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Abstract: The respiratory burst oxidase homolog (RBOH), as the key producer of reactive oxygen
species (ROS), plays an essential role in plant development. In this study, a bioinformatic analysis was
performed on 22 plant species, and 181 RBOH homologues were identified. A typical RBOH family
was identified only in terrestrial plants, and the number of RBOHs increased from non-angiosperms to
angiosperms. Whole genome duplication (WGD)/segmental duplication played a key role in RBOH
gene family expansion. Amino acid numbers of 181 RBOHs ranged from 98 to 1461, and the encoded
proteins had molecular weights from 11.1 to 163.6 kDa, respectively. All plant RBOHs contained
a conserved NADPH_Ox domain, while some of them lacked the FAD_binding_8 domain. Plant
RBOHs were classified into five main subgroups by phylogenetic analysis. Most RBOH members in
the same subgroup showed conservation in both motif distribution and gene structure composition.
Fifteen ZmRBOHs were identified in maize genome and were positioned in eight maize chromosomes.
A total of three pairs of orthologous genes were found in maize, including ZmRBOH6/ZmRBOH8,
ZmRBOH4/ZmRBOH10 and ZmRBOH15/ZmRBOH2. A Ka/Ks calculation confirmed that purifying
selection was the main driving force in their evolution. ZmRBOHs had typical conserved domains
and similar protein structures. cis-element analyses together with the expression profiles of the
ZmRBOH genes in various tissues and stages of development suggested that ZmRBOH was involved
in distinct biological processes and stress responses. Based on the RNA-Seq data and qRT-PCR
analysis, the transcriptional response of ZmRBOH genes was examined under various abiotic stresses,
and most of ZmRBOH genes were up-regulated by cold stress. These findings provide valuable
information for further revealing the biological roles of ZmRBOH genes in plant development and
abiotic stress responses.

Keywords: NADPH oxidase (RBOH); evolutionary analysis; expression profiles; maize (Zea mays)

1. Introduction

Plant NADPH oxidases (RBOHs) produce superoxide anions (·O2
−) by catalyzing elec-

tron transfer from NADPH to O2 for the production of reactive oxygen species (ROS) [1]. In
plants, ROS is known as cellular second messengers regulates a variety of aspects involving
plant growth and development, as well as plant responses to environmental stresses [2,3].
ROS species are toxic when their increased accumulation exceeds a certain threshold, and
may cause lipid peroxidation in cellular membranes, DNA damage, protein denaturation,
carbohydrate oxidation, pigment breakdown and an impairment of enzymatic activity [4,5].

In plants, RBOHs are homologs of gp91phox, the catalytic subunit of phagocyte
NOXs [6]. Previous research has suggested that six transmembrane central regions, two
heme groups, cytosolic FAD (flavin adenine dinucleotide) and NADPH (nicotinamide
adenine dinucleotide phosphate) binding domains are located at the C terminal of RBOH
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proteins [7]. Additionally, the N terminals of RBOHs feature two EF hands [7]. There
are four conserved domains in typical NADPH oxidases: NADPH_Ox, Ferric_reduct,
FAD_binding_8 and NAD_binding_6 [8]. In Arabidopsis, the AtRBOHs have basically
similar structures, including two EF chiral structures in the N-terminal region that bind
to Ca2+ [7]. RBOH catalyzes the transfer of electrons from NADPH (electron donor) to O2
(electron accepter) via NADPH-binding and FAD-binding motifs [1].

RBOHs are encoded by multiple genes. Currently, over 150 members of the RBOH
family in different plant species have been identified and/or characterized in monocots,
dicots and lower plants [9–12]. Ten RBOHs have been found in Arabidopsis and named
AtRbohA–J [7], and nine RBOHs in rice [13], fourteen in Nicotiana tabacum [14], seventeen in
soybean [10], forty-six in wheat [15], fourteen in Brassica rapa [16], and seven in grapes [17].
RBOHs are regarded as the center hubs in the ROS signaling network and play an es-
sential role in stress responses and plant development [18–20]. It has been reported that
RBOHs have a vital role in pollen development [21], pollen tube growth [22], root hair
development [23], seed germination [24], plant-microorganism interactions [25] and plant
immunity [26].

RBOHs play a substantial role in the response of plants to abiotic stresses such as
drought, salt and extreme temperatures [18,27–31]. Under salt stress, H2O2 produced by
superoxide dismutase (SOD) can trigger the antioxidant response in plants to overcome
subsequent ROS production, and consequently mitigate the salt stress-related injuries [32].
Since NaCl is the most soluble and widespread salt, plants have evolved mechanisms to
regulate its accumulation [33]. In Arabidopsis, AtRBOHD/F produce ROS that function
as signal molecules to regulate Na+/K+ balance, resulting in salt-tolerant plants [34,35],
and the double mutant rbohD/F was more susceptible to salt due to the ability to selectively
absorb K+ being less efficient. NADPH oxidases can be activated by drought [36]. Drought
stress increased the activities of catalase and peroxidase in Okra [37]. A drought-induced
increase in OsRBOHA transcripts, and over-expression of OsRBOHA, could improve plant
tolerance to water stresses in rice [38]. In plants, RBOHs and H2O2 are important com-
ponents of ABA signal transduction [39]. In Arabidopsis, the NADPH oxidase inhibitor,
diphenylene iodonium (DPI), inhibited ABA-induced stomatal closure, suggesting that
NADPH oxidase activation is necessary [40].

Cold stress severely restricts plant growth and development, and is a major cause
of crop loss and limiting factor to plant cultivation [41]. Plant RBOH genes are found to
be transcriptionally active under low temperatures stress. Many studies have reported
that RBOHs respond to cold stress. For example, cold treatment significantly increased
expression of CaRBOHA and CaRBOHB in pepper [42], GmRBOHs in soybean [10,43] and
NtRBOHs in tobacco [14]. Ca2+-dependent AtRBOHF mediated ROS production by AtSRC2
was associated with cold resistance [44]. Recent research found that cold rapidly induced
expression of FvRBOHA and FvRBOHD in strawberry, and CsRBOHD, CsRBOHE and
CsRBOHF in citrus, and increased NADPH oxidase activity [11,45]. Under cold stress
conditions, silencing of CsRBOHD in trifoliate orange resulted in cold tolerance, suggesting
that the CsRBOHD-ROS signal pathway induces ROS scavenging enzyme genes [11].

In this study, we identified RBOH sequences from 22 plant species. The bioinformatic
investigation of gene structure, evolutionary, syntenic relationships, chromosome localiza-
tion, phylogeny, and conserved domains of plant RBOHs were conducted. The expression
profiles of ZmRBOH genes were determined in different tissues and under cold stresses to
decipher the roles of ZmRBOHs in maize development and stress responses.

2. Results
2.1. Identification and Evolutionary Analysis of RBOH Family Members in Plants

An evolutionary analysis of plant RBOH genes was conducted to clarify their evolu-
tionary history. RBOH HMMs downloaded from Pfam were used to search against the
genome database of different plant species, and for homologous verification we submitted
the putative RBOH homologs identified in this study to NCBI, SMART, and Pfam databases.



Int. J. Mol. Sci. 2023, 24, 3858 3 of 17

A total of 181 candidate RBOH sequences in 22 plant species were identified initially, includ-
ing chlorophyta (Chlamydomonas reinhardtii, Volvox carteri), bryophyta (Physcomitrella patens,
Marchantia polymorpha), pteridophyte (Selaginella moellendorffii), gymnosperm (Pinus taeda),
basal angiosperms (Amborella trichopoda, Nymphaea colorata), monocots (Musa acuminata,
Brachypodium distachyon, Oryza sativa, Setaria italica, Zea mays, Sorghum bicolor), and dicots
(Vitis vinifera, Theobroma cacao, Brassica rapa, Arabidopsis thaliana, Populus trichocarpa, Glycine
max, Solanum tuberosum, Solanum lycopersicum).

The RBOH proteins were identified in all the higher plants lineages, including an-
giosperm, gymnosperm, bryophyta and pteridophyte, except for two algal species selected
in lower plants (Figure 1). Different plant species possess different numbers of RBOHs.
No RBOH gene was found in chlorophyta, two and five RBOH genes were identified in
bryophyta (Physcomitrella patens, Marchantia polymorpha), nine and six RBOH genes were
discovered in pteridophyte (Selaginella moellendorffii) and gymnosperm (Pinus taeda), and
there were five RBOH genes in each basal angiosperm (Amborella trichopoda, Nymphaea col-
orata). Increasing numbers of RBOH genes was found in higher plants: 6–17 members were
detected in dicots, and 9–15 members were detected in monocots. Over all, angiosperm
plants accumulated more RBOHs than non-angiosperm plants, and monocots had a higher
average number of RBOHs than dicots. These results suggest that a single cell to multicel-
lular expansion might take place in plants to expand RBOHs. Complex evolution has taken
place for the typical RBOH family, which is only found in terrestrial plants.
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Figure 1. Evolutionary relationships of respiratory burst oxidase homologue (RBOH) genes among
22 plant species.

2.2. The Characteristics and Conserved Domains of RBOHs in Plants

Plant RBOH encoded proteins comprise 98 to 1461 amino acids. They have a molecular
weight between 11.1 and 163.6 kDa, and predicted PI values of 4.86–10.28. The subcellular
localization predicted by WoLF PSORT indicated that most of the plant RBOHs were
localized in the plasma membrane, eight RBOHs were localized to the nucleus, only
MaRBOH9 was reside in the mitochondria and MaRBOH10 reside in the chloroplast. The
detailed information of plant RBOHs (including major lineage, alternative name, accession
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numbers, protein length, theoretical PI, molecular weight and predicted subcellar location)
are listed in Table S1.

Four conservative domains were predicted in plant RBOHs using online databases in the
NCBI website, including NADPH_Ox, Ferric_reduct, FAD_binding_8 and NAD_binding_6
(Figure S1). It was found that all RBOHs contained the NADPH_Ox domain, while the other
four typical domains were incomplete among different species. FAD_binding_8 domain
was absent in bryophyta (Marchantia polymorpha and Physcomitrella patens) and gymnosperm
(Pinus taeda). The conserved domains of the representative RBOHs in plants are displayed
in Figure 2. The results show that PpRBOH2 contained only the Ferric_reduct domain,
which is similar to the common ancestor of RBOHs. PtaRBOH2 contained the NADPH_Ox
domain and NAD_binding_6 domain, while PtaRBOH3 is missing the FAD_binding_8
domain (Figure 2). In two basal angiosperms (Amborella trichopoda and Nymphaea colorata)
and pteridophyta (Selaginella moellendorffii), NcRBOH2 contained only two domains, the
NADPH_Ox domain and NAD_binding_6 domain, while NcRBOH1 and AtrRBOH3 con-
tained three domains, and AtrRBOH2 contained four typical domains. In dicots, BrRBOH1
contained only the NADPH_Ox domain, AtRBOHD contained the NAD_binding_6 do-
main in addition to the NADPH_Ox domain, and GmRBOH3 contained three domains but
lacked the FAD_binding_8 domain. In monocots, OsRBOH3 contained three domains and
ZmRBOH4 contained four typical domains. This result implies that the FAD_binding_8 do-
main seems to be the last obtained functional domain during the evolution of plant RBOHs.
In addition, new RBOH types were identified in Zea mays (ZmRBOH14), Solanum tuberosum
(StRBOH3), Brassica rapa (BrRBOH1,12) and Musa acuminata (MaRBOH3,10), which have
an NADPH_Ox domain, whereas one or two other domains that typical RBOHs possess
are missing.
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2.3. Phylogenetic Analysis and Classification of RBOH Members

Phylogenetic trees of the 181 RBOHs from 20 plant species were generated to ex-
plore the phylogenetic relationships among representative species of monocots, dicots,
bryophytes and pteridophytes (Figure 3). One-hundred-and-eighty-one RBOHs were clus-
tered into five subgroups based on the NJ tree, among which the highest numbers of RBOHs
were 53 and 45 in subgroups V and II, followed by 30, 29 and 24 in subgroups IV, I and III,
respectively (Figure 3 and Figure S2). Angiosperm species were classified into different
clades, and the number of RBOHs was different within each clade. Ten AtRBOHs were dis-
persed across all subgroups with one to four members in each subgroup. A similar profile
was observed in the distribution of RBOH in the other angiosperm species. Additionally, all
members of both bryophyta (Marchantia polymorpha, Physcomitrella patens) and pteridophyta
(Selaginella moellendorffii) were included in subgroup V. Distribution of conserved motifs in
RBOH proteins of 20 plant species are listed in Table S2. Most conserved motifs in RBOH
proteins in the same subgroup were found to be conserved in both pattern distribution and
composition. (Figure S3).
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Through HMMER and BLASTP searching, 15 ZmRBOH genes were identified from
maize genomes. These candidate ZmRBOH genes were named as ZmRBOH1-15. Out of
15 ZmRBOHs, half of them (ZmRBOH12, 3, 4, 7, 10 and 15) were clustered in subgroup II,
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three in subgroup V (ZmRBOH5, 11 and 12) and subgroup III (ZmRBOH6, 8 and 14), and
two in subgroup IV (ZmRBOH9 and 13).

2.4. Chromosomal Distribution and Synteny Analysis of Plant RBOH Members

ZmRBOH genes are localized on chromosomes one (ZmRBOH8), two (ZmRBOH1-
3), three (ZmRBOH10-14), four (ZmRBOH15), six (ZmRBOH9), seven (ZmRBOH6), eight
(ZmRBOH4 and ZmRBOH5) and ten (ZmRBOH7), respectively (Figure S4). The replication
relationships were investigated among the ZmRBOH genes. A total of three orthologous
gene pairs was found, including ZmRBOH6/ZmRBOH8, ZmRBOH4/ZmRBOH10 and
ZmRBOH15/ZmRBOH2 (Figure 4A, Table 1). There was a common genomic origin as well
as plausible functional similarity for the orthologous genes. In Figure 4A, gradient colors
are shown based on the gene density of maize chromosomes, and it is apparent that the
ZmRBOH orthologous genes tend to gather in regions with similar gene density.
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Table 1. Numbers of RBOH genes from different duplication events in five monocots.

Species Identified
RBOH Genes

No. of Gene
Pairs

Duplication Events

Singleton WGD Tandem Proximal Dispersed

Zea mays 15 3 0 6 (40.0%) 0 2 (13.3%) 7 (46.7%)
Musa acuminata 14 9 0 12 (85.7%) 0 0 2 (14.3%)

Oryza sativa 9 3 0 6 (66.7%) 0 0 3 (33.3%)
Brachypodium

distachyon 9 3 0 6 (66.7%) 0 0 3 (33.3%)

Sorghum bicolor 10 2 0 4 (40.0%) 0 0 6 (60.0%)

Interspecific collinearity between maize and six other plant species (Arabidopsis thaliana,
Solanum lycopersicum, Musa acuminata, Oryza sativa, Brachypodium distachyon, Sorghum bicolor)
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were analyzed using MCScanX with default parameters, and RBOH gene pairs were
marked in red (Figure 4B). Among all the RBOH genes, the strength of the correlation
with ZmRBOH genes in descending order was as follows: RBOHs from four monocots
Brachypodium distachyon (15), Sorghum bicolor (15), Oryza sativa (14) and Musa acuminata (5),
and RBOHs from two dicots Solanum lycopersicum (3) and Arabidopsis thaliana (1). It turns
out that maize and other monocots have more orthologous genes than dicots, which is
consistent with their evolutionary relationships. It is worth noting that the frequency of
homologous genes on chromosome 3 is the highest in both monocots and dicots, which
indicates that this site may be an important site for RBOH gene selection during evolution.

Gene duplication occurs in five types: singleton, dispersed, proximal, tandem, and
whole genome duplication (WGD)/segmental duplication. In this study, numbers of
genes from different duplication events were detected in the RBOHs of five monocots
by running the MCScanX package. Among the five duplication types, we found that
WGD/segmental and dispersed played a key role in RBOH gene family expansion in all
five monocots and proximal was detected only in maize. The percentage of RBOHs that
underwent WGD/segmental duplication was 40.0, 85.7, 66.7, 66.7, and 40.0% for Zea mays,
Musa acuminata, Oryza sativa, Brachypodium distachyon and Sorghum bicolor, respectively.
The percentage of RBOHs that underwent dispersed was 46.7, 14.3, 33.3, 33.3 and 60.0%
for Zea mays, Musa acuminata, Oryza sativa, Brachypodium distachyon and Sorghum bicolor,
respectively (Table 1). To assess the evolutionary rates among these gene-pairs, the Ka
(non-synonymous substitutions) to Ks (synonymous substitutions) ratios of homologs in
the ZmRBOH gene family were calculated (Table S3). It is noteworthy that all Ka/Ks ratios
between gene-pairs with collinearity relationship were less than 1, implying that these genes
have undergone strong purifying selection pressures to different extents during evolution.

2.5. Analysis of Domain Composition, Gene Structure, and Conserved Motifs of ZmRBOH Genes

The NJ tree, gene structure and motif of 15 ZmRBOH sequences were mapped by
TBtools. The conserved domains of the ZmRBOHs were illustrated by MEME-motif
scanning. As shown in Figure 5A, ten MEME-motifs were collected (Motifs 1 to 10). In
accordance with conserved domains, ZmRBOHs within each subgroup displayed similar
motif distribution. In general, most ZmRBOHs showed regular motifs in their specific
clades. Motif 5 and motif 10 were found in the NADPH_Ox domain. Ferric_reduct
domain dominated motifs 1 and 7. The FAD_binding_8 domain contained motif 4, and
the NAD-binding domain was formed by motif 6. Sequence-logos of domain-motifs are
displayed in Figure 5C. Detailed information of the distribution of conserved motifs in
ZmRBOH proteins is listed in Table S2. As shown in Figure 5B, diverse gene structures
was found among different types of ZmRBOH genes, whereas there was a high degree
of conservation in each group. The number of exons in 8 out of 15 ZmRBOH genes was
between 12–14, whereas other ZmRBOH genes contained 5-8 exons, respectively. Based
on sequence alignment, it was found that conserved motif NADPH_Ox was present in all
ZmRBOHs. All four characteristic motifs: NADPH_Ox, Ferric_reduct, FAD_binding_8 and
NAD_binding_6, were present in ZmRBOH4, ZmRBOH5 and ZmRBOH11. ZmRBOH14
had only one (NADPH_Ox) of the RBOH-characteristic motifs, which was different from
other ZmRBOHs. ZmRBOH6 and ZmRBOH8 had two conserved motifs (NADPH_Ox and
Ferric_reduct in ZmRBOH6, and NADPH_Ox and NAD_binding_6 in ZmRBOH8). There
was no Ferric_reduct domain in ZmRBOH12, and the FAD_binding_8 domain was missing
in the remaining 8 ZmRBOH proteins (Figures 5C and S1).

2.6. Expression Profiles of ZmRBOH Genes in Different Tissues and Developmental Stages

An integrative heatmap was created to illustrate the ZmRBOH gene expression profiles
in different tissues and developmental stages of maize (Figure 6A). The transcripts of ZmR-
BOH9, ZmRBOH10 and ZmRBOH12 were detected in all tissues and developmental stages
with a high transcriptional level. The expression of ZmRBOH4, ZmRBOH6 and ZmRBOH13
were at an intermediate level in all tissues and developmental stages. ZmRBOH1-3 genes



Int. J. Mol. Sci. 2023, 24, 3858 8 of 17

were expressed at relative lower levels in various tissues and developmental stages of
maize. ZmRBOH9 had a higher expression level during seed development in reproductive
stage. ZmRBOH7 and ZmRBOH14 may play a role in seed development as they display
higher expression levels in the seed and endosperm. The transcripts of ZmRBOH5 and
ZmRBOH11 were mainly shown in the anther. To explore the potential roles of ZmRBOH
genes in various biological processes, we analyzed the cis-elements in the promoter regions
of the ZmRBOH genes (Figure S5). The cis-element analyses further supported the potential
roles of the identified ZmRBOH genes in regulating maize developments and responses
to various biological processes. Overall, our findings revealed the diverse expression
profiles of ZmRBOH genes in different tissues and developmental stages, which might
imply differential roles of the ZmRBOH genes in maize.
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To better visualize the specific expression of ZmRBOHs, three representative ZmR-
BOH genes were selected to create a heatmap of phenotype simulation of V2 stage maize
seedlings using TBtools (Figure 6B). The results showed that ZmRBOH2 exhibited higher
expression levels in first leaf, ZmRBOH6 exhibited higher expression levels in topmost
leaf and ZmRBOH11 exhibited higher expression levels in stem and shoot apical meristem
(SAM). Further normalization and integration of the 15 ZmRBOH gene expression data
were performed to display the expression profiles of the ZmRBOH genes at the V2 stage
of maize development (Figure S6). ZmRBOH1, 2, 3, 7, 14 and 15 mainly expressed in first
leaf, ZmRBOH4, 5, 8, 10, 11 and 12 showed relatively high expression in stem and SAM,
ZmRBOH6, 9, 13 and 14 highly expressed in topmost leaf in V2 stage of maize.

2.7. Expression Profiles of ZmRBOH Genes in Response to Abiotic Stress Treatment

To uncover the roles of ZmRBOH genes in abiotic stress responses, their expression
data from published transcriptome of maize under various abiotic stress treatments were
analyzed, including heat, cold, salt and UV (Figure 7A,B). Two maize inbred lines B73 and
Oh34 were investigated. Under cold treatment, the expression of three ZmRBOH genes
shared similar trend in both inbred lines, among which ZmRBOH9 was up-regulated while
ZmRBOH12 and ZmRBOH15 were down-regulated. Under heat treatment, differential
expression of six ZmRBOH genes was found in B73, while only one gene was differen-
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tially expressed in OH43. Among them, the expression of ZmRBOH13 gene increased
significantly in both maize inbred lines. The expression of ZmRBOH6, ZmRBOH8 and
ZmRBOH12 increased significantly, while the expression of ZmRBOH9 and ZmRBOH4 de-
creased significantly in B73 under heat stress. However, the expressions of these genes were
not significantly changed in OH43. Under salt (NaCl) treatment, a number of ZmRBOH
genes were down-regulated, but no genes were significantly up-regulated. In Oh43, the
expression of ZmRBOH15 increased significantly, and the expression of ZmRBOH9 and
ZmRBOH4 decreased significantly. Six ZmRBOH genes were differentially expressed in
B73 and Oh43. Under ultraviolet (UV) treatment, their expression profiles were different.
The expression of ZmRBOH9, ZmRBOH12, ZmRBOH4 and ZmRBOH15 genes in the two
inbred lines was significantly increased. The expression ZmRBOH13 and ZmRBOH8 was
significantly up-regulated in B73, but down-regulated in Oh43.
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2.8. qRT-PCR Analysis of the Expression of ZmRBOH Genes under Cold Stress

In order to further understand how ZmRBOH genes respond to cold stress, the expres-
sion of 15 ZmRBOH genes under low temperature treatment at different time points were
determined by qRT-PCR in B73 inbred lines (Figure 8). The results show that the expression
of ZmRBOH genes were temporally regulated in response to cold. In the early stages of
cold treatment, the expression levels of ZmRBOH11 and ZmRBOH13 were significantly in-
creased at the 6 h time point. ZmRBOH4 was significantly down-regulated and ZmRBOH1
was significantly up-regulated at the 12 h time point. The expression of the ZmRBOH12
gene was significantly down-regulated after a 24 h cold treatment. There was a significant
increase in transcript abundance of ZmRBOH6 and ZmRBOH9 at 24 h, while ZmRBOH15
expression was significantly down-regulated at the same time point. This suggests a quick
and active responses of ZmRBOHs to cold stress.
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3. Discussion

RBOHs have been discovered in animals, higher plants, and fungi since the first
NADPH oxidase was discovered in human phagocytic cells [15,46,47]. In plants, typical
RBOHs were identified only in terrestrial plants. Liu et al.’s research shows that there is no
RBOH genes in chlorophyta (Chlamydomonas reinhardtii, Volvo carteri) [31]. However, four
RBOH candidates were identified from Chlamydomonas reinhardtii in a recent study [48].
Previously, several RBOH homologs were identified from green algae and red algae, but
assigned to another gene family (FROs), considering they did not have the NADPH_Ox
domain [49,50].

The RBOH family has a complex evolution. Liu et al. selected 17 halophyte and 21
glycophyte angiosperms for the study of RBOH family, and nine members were identified
in Selaginella moellendorffii, which is extremely tolerant to dehydration [31]. Liu et al.’s
research found that tolerant species of salinity stress have fewer RBOH genes, and salinity
tolerance evolved in plants may be associated with the decline in RBOH members [31].
Chang et al. found that ancient RBOHs harboring only the Ferric_reduct domain obtained
another important domain, NADPH_Ox, and were converted into the typical RBOHs in the
plant [47]. A primary evolution model of RBOHs from bacteria, fungi, animal and plants
has been constructed, while the evolutionary process of RBOH is not well illustrated in
plants. In this study, 181 RBOH homologues from 22 plant species were identified and
analyzed. Our results revealed that RBOHs only exist in land plants, and their major
structural domains are similar to the previous identified RBOHs. Over the course of
evolution, RBOH genes have become more and more numerous, and monocot species have
a higher average number of RBOHs than dicots (Figure 9). During the evolution from
gymnosperms to angiosperms, the genetic structure became more and more complicated.
Plants with the NADPH_Ox domain live exclusively on land, suggesting that this domain
contributes specifically to terrestrial adaptation. A long-term evolution history of RBOHs
in plants clearly demonstrates their functional divergence.
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nucleus, only MaRBOH9 was indicated to reside in the mitochondria, and MaRBOH10
was indicated to reside in the chloroplast. Hu et al. analyzed four RBOH genes using a
transient transformation system after cloning the cDNA sequences to verify the subcellular
localization of TaNOX7-3AS, TaNOX10-5BL, TaFRO4-2BL, and TaNOX-like4, and the results
showed they were all located with the plasma membrane [15]. In grape, several RBOHs
encoded by VvRBOHA, VvRBOHC1 and VvRBOHD were predicted to be localized in the
plasma membrane, and several RBOHs were predicted to be located within the chloroplast
thylakoid membrane, including VvRBOHB, VvRBOHC2, VvRBOHE and VvRBOHH [17].

Gene duplication is a major effect of whole genome duplication (WGD), which doubles
the entire genome. In order to improve species diversity and environmental resilience,
WGDs were thought to have occurred during the evolution of plants [51,52]. There have
been several gene duplication events which drove the evolution of RBOH gene families,
especially WGDs [42]. Li et al. suggest that BrRBOH gene expansion might have been
facilitated by WGDs, which led to structural and functional novelty that enabled tolerance
to abiotic and biotic stresses [16]. The results of synteny analysis in upland cotton revealed
that during the evolution of the GhRBOH gene family, most of the duplicate genes originated
from WGD or segmental duplications, which were the major factor in its expansion [48]. In
this study, numbers of genes from different duplication events were detected in the RBOHs
of five monocots. We found that WGDs and dispersed type duplication events played a
key role in RBOH gene family expansion in monocots. In this study, 56 syntenic gene pairs
were identified among 14 ZmRBOHs and RBOHs from other plant species, including 3 and
53 pairs with intraspecies and interspecies collinearity, respectively. In light of the fact that
the collinearity relationships between BrRBOH and other plant RBOHs were only found in
dicots, and the number of collinear relationships among ZmRBOHs and other RBOHs is
bigger in monocots than in dicots, there is a possibility that duplication activities occurred
after monocots and dicots diverged.

Plant RBOHs are involved in multiple cellular functions via ROS production and
signaling [53,54]. By producing ROS, RBOH maintains pollen tube growth at normal
rates [22,55]. AtRBOHH and AtRBOHJ genes are expressed in pollen, and contribute to
the positive feedback regulation that maintains growth of pollen tubes [6,54,56,57]. In this
study, ZmRBOH5 and ZmRBOH11 were highly expressed in anthers, and may have special
biological functions in pollen development. According to Muller et al., AtRbohB is essential
for seed ripening and germination, and inhibition of it by diphenylene iodonium (DPI)
leads to a delay in seed germination of Arabidopsis [58]. In barley, superoxide anions (·O2−)
produced by NADPH oxidase regulate seed germination and seedling growth [59]. In this
study, ZmRBOH9 was consistently highly expressed during seed formation, and ZmRBOH7
and ZmRBOH14 genes were also highly expressed in seeds and endosperm, suggesting a
vital role of ZmRBOHs in seed germination.

RBOHs are notably responsive to various abiotic stresses, especially cold [60]. The
transcription of AtRBOHA was up-regulated greatly, while AtRBOHD, E, I, and H were
down-regulated by cold stress [44]. Almost all the OsRBOHs were up-regulated in both
shoots and roots at the 12 h time point under cold stress [47]. Under cold stress treatment,
a total of seven GhRBOHs were down-regulated at early time points and up-regulated
after experiencing a longer cold treatment period [48]. Under cold stress, the expression
of FvRBOHA and FvRBOHD was rapidly increased, followed by an increase in NADPH
oxidase activity, leading to ·O2− accumulation and activation of antioxidant reaction [45].
In this study, the transcription of ZmRBOHs was quickly induced by cold stress at all-time
points, indicating their potential important roles in response to cold stress.

In summary, 181 RBOHs were identified from 22 plant species in this study, including
15 ZmRBOH genes. Plant RBOH genes underwent an evident evolution, and an important
role was played by WGD in the expansion of the RBOH family. ZmRBOH genes were found
to be highly expressed in seed developmental stages and anther tissues. ZmRBOH genes
responded actively to abiotic stress, especially cold stress. Further functional characteriza-
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tion of RBOHs is required to obtain more direct evidence supporting the critical roles of the
RBOH genes in development and stress responses in maize and other plants.

4. Materials and Methods
4.1. Data Retrieval and Identification of RBOH Genes

RBOH family members were identified from 22 sequenced genomes. These genomes
were collected from Phytozome website [61] and PlantGenIE website. The Hidden Markov
Model (HMM) profile [62] of the respiratory burst NADPH oxidase domain (PF08414) was
downloaded from the pfam website [63] as queries. HMMER was used to identify the
members of the RBOH superfamily from the downloaded protein sequences of 22 species.
RBOH genes were searched against NCBI website; all sequences were downloaded and
used as the database for RBOH screening. The local BLASTp (E-value < 1 × 10−5) was
used to compare the RBOH protein sequences of 22 plant species with the sequences of
RBOH gene family in Arabidopsis to check whether there were missing RBOH family
members. After validation by the online SMART tool [64], multiple sequence alignment
was performed in MEGAX using MAFFT software [65] to eliminate sequences of different
transcripts. The WoLF PSORT website was used to search for the subcellular localization. In
addition, pI and protein molecular mass of the RBOH gene family were identified from the
ExPasy website (http://web.expasy.org/protparam/, accessed on 15 December 2022) [66].

4.2. Phylogenetics and Classifications of RBOH Members

The phylogenetic analysis was constructed via OrthoFinder [67] based on the single-
copy genes identified in all the plant genomes. Multiple-sequence Alignment was con-
ducted using MAFFT software [65], and a 1000-replication boot strap replicated the phylo-
genetic tree using MEGA X by neighbor-joining algorithm [68].

4.3. Chromosomal Location, Duplication and Synteny Analyses of ZmRBOH Genes

The chromosomal locations of ZmRBOH genes were depicted with TBtools based on
the maize genome annotation file. Annotations of the maize genome were used to extract
300-kb hereditary interval gene densities that were further transformed into gradient
colored heatmaps on each maize chromosome. Synteny analysis was carried out using the
program MCScanX [69], and the parameters were set to default: Match score, 50; Match
size, 5; GAP penalty, –1; Overlap window, 5; E-value, 1 × 10−5; Max GAPs, 25. Further,
MCScanX was also used to identify WGD/segmental, tandem, proximal and dispersed
duplication events in the RBOH family [69]. Syntenic graphs of multiple species were
generated by TBtools [70]. Non-synonymous substitutions (ka), synonymous substitutions
(ks) and Ka/Ks ratios of ZmRBOHs orthologous gene pairs were calculated using Ka/Ks-
Calculator 2.0 [71].

4.4. Gene Structure, Protein Motif and Conserved Domain Analysis

The motif analysis of RBOH proteins was carried out using MEME [72]. The optimized
parameters were as follows: number of repetitions, any; the maximum number of motifs,
10; and the optimum width of each motif, between 6 and 200 residues. The conservative
domains of RBOHs were predicted through NCBI. Based on the genome annotation data,
the gene structures of ZmRBOHs were determined by TBtools [73]. The Seq Logos asso-
ciated with the MEME-motifs, gene structure, protein motif and conserved domain were
illustrated using TBtools [73].

4.5. Expression Profiles of ZmRBOH Genes

RNA-seq data of different maize tissues and developmental stages were downloaded
from the Maize Efp [74] database for ZmRBOH genes. The correlation heatmap was
generated using the expression correlation matrix by TBtools. Based on the extractions of
the ZmRBOH genes upstream 2000 bp sequences with TBtools, the cis-elements in gene
promoter regions were explored with PlantCARE online tools (http://bioinformatics.psb.

http://web.expasy.org/protparam/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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ugent.be/webtools/plantcare/html/, accessed on 15 December 2022) [75]. To better exhibit
gene expression profiles in tissues, a heatmap of phenotype simulation was illustrated using
TBtools. The data of transcriptome of 2-week-old maize seedlings of B73 and Oh43 under
various stresses from NCBI database with three replicates was downloaded to analyze the
expression profiles of ZmRBOH genes [76]. The stress treatment was conducted at low
temperature (4 ◦C) for 16 h, high temperature (50 ◦C) treatment for 4 h, salt (300 mmol/L
NaCl) treatment for 20 h and UV treatment for 2 h.

4.6. Plant Materials and Stress Treatments

The maize seedlings were grown in a growth chamber in vermiculite and soil (1:1,
volume/volume) at 25 ◦C and a 16 h/8 h (light/dark) photoperiod. A low temperature
treatment was conducted by placing two-week-old maize seedlings in an incubator at 4 ◦C.
The leaf samples were collected at 0, 6, 12 and 24 h after treatment, and control samples
were collected from plants under room temperature. At least three replicates were applied
for each sample.

4.7. Quantitative RT-PCR Analysis

Total RNA was extracted using the total RNA extract reagent (Coolaber, BeiJing,
China). Using Rever Tra Ace qPCR RT Master Mix (TOYOBO, Osaka, Japan), first-strand
cDNA was synthesized from one microgram of RNA from each sample. A 2×SYBR Green
qPCR Mix System (Coolaber, BeiJing, China) was used for real-time quantitative RT-PCR
(qRT-PCR). ZmEF1α and ZmACTIN were used for standardization of target genes. The
results were analyzed using the 2−∆∆ct method with three replicates in three independent
biological replicates [77]. Gene specific primers of ZmRBOHs used for qRT-PCR are shown
in Table S4.

4.8. Statistical Analysis

A Graphpad Prism 8 program was used for Student’s t-test, with a significance for
difference at a p-value cut-off of 0.05. In SUBthe column diagrams, error bars represent
standard deviations (SD) from independent biological replications.
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