress in ZM-4 (Figure 7e, Table S9). The KEGG pathway analysis of M-TL vs. Z-TL
showed that DAMs were enriched in the biosynthesis of secondary metabolites, biosyn-
thesis of amino acids, flavonoid biosynthesis, flavone and flavonol biosynthesis, and so
on (Figure S20). The top three VIPs of metabolites were 2α,3α,19α,23-tetrahydroxy-12-
ursen-28-oic acid, quercetin-3-O-glucoside, and 1-O-feruloyl-β-d-glucose. Sanguisor-
bigenin only accumulated in Z-TR (Figure 7f, Table S9).

The Venn diagram results showed that 18 metabolites were produced in re-
sponse to salt stress in the roots of both ZM-4 and M9T337, including two flavonoids
(isorhamnetin-3-O-glucoside and quercetin-3-O-arabinoside), three phenolic acids
(5-O-p-coumaroylquinic acid, 1-O-sinapoyl-β-D-glucose, and propyl 4-hydroxybenzoate),
five organic acids (L-malic acid, muconic acid, 3-isopropylmalic acid, 2-propylmalic
acid, and 2-isopropylmalic acid), four amino acids and their derivatives (L-glutamic
acid, L-leucine, L-proline, and L-valine), one nucleotide and its derivative (adenosine
5’-monophosphate), one alkaloid (pterolactam), one terpenoid (2-hydroxyoleanolic
acid) and one other (roseoside). Seven metabolites were specific to the response to salt
stress for ZM-4, including one phenolic acid (5-O-p-coumaroylshikimic acid O-glucoside),
two flavonoids (isorhamnetin-7-O-glucoside and rhamnetin-3-O-glucoside), one terpenoid
(sanguisorbigenin), two organic acids (D-malic acid and 6-aminocaproic acid), and
one other (3-dehydro-L-threonic acid) (Figure 8b, Table S10).

2.4. Integrated Analysis of the Transcriptome and Metabolome of ZM-4 and M9T337 Responsive to
Salt Stress

A coexpression network analysis of the transcriptome and metabolome was performed
to further exploit the relationship between DEGs and DAMs in the leaves and roots of ZM-4
and M9T337 under salt stress. The pathway function model and bidirectional orthogonal
projections to latent structures model (O2PLS) were carried out to screen the associated
genes and metabolites that had an influence on the sample grouping and analysis of the
association characteristics. For the leaves, we used 227 DAMs and 6980 DEGs in the
association analysis, and for the roots, we used 254 DAMs and 9436 DEGs (Table S11).
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2.4.1. Integrated Analysis of the Transcriptome and Metabolome of Leaves Responsive to
Salt Stress

The KEGG pathways shared by DAMs and DEGs were examined. A total of
40 pathways were obtained for M-CKL vs. M-TL, including 229 DEGs and 41 DAMs
(Tables S12 and S13). The first three pathways were phenylpropanoid biosynthesis, the
biosynthesis of secondary metabolites, and metabolic pathways; both the Gene_Pvalue
and Gene_Qvalue were less than 0.05, but only the Metabolite_Pvalue of the biosyn-
thesis of secondary metabolites was less than 0.05, making it a candidate pathway
for further investigation. A total of 30 pathways were obtained for Z-CKL vs. Z-TL,
including 151 DEGs and 41 DAMs. The first three pathways were the same as M-CKL
vs. M-TL, while the pathway for which both the Gene_Pvalue and Metabolite_Pvalue
were less than 0.05 was flavonoid biosynthesis. A total of 54 pathways were obtained
for M-TL vs. Z-TL, including 793 DEGs and 54 DAMs. The first three pathways were
the biosynthesis of secondary metabolites, flavonoid biosynthesis, and metabolic path-
ways. The Gene_Pvalue, Gene_Qvalue, Metabolite_Pvalue, and Metabolite_Qvalue of
flavonoid biosynthesis were all less than 0.05, suggesting that this pathway was the
major characteristic in the response to salt stress for ZM-4, which included 20 DEGs
and 11 DAMs.

A total of 1217 DEGs and 112 DAMs, 862 DEGs and 93 DAMs, and 4550 DEGs
and 158 DAMs were analyzed by O2PLS for M-CKL vs. M-TL, Z-CKL vs. Z-TL, and
M-TL vs. Z-TL, respectively (Table S14). The top 25 DAMs and DEGs were thought to
have a high relevance according to the sum of the squares of the first two dimension
loading values (Table S15, Figure 9a–c). The first three DAMs and DEGs of M-CKL vs. M-
TL were 3-hydroxy-3-methylpentane-1,5-dioic acid, 3-isopropylmalic acid, 2-propylmalic
acid, MD09G1104500, MD11G1079800 (RPL4), and MD15G1052500 (NLP3), respectively.
The first three DAMs and DEGs of Z-CKL vs. Z-TL were quercetin-3-O-sambubioside,
succinic acid, methylmalonic acid, MD09G1271400 (MYB20), MD05G1055800 (GATA5),
and MD12G1121200 (MLO3), respectively. The first three DAMs and DEGs of M-TL
vs. Z-TL were epicatechin, kaempferol-7-O-glucuronide, glucarate O-phosphoric acid,
MD14G1243300 (HDG11), MSTRG.41698 (POL), and MD09G1183300 (GRF5), respectively.

2.4.2. Integrated Analysis of the Transcriptome and Metabolome of Roots Responsive to
Salt Stress

The KEGG pathways shared by DAMs and DEGs were examined. A total of
48 pathways were obtained for M-CKR vs. M-TR, including 250 DEGs and 46 DAMs
(Tables S12 and S13). The first three pathways were metabolic pathways, the biosyn-
thesis of secondary metabolites, and pentose and glucuronate interconversions, with
both the Gene_Pvalue and Gene_Qvalue being less than 0.05, but only the Metabo-
lite_Pvalue and Metabolite_Qvalue of the biosynthesis of secondary metabolites
being less than 0.05, so it was the candidate pathway for further investigation. A
total of 36 pathways were obtained for Z-CKR vs. Z-TR, including 124 DEGs and
38 DAMs. The first three pathways were the biosynthesis of secondary metabo-
lites, metabolic pathways, and cyanoamino acid metabolism. The Gene_Pvalue,
Gene_Qvalue, Metabolite_Pvalue, and Metabolite_Qvalue were less than 0.05. A total
of 46 pathways were obtained for M-TR vs. Z-TR, including 1092 DEGs and 42 DAMs.
The first three pathways were the biosynthesis of secondary metabolites, phenyl-
propanoid biosynthesis, and metabolic pathways. The Gene_Pvalue, Gene_Qvalue,
Metabolite_Pvalue, and Metabolite_Qvalue of the first two pathways were all less
than 0.05, indicating that these pathways are the most important in terms of ZM-4’s
response to salt stress.
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Figure 9. The top 25 joint-loading elements of genes and metabolites in different combinations. (a) 
The top 25 joint-loading elements of genes and metabolites of leaves in M-CKL vs. M-TL. (b) The 
top 25 joint-loading elements of genes and metabolites of leaves in Z-CKL vs. Z-TL. (c) The top 25 
joint-loading elements of genes and metabolites of leaves in M-TL vs. Z-TL. (d) The top 25 

Figure 9. The top 25 joint-loading elements of genes and metabolites in different combinations.
(a) The top 25 joint-loading elements of genes and metabolites of leaves in M-CKL vs. M-TL. (b) The
top 25 joint-loading elements of genes and metabolites of leaves in Z-CKL vs. Z-TL. (c) The top 25
joint-loading elements of genes and metabolites of leaves in M-TL vs. Z-TL. (d) The top 25 joint-
loading elements of genes and metabolites of roots in M-CKR vs. M-TR. (e) The top 25 joint-loading
elements of genes and metabolites of roots in Z-CKR vs. Z-TR. (f) The top 25 joint-loading elements
of genes and metabolites of roots in M-TR vs. Z-TR.
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A total of 1259 DEGs and 113 DAMs, 565 DEGs and 78 DAMs, and 6549 DEGs and
155 DAMs were analyzed by O2PLS for M-CKR vs. M-TR, Z-CKR vs. Z-TR, and Z-CKR
vs. Z-TR, respectively (Table S14). The top 25 DAMs and DEGs were thought to have
a high relevance according to the sum of the squares of the first two dimension loading
values (Table S15, Figure 9d–f). The first three DAMs and DEGs of M-CKR vs. M-TR were
fhloretin-4’-O-(6”-feruloyl)glucoside, L-leucine, L-histidine, MD01G1146100 (At2g39920),
MD17G1029300 (LBD25), and MD17G1043400 (IP5P5), respectively. The first three DAMs
and DEGs of Z-CKR vs. Z-TR were LysoPE 18:2, L-asparagine, 2-hydroxyoleanolic acid,
MSTRG.9301, MD00G1015600 (fmdA), and MD14G1153600 (rps3), respectively. The first
three DAMs and DEGs of M-TR vs. Z-TR were 3,4-dihydroxybenzoic acid, kaempferol-3-O-
arabinoside, 2-hydroxycinnamic acid, MD07G1256300 (IRE), MD15G1179600 (RPV1), and
MD08G1150100, respectively.

2.5. The Salt Tolerance Mechanisms Predicted in Leaves and Roots for ZM-4

The DAMs based on the VIP values (>1) and FC (≥1 or ≤ 0.5) of the metabolites for
M-CKL vs. M-TL, Z-CKL vs. Z-TL, and M-TL vs. Z-TL were mainly classified as flavonoids
(Table S9). The flavonoid biosynthesis pathway (ko00941) was also enriched by a DEG and
DAM joint analysis (Tables S12 and S13). The heatmaps of expression for the DEGs and
DAMs of this pathway in M-CKL, M-TL, Z-CKL, and Z-TL were drawn out (Figure 10).
Except for quercetin glycosides, kaempferol-3-O-sophoroside, and phloretin-2′-O-glucoside,
the other DAMs were upregulated in Z-TL, and the genes related to the DAMs (CHI, CYP,
FLS, LAR, and ANR) also showed high expression levels in Z-TL. As a result, the higher
expression of the genes and components in the phenylpropanoid biosynthesis pathway
was the primary salt-tolerance mechanism in the leaves of ZM-4.
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cyantin reductase; ANR, anthocyanidin synthase). 

In addition to the flavonoid pathway, the phenylpropanoid biosynthesis pathway 
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In addition to the flavonoid pathway, the phenylpropanoid biosynthesis pathway
was enriched in the roots of M-CKR vs. M-TR, Z-CKR vs. Z-TR, and M-TR vs. Z-TR
(Tables S9, S12 and Table S13). 5-O-caffeoyl shikimic acid, chlorogenic acid, and trans-5-
O-(p-coumaroyl) shikimate were found in high concentrations in M-TR, whereas 5-O-p-
coumaroyl quinic acid and L-phenylalanine were found in high concentrations in T-CKR
(Figure S21). The expression of SAT (MD10G1151400), HST (MD17G1224900), and 4CLL9
(MD14G1161200) were induced by salt stress in the roots of ZM-4. The expression of SAT
(MD16G1108700 and MD13G1109000) was induced by salt stress in the roots of M9T337.

Furthermore, ZM-4’s fresh weight continued to rise even after 24 h following the
NaCl treatment, indicating that osmotic regulation played a crucial role in the response
to salt stress. As a result, the osmotic regulating substances, such as amino acids and
sugars, were analyzed using a heatmap (Figure 11). There were two paths for maintaining
the osmotic pressure. First, it was found that ZM-4, untreated with NaCl, contained a
relatively high concentration of various compounds, such as L-proline, tran-4-hydroxy-L-
prolin, L-glutamine, L-asparagine, cis-aconitic acid, glutaric acid, argininosuccinic acid,
D−fructose 6−phosphate, D−glucose 6−phosphate, D−sorbitol, and so on (Figure 11,
Tables S5 and S8). The genes related to these metabolites were highly expressed, such as
MSTRG.36778 (GLT1), MSTRG.20861 (ALDC), MD11G1100300 (AA5GT), MD01G1059300
(BAM7), MD14G1028500 (INV1), MD13G1164200 (SUS2), and MSTRG.749 (SUS3). On
the other hand, some substances were increased after the NaCl treatment. For example,
S-(methyl) glutathione, N-methyl-trans-4-hydroxy-L-proline, 2-hydroxyethylphosphonic
acid, 3-guanidinopropionic acid, allantoin, D-sucrose, maltotriose, melezitose, maltitol,
sucrose−6−phosphate, isomaltulose, and others were examples. The genes involved in the
synthesis of these metabolites included MD08G1221500 (ALD1), MD08G1075600 (BCAT1),
MD16G1065700 (CM3), MD04G1091900 (METK4), MD13G1202600 (PKP1), MD08G1101700
(AMY1.1), MD06G1066600 (INVA), MD10G1265500 (SS4), MD05G1289400 (SS4), and
MD15G1365900 (TPPD) (Figure 11, Tables S5 and S8).
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3. Discussion

High Na+ concentrations in the soil generate hyperosmotic conditions that can severely
impact plant nutrients and water uptake, as well as cause leaf withering and, eventually,
plant death [41,42]. When exposed to saline soil, the first stress experienced by a plant is
osmotic stress, which impedes plant growth and development [11,43–45]. According to
the findings of this study, the fresh weight of M9T337 fell following the NaCl treatment,
whereas the fresh weight of ZM-4 increased from 0 h to 24 h, decreased until 96 h, and
then climbed again from 120 h to 144 h. Although lower at 0 h, the fresh weight of ZM-4
was higher than that of M9T337 after 72 h. This phenotype indicates that ZM-4 was less
influenced by the osmotic stress from 0 h to 24 h, even in the later stages. This phenotype
demonstrates that ZM-4 was less influenced by the osmotic stress after 24 h. ZM-4 was
shown to be more salt tolerant because it both naturally contained and was induced to
produce more osmotic-regulating substances in response to salt stress.

The mapped reads ranged from 51.07% to 70.95% among the eight libraries, yielding
a total of 41,575 genes and resulting in the identification of 2307 novel genes. The total
number of genes was less than that of the GDDH13 (reference genome) [46] and the
HFTH1 [47]. The ratio of mapped reads was slightly lower and more novel genes were
discovered, which could be attributed to ZM-4’s and M9T337’s genetic link being distantly
related to golden delicious (GDDH13), the level of which was lower in the leaves than in
the roots. This was primarily because leaves have fewer genes than roots. It was preferable
to use the Malus zumi genome de novo assembly as the reference genome.

ROS are produced as a result of high salinity stress and are largely detoxified by
the enzymes SOD, CAT, APX, and POD [44,48,49]. This study discovered that the genes
of APX3 (MD15G1242900, MD15G1243000, MD00G1173600, and MD05G1120800), APXT
(MD00G1029300 and MD00G1029400), SOD (MD01G1164700), SODA (MD07G1232200),
and CAT1 (MD06G1008600) were found to be highly expressed in the leaves of ZM-4. It
could be one of the reasons for the salt tolerance of ZM-4. Along with these enzymes,
flavonoids also perform a major function in ROS scavenging [50–53]. DEGs and DAMs
were found to be more enriched in the flavonoid pathway in ZM-4 leaves. CHI, CYP,
FLS, LAR, and ANR were up-regulated in the leaves of ZM-4, and high accumulations
of phloretin, naringenin chalcoe, kaempferol-3-O-galactoside, kaempferol-3-O-glucoside,
epiafzelechin, and epicatechin were found. As a result, the flavonoid pathway may play a
key role in the response of ZM-4 leaves to salt stress.

The principal locations of salt stress response are the roots, and the initial salt reaction
is derived primarily from the roots. Roots are severely damaged by stress-induced ROS
excess [54,55]. The POD, SOD, and CAT activities were higher in Malus zumi roots than
in the leaves [46]. Polyphenols were also crucial in reducing ROS, alongside antioxidant
enzymes and flavonoids [56–58]. In the roots of ZM-4, the content of L-phenylalanine and
5-O-p-coumaroyl quinic acid accumulated, and MD17G1224900 (HST), MD10G1161400
(SAT), and MD14G1161200 (4CLL9) were highly expressed in the roots of ZM-4. This
suggests that ZM-4’s salt tolerance is in part due to its roots’ antioxidant capacity.

Not only can reactive oxygen species (ROS) damage root function, but so does osmotic
dysregulation. Roots are not able to absorb water if subjected to osmotic stress [59]. In this
study, the fresh weight of ZM-4 increased before 24 h following the NaCl treatment, while
that of M9T337 kept falling afterward. This suggests that M9T337 was subjected to higher
degrees of osmotic stress than ZM-4, implying that ZM-4’s roots contained more osmotic-
regulating substances. Soluble sugars, palmitoleic acid, D-arginine, pheophytin a, rutin, and
vanillin were found to be crucial in promoting salt-stressed plant growth [60–62]. Under
normal conditions, ZM-4 contained a high concentration of L-proline, tran-4-hydroxy-L-
prolin, L-glutamine, lactobiose, D-glucosamine, and other compounds. It can maintain a
high osmotic potential in the roots and absorb nutrients and water properly in the early
phases of salt stress; this may be the one of the main reasons for its tolerance to salt stress.
Furthermore, some other amino acids and sugars were induced to accumulate after salt
stress, such as S-(methyl) glutathione, N-methyl-trans-4-hydroxy-L-proline, D-sucrose,
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planteose, maltotriose, and so on, and the genes (PKP1, PFK2, GLT1, SUS2, SUS3, SS4, etc.)
related to these substances were up-regulated. This increased the roots’ ability to regulate
the osmotic pressure. This demonstrates that plant hormone signal transduction was
enriched in the leaves, while starch and sucrose metabolism, as well as proline biosynthesis,
were enriched in trifoliate orange roots [10]. Sucrose’s reactions as a signaling molecule
were crucial to Malus halliana in maintaining an osmotic equilibrium and eliminating ROS
during salt stress. It directly mediated the accumulation of D-phenylalanine, tryptophan,
and alkaloids (vindoline and ecgonine), as well as the expression of aspartate and glutamate-
related proteins (ASP3, ASN1, NIT4, and GLN1−1) [24]. Malus robusta’s tolerance to salt,
alkali, and salt–alkali stress was conferred by SNP182G on MdRGLG3, which converted a
leucine to an arginine at the vWFA domain [32]. This could be the principal salt-tolerance
mechanism in roots for ZM-4, because it had a high content of some amino acids and sugars
and a high expression of related genes on its own. Additionally, salt stress induced the
accumulation and expression of other amino acids, sugars, and related genes.

4. Materials and Methods
4.1. Plant Materials

The experiment was conducted in an artificial climate chamber at 26–28 ◦C with a
photoperiod of 16 h light/8 h dark. Tissue culture seedlings of ZM-4 and M9T337 were
transplanted to point trays after rooting for a month in the tissue culture bottles, and
then the seedlings were transplanted to hydroponic tanks with Hoagland nutrient so-
lution (Ca(NO3)2·4H2O: 0.005 mol/L, KNO3: 0.005 mol/L, MgSO4·7H2O: 0.002 mol/L,
KH2PO4: 0.001 mol/L, H3BO3: 2.86 mg/L, MnCl2·4H2O: 1.81: mg/L, ZnSO4·7H2O:
0.22 mg/L, CuSO4·5H2O: 0.08 mg/L, H2MoO4·H2O/Na2MoO4·2H2O: 0.02/0.03 mg/L,
and FeEDTA solution: 2 mL) when they were approximately 30 cm tall in the point
trays. The hydroponic seedlings were transplanted into new Hoagland nutrient solu-
tion with 75 mM NaCl one week later. The samples of leaves and roots were collected
0 h and 24 h after the NaCl treatment. They were frozen in liquid nitrogen for a short
time, and then were stored in a −80 ◦C ultra-low-temperature refrigerator until the
transcriptomic and metabolomic analysis.

4.2. Phenotype of the Samples

The fresh weight was measured at 0 h, 24 h, 48 h, 72 h, 96 h, 120 h, and 144 h after
the 75 mM NaCl treatment. Three seedlings were used to collect the fresh weight for the
hydroponic seedlings of ZM-4 and M9T337. The average fresh weight of three seedlings
was used as the phenotype to evaluate the salt tolerance of ZM-4 and M9T337.

4.3. Transcriptome Analysis
4.3.1. RNA Quantification and Qualification

The total RNA was extracted using a Trizol reagent kit (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s protocol. The RNA quality was assessed on an
Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) and checked using
RNase free agarose gel electrophoresis. After the total RNA was extracted, the rRNAs were
removed to retain mRNAs. The enriched mRNAs were fragmented into short fragments
by using a fragmentation buffer and reverse-transcribed into cDNA with random primers.
Second-strand cDNA was synthesized with DNA polymerase I, RNase H, dNTP (dUTP
instead of dTTP), and buffer. Next, the cDNA fragments were purified with a QiaQuick
PCR extraction kit (Qiagen, Venlo, The Netherlands), the ends were repaired, poly (A)
was added, and the fragments were ligated to Illumina sequencing adapters. Then, UNG
(uracil-N-glycosylase) was used to digest the second-strand cDNA. The digested products
were size-selected by agarose gel electrophoresis, amplified with PCR, and sequenced using
Illumina HiSeqTM 4000 by Gene Denovo Biotechnology Co. (Guangzhou, China).
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4.3.2. Filtering of Clean Reads

The reads obtained from the sequencing machines included raw reads contain-
ing adapters or low-quality bases, which would affect the following assembly and
analysis. Thus, to obtain high-quality clean reads, the reads were further filtered
by fastp (version 0.18.0) [63]. The parameters were as follows: (1) reads containing
adapters were removed; (2) reads containing more than 10% of unknown nucleotides
(N) were removed; and (3) low-quality reads containing more than 50% low-quality
(Q-value ≤ 20) bases were removed.

The short-reads alignment tool Bowtie2 (version 2.2.8) [64] was used for mapping the
reads to the ribosome RNA (rRNA) database. The rRNA-mapped reads were then removed.
The remaining reads were further used in the assembly and analysis of the transcriptome.

4.3.3. Novel Transcript Identification and Annotation

An index of the reference genome was built, and paired-end clean reads were mapped
to the reference genome (GDDH13 v 1.1) [46] using HISAT2 (version 2.1.0) [65] with “-rna-
strandness RF” and other parameters set as a default.

The reconstruction of transcripts was carried out with the software Stringtie
(version 1.3.4) [66,67], which, together with HISAT2, allows biologists to identify new
genes and new splice variants of known ones. To identify the new transcripts, all of
the reconstructed transcripts were aligned to the reference genome and divided into
twelve categories by using Cuffcompare. Transcripts with one of the classcodes “u, i,
j, x, c, e, o” were defined as novel transcripts. We used the following parameters to
identify reliable novel genes: a transcript length of longer than 200 bp and an exon
number of more than 1. Novel transcripts were then aligned to the Nr, KEGG, and GO
databases to obtain the protein functional annotation.

4.3.4. Quantification of Transcript Abundance

The transcript abundances were quantified by the software StringTie in a reference-
based approach. For each transcription region, an FPKM (fragment per kilobase of tran-
script per million mapped reads) value was calculated to quantify its expression abundance
and variations using the StringTie software.

The FPKM formula is shown as follows:

FPKM =
106C

NL/103

where FPKM(A) is the expression of transcript A, C is the number of fragments mapped
to transcript A, N is the total number of fragments that were mapped to reference genes,
and L is the number of bases on transcript A. The FPKM method was able to eliminate
the influence of different transcript lengths and the amount of sequencing data on the
calculation of transcript expression. Therefore, the calculated transcript expression can be
directly used for comparing the difference in transcript expression among the samples.

4.3.5. Differentially Expressed Transcript (DEG) Analysis

The differentially expressed transcripts of coding RNAs were analyzed. An RNA
differential expression analysis was performed by the DESeq2 [68] software between two
different groups (and by edgeR [69] between two samples). The genes/transcripts with
a false discovery rate (FDR) parameter below 0.05 and an absolute fold change ≥ 2 were
considered differentially expressed genes/transcripts. Differentially expressed coding
RNAs were then subjected to an enrichment analysis of GO functions and KEGG pathways.

4.4. Metabolic Analysis
4.4.1. Chemicals and Reagents

All chemicals and reagents were of analytical grade. Methyl alcohol, acetonitrile, and
ethyl alcohol were purchased from Merck Company, Germany. Milli-Q system (Millipore
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Corp., Bedford, MA, USA) ultrapure water was used throughout the study. Authentic
standards were purchased from BioBioPha Co., Ltd.(Kunming, China) and Sigma-Aldrich
(St. Louis, MO, USA).

4.4.2. Sample Preparation and Extraction

The freeze-dried samples were crushed using a mixer mill (MM 400, Retsch) with a
zirconia bead for 1.5 min at 30 Hz. Then, 100 mg of powder was weighed and extracted
overnight at 4 ◦C with 1.0 mL of 70% aqueous methanol containing 0.1 mg/L lidocaine
for an internal standard. Following centrifugation at 10,000× g for 10 min, the super-
natant was absorbed and filtrated (SCAA-104, 0.22 µm pore size; ANPEL, Shanghai, China,
www.anpel.com.cn/ (accessed on 9 May 2022)) before the LC–MS/MS analysis. Qual-
ity control (QC) samples were mixed by all samples to assess the reproducibility of the
whole experiment.

4.4.3. AB Sciex QTRAP4500 (UPLC) Analysis

The compounds extracted were analyzed using an LC-ESI-MS/MS system (UPLC,
Shim-pack UFLC SHIMADZU CBM30A, http://www.shimadzu.com.cn/ (accessed on 19
April 2022); MS/MS (Applied Biosystems 6500 QTRAP) [70].

An amount of 2 µL of the samples were injected onto a Waters ACQUITY UPLC HSS
T3 C18 column (2.1 mm × 100 mm, 1.8 µm) operating at 40 ◦C and with a flow rate of
0.4 mL/min. The mobile phases used were acidified water (0.04% acetic acid) (Phase A)
and acidified acetonitrile (0.04% acetic acid) (Phase B). The compounds were separated
using the following gradient: 95:5 Phase A/Phase B at 0 min; 5:95 Phase A/Phase B at
11.0 min; 5:95 Phase A/Phase B at 12.0 min; 95:5 Phase A/Phase B at 12.1 min; and 95:5
Phase A/Phase B at 15.0 min. The effluent was connected to an ESI-triple quadrupole-linear
ion trap (Q TRAP)–MS.

The LIT and triple quadrupole (QQQ) scans were acquired on a triple quadrupole-
linear ion trap mass spectrometer (Q TRAP), AB Sciex QTRAP6500 system, equipped with
an ESI-Turbo Ion-Spray interface, operating in a positive ion mode and controlled by the
Analyst 1.6.1 software (AB Sciex). The operation parameters were as follows: ESI source
temperature, 500 ◦C; ion spray voltage (IS), 5500 V; curtain gas (CUR), 25psi; and the
collision-activated dissociation (CAD) was set to the highest. The QQQ scans were acquired
as MRM experiments with an optimized declustering potential (DP) and collision energy
(CE) for each individual MRM transition. The m/z range was set between 50 and 1000.

4.4.4. Data Pre-Processing and Metabolite Identification

The data filtering, peak detection, alignment, and calculations were performed using
the Analyst 1.6.1 software. To produce a matrix containing fewer biased and redundant
data, peaks were checked manually for a signal/noise (s/n) > 10 and in-house software
written in Perl was used to remove the redundant signals caused by different isotopes;
in-source fragmentation; K+, Na+, and NH4+ adducts; and dimerization. To facilitate the
identification/annotation of metabolites, an accurate m/z for each Q1 was obtained. The
total ion chromatograms (TICs) and an extracted ion chromatogram (EICs or XICs) for the
QC samples were exported to give an overview of the metabolite profiles of all samples.
The area of each chromatographic peak was calculated. The peaks were aligned across the
different samples based on the spectral pattern and retention time. The metabolites were
identified by searching an internal database and public databases (MassBank, KNApSAcK,
HMDB [71], MoTo DB, and METLIN [72]) and comparing the m/z values, the RT, and the
fragmentation patterns with the standards.

4.4.5. Multivariate Statistical Analysis

For a preliminary visualization of the differences between different groups of samples,
an unsupervised dimensionality reduction method principal component analysis (PCA)
was applied to all samples using R package models.

www.anpel.com.cn/
http://www.shimadzu.com.cn/
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The OPLS-DA model was further validated by cross-validation and 200 permutation
tests [73]. For cross-validation, the data were partitioned into seven subsets, where each of
the subsets was then used as a validation set. R2 indicated the total variation in the data
matrix that was explained by the model. The predictive ability (Q2) values represented
the most recognized diagnostic statistical parameter to validate the OPLS-DA model in
metabolomics. An acceptable predictive model was considered for a Q2 value greater than
0.4. A good predictive model was considered for a Q2 value greater than 0.9. A permutation
test randomly permuted class labels 200 times and then produced a distribution of R2′

values and Q2′ values. In essence, a reliable model should yield significantly larger R2 and
Q2 values compared to the R2′ and Q2′ values generated from random models using the
same dataset.

The loadings from (O) PLS were the directions of projection with respect to the original
variables. Variables whose loadings were far away from the origin in a loadings plot might
be inferred to have the greatest contribution to class separation.

4.4.6. Differential Metabolite Analysis

A variable importance in projection (VIP) score of the (O) PLS model was applied
to rank the metabolites that best distinguished between the two groups. The threshold
of the VIP was set to 1. In addition, a t-test was also used as a univariate analysis for
screening differential metabolites. Those with a p-value of the t-test < 0.05 and a VIP ≥ 1
were considered differential metabolites between two groups.

4.4.7. KEGG Pathway Analysis

KEGG is the major public pathway-related database that includes not only genes, but
also metabolites [74]. The metabolites were mapped to KEGG metabolic pathways for a
pathway analysis and an enrichment analysis. A pathway enrichment analysis identified
significantly enriched metabolic pathways or signal transduction pathways in differen-
tial metabolites by comparing with the whole background. The calculating formula is
as follows:

P = 1−
m−1

∑
i=0

(
M
i

)(
N −M
n− i

)
(

N
n

)
Here, N is the number of all metabolites with KEGG annotation, n is the number

of differential metabolites in N, M is the number of all metabolites annotated to specific
pathways, and m is number of differential metabolites in M. The calculated p-value was
obtained through an FDR correction, taking FDR ≤ 0.05 as a threshold. Pathways meeting
this condition were defined as significantly enriched pathways in differential metabolites.

4.5. Joint Analysis of Transcriptome and Metabolome
4.5.1. Pathway Model

KEGG pathway maps are the linking of genomic or transcriptomic contents of genes
to chemical structures of endogenous molecules, thus providing a method of performing
an integration analysis of genes and metabolites. All differentially expressed genes and
metabolites in this study were mapped to the KEGG pathway database to obtain their links
in metabolic pathways.

4.5.2. O2PLS Model

In order to integrate the transcriptomic and metabolomic data, we performed a two-
way orthogonal PLS (O2PLS) analysis [75]. This method decomposes the variation present
in the two data matrices into three parts: the joint variation between the two datasets,
the orthogonal variation that is unique to each dataset, and noise. The model assumes
that some latent variables are responsible for the variation in the joint and orthogonal
parts. O2PLS models were calculated using the OmicsPLS package of R. To determine the
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optimal number of components, the proposed alternative cross-validation procedure was
utilized [76]. The best models were used for the integration analysis.

5. Conclusions

For this experiment, we tested the hydroponic seedlings of ZM-4 and M9T337 by
treating them with a 75 mM NaCl solution for 144 h to see how they handled the salt stress.
ZM-4 was found to be more tolerant to salt stress when tested using fresh weight. The
tolerance of leaves and roots differed significantly. The tolerance of the leaves of ZM-4
was primarily due to their higher content of flavonoids, and they had a strong antioxidant
capacity. Not only did the ZM-4 roots have a greater anti-oxidant capacity, but they also
contained more osmotic regulators such as amino acids and sugars (L-proline, tran-4-
hydroxy-L-prolin, D−fructose 6−phosphate, D−glucose 6−phosphate, D−sorbitol, and
so on) under normal conditions, and even more amino acids and sugars (N-methyl-trans-
4-hydroxy-L-proline, 2-hydroxyethylphosphonic acid, D-sucrose, maltotriose, melezitose,
and so on) induced by salt stress. Furthermore, the genes (GLT1, ALDC, AA5GT, BAM7,
CM3, METK4, PKP1, AMY1.1, etc.) that responded in both directions were highly expressed.
This research could serve as a theoretical foundation for the use of salt-tolerant ZM-4 in the
breeding of salt-tolerant apple rootstocks.
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