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Abstract: Circulating tumor cells (CTCs) are released from primary tumors and transported through
the body via blood or lymphatic vessels before settling to form micrometastases under suitable
conditions. Accordingly, several studies have identified CTCs as a negative prognostic factor for
survival in many types of cancer. CTCs also reflect the current heterogeneity and genetic and
biological state of tumors; so, their study can provide valuable insights into tumor progression,
cell senescence, and cancer dormancy. Diverse methods with differing specificity, utility, costs, and
sensitivity have been developed for isolating and characterizing CTCs. Additionally, novel techniques
with the potential to overcome the limitations of existing ones are being developed. This primary
literature review describes the current and emerging methods for enriching, detecting, isolating, and
characterizing CTCs.

Keywords: circulating tumor cells; detection; enrichment; characterization; microfluidic

1. Introduction

According to data compiled by the International Agency for Research on Cancer using
GLOBOCAN 2020 estimates, 19.3 million new cases of cancer were diagnosed among
the global population in 2020. However, despite considerable progress in the diagnosis
and treatment of oncological malignancies, mortality rates remain high: cancer caused
9.9 million deaths globally in 2020 [1]. Mortality is most often caused by the emergence of
distant metastases, which can develop from circulating tumor cells (CTCs). Consequently,
patients at high risk of metastasis can be identified based on the detection of CTCs in blood
or disseminated tumor cells (DTCs) in bone marrow [2,3].

However, the presence of CTCs/DTCs does not necessarily lead to distant metastases.
Successful metastasis depends on many variables, including both the phenotypic and
genotypic properties of tumor cells and the immune responses of the host organism.
According to published estimates, only one in 10,000 CTCs may develop into a metastatic
lesion [4,5]. Moreover, only a few CTCs are likely to reach a distant organ, survive in a
dormant state, evade the immune system and systemic therapy, and eventually grow into
an overt metastasis [6]. Molecular phenotypes associated with epithelial–mesenchymal
transition (EMT) and stemness have been linked to increased metastatic potential and
chemoresistance in CTCs [7]. Conversely, the senescent phenotype may reduce metastatic
potential by inhibiting proliferation and facilitating elimination by immune cells [8]. The
molecular characterization of CTCs, which will play a central role in evolving methods for
CTC detection, has the potential to unravel the biology of tumor evolution and resistance
and to shed new light on cancer progression at the genomic, transcriptomic, proteomic,
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and metabolic levels [6,9,10]. Moreover, detecting actionable variants that have not been
identified in the primary tumor can help to guide treatment [11].

A sample’s CTC count typically depends strongly on the choice of detection methods
and may vary from one to several thousand [12]. CTC counts can also depend strongly
on the timing of blood sampling and change dynamically in ways that reflect the ongoing
dissemination of the parent tumor because a CTC’s lifetime in the bloodstream is only 1 to
2 days. Another complication is that tumor heterogeneity causes considerable variation
in the type and number of CTC markers in blood samples [13]. CTC detection markers
commonly used for epithelial cancers include epithelial cell adhesion molecule (EpCAM)
and cytokeratins (CKs). Other markers are used to characterize CTCs originating from dif-
ferent tumor types, including human epidermal growth factor receptor 2(Her2) and mucin
1 (MUC1) for breast cancer, prostate-specific antigen (PSA), prostate-specific membrane
antigen (PSMA), androgen receptor (AR), and epidermal growth factor receptor (EGFR) for
prostate cancer, and carcinoembryonic antigen (CEA) for colorectal cancer [2].

CTC counting is most commonly performed in peripheral blood samples [14]. How-
ever, new methods that exploit technological advances to detect CTCs in other body fluids
are emerging. These approaches are important because of their potential to open up new
sources of CTCs and advance research on CTC clusters in metastatic cancers [15]. In particu-
lar, malignant pleural and peritoneal effusions are a richer source of CTCs and CTC clusters
than peripheral blood [16,17]. Accordingly, the enumeration of CTCs in cerebrospinal fluid
(CSF) has been shown to enable more accurate tumor burden assessment than standard CSF
cytology [18], and may thus avoid the limitations of methods based on tissue biopsy and
neuroimaging [19]. Similarly, the capture of tumor cells in urine could enable the diagnosis
and prognosis of bladder cancer, eliminating the need for painful endoscopy [20].

CTCs were first detected and documented by the Austrian pathologist T. R. Ashworth
approximately 150 years ago [21] and are currently identified using several different meth-
ods [22–26]. In addition to well-established methods based on immunohistochemistry, flow
cytometry, and the real-time reverse transcription polymerase chain reaction (RT-PCR),
novel methods for direct detection have recently been introduced. These new techniques
can increase the sensitivity of CTC detection, offer greater clinical utility than established
methods, and facilitate the isolation and cultivation of live CTCs. In the first part of this
review, we describe methods currently used for CTC enrichment and detection. The sec-
ond part focuses on emerging methods based on rapidly evolving modern technologies,
including nanomaterials, 3D printing, and artificial intelligence.

2. Current Enrichment and Detection Techniques
2.1. Enrichment Techniques
2.1.1. Morphology-Based Approaches

The diameter of CTCs (~16–20 µm) significantly exceeds that of other blood cells such
as red blood cells (RBCs; ~8 µm) and white blood cells (WBCs; ~8–14 µm), and is often
used to separate them [27]. Relatively simple size-based methods for capturing CTCs
include isolation by size of epithelial tumor cells (ISET) [27–29] and techniques using a
micro-electro-mechanical system (MEMS) [30].

Commercial ISET devices are available from ScreenCell (Screen Cell, Paris, France). As
shown in Figure 1, filters with captured CTCs can be placed on standard glass microscopy
slides for cytological analyses, or in multi-well tissue culture plates or tubes for nucleic acid
or protein extraction [31]. The Screen Cell showed a 55% recovery rate and 100% specificity
in blood samples spiked with the MDA-MB-231 breast cancer cell line [32].

Separation by density gradient centrifugation can also be used for CTC enrichment.
Several commercial devices, kits, and reagents are available for this purpose, including
the Ficoll-Hypaque (Cytiva, Marlborough, MA, USA) and OncoQuick (Hexal Gentech,
Holkirchen, Germany and Greiner Bio-One, Kremsmünster, Austria) systems, which can
isolate CTCs from whole blood via centrifugation in tubes with a porous barrier and
a medium providing an appropriate density gradient [33]. The procedure is rapid and
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convenient and can provide viable cells suitable for further analysis. However, the method’s
sensitivity is low. The OncoQuick showed only a 35% recovery rate in blood samples spiked
with the SW-480 colon cancer cell line [34] and depends on the tumor cells’ characteristics,
the centrifugation time, and the temperature. Efforts are being made to overcome these
limitations [35].
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Figure 1. Schematic depiction of an ISET-based system for CTC enrichment. The filtration de-
vice, whose components are shown in (A), is used to collect blood (B), which is filtered through
a membrane (C). The auxiliary components are then removed to enable further analysis of the
membrane-bound CTCs (D) (polymerase chain reaction, PCR; next-generation sequencing, NGS).

Dielectrophoresis (DEP) is a relatively new and continually evolving method for iso-
lating CTCs based on their dielectric properties. A cell’s dielectric properties (notably,
its polarizability) depend on its diameter, membrane area, density, conductivity, and vol-
ume [36]. DEP can be combined with field-flow fractionation (FFF), where cells are injected
into a chamber and subjected to an alternating electric field and a precisely controlled hy-
drodynamic flow (Figure 2) [37,38]. DEP-FFF can reportedly detect one tumor cell among
105 peripheral blood mononuclear cells [39], does not require cell labeling, and allows the
capture of viable cells that can be isolated and cultured. Its disadvantages include the
possibility of dielectric interactions between cells and changes in their dielectric properties
during prolonged storage [40]. A commercial DEP system is currently sold by Apocell
under the name ApoStream (Apocell company, Houston, TX, USA) [41]. The ApoStream
expressed varying recovery rates of 55–68% depending on the cancer cell lines used for
spiking experiments (A549 lung cancer cell line, MDA-MB-231 triple-negative breast cancer
cell line, and ASPS-1 sarcoma cell line) [42].
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Several commercial cell separation systems based on microfluidic chips have also
been developed in recent years. For example, ANGLE introduced the ParsortixTM Cell
Separation System (ANGLE, Guildford, UK), a semi-automated commercial microfluidics
system with programmable fluidics and pneumatics that was designed for use with special
Parsortix cassettes [43]. Additionally, in 2018, Vortex Biosciences commercialized the VTX-1
Liquid Biopsy System (Vortex Biosciences, Pleasanton, CA, USA), which uses laminar
microscale vortices to isolate and enrich CTCs from whole blood based on cell size, shape,
and deformability. This system achieved cell recovery rates of 69–79% in tests using
breast and lung cancer cell lines [44,45]. DeNovo Sciences developed the JETTATM (Denovo
Sciences, Yerevan, Armenia) microfluidics chip, which has capture chambers that can isolate
CTCs based on size with up to an 83% recovery rate in tested samples spiked with cancer
cell lines, but which cannot characterize them [46]. An alternative microfluidic separation
technique involves the use of Dean flow fractionation (DFF), in which a blood sample and
“sheath fluid” are, respectively, pumped through the outer and inner inlets of a device with
a spiral microchannel, generating a centrifugal force. The RBCs and WBCs migrate along
the Dean vortices while the larger CTCs are subject to strong inertial lift forces and are
fractionated along the microchannel’s inner wall. This enables the continuous collection of
viable CTCs [47]. The main component of the ClearCell® FX System (Genomax Technology,
Bangkok, Thailand), one of the first automated DFF-based systems, is a CTChip® FR biochip
with spiral inner and outer microchannels designed to enrich viable CTCs from whole
blood [48]. The ClearCell showed a higher than 60% recovery rate in blood samples spiked
with the NCI-H1650 lung cancer cell line [49].

2.1.2. Immunology-Based Approaches

CTC enrichment using the magnetic-activated cell sorting system (MACS)(Miltenyi
Biotec GmbH, San Jose, CA, USA) involves labeling CTCs with superparamagnetic MACS
MicroBeads coated with antibodies specific for CTC surface antigens. Samples for sep-
aration are passed through a MACS Column inside a MACS Separator that contains a
strong permanent magnet, causing labeled cells to be retained while unlabeled cells pass
through unimpeded. The retained cells are then eluted from the column; as a result, both
labeled and unlabeled cells can be isolated (Figure 3), leading to flexible and specific CTC
enrichment. MACS offers high sensitivity—CTCs can be detected at concentrations as low
as 1 per 107 blood cells. In addition, recent updates to the system have enabled automated
separation [50].

Int. J. Mol. Sci. 2023, 23, x FOR PEER REVIEW 4 of 29 
 

 

Figure 2. The dielectrophoretic field-flow fractionation (DEP-FFF) method allows CTCs to be iso-

lated from blood samples (A) by separation in a dielectrophoretic chamber (B) under the influence 

of hydrodynamic lift and levitation forces (↑), gravitational and sedimentation forces (↓), and the 

fluid velocity (→). 

Several commercial cell separation systems based on microfluidic chips have also 

been developed in recent years. For example, ANGLE introduced the ParsortixTM Cell Sep-

aration System (ANGLE, Guildford, UK), a semi-automated commercial microfluidics 

system with programmable fluidics and pneumatics that was designed for use with spe-

cial Parsortix cassettes [43]. Additionally, in 2018, Vortex Biosciences commercialized the 

VTX-1 Liquid Biopsy System (Vortex Biosciences, Pleasanton, CA, USA), which uses lam-

inar microscale vortices to isolate and enrich CTCs from whole blood based on cell size, 

shape, and deformability. This system achieved cell recovery rates of 69–79% in tests using 

breast and lung cancer cell lines [44,45]. DeNovo Sciences developed the JETTATM 

(Denovo Sciences, Yerevan, Armenia) microfluidics chip, which has capture chambers 

that can isolate CTCs based on size with up to an 83% recovery rate in tested samples 

spiked with cancer cell lines, but which cannot characterize them [46]. An alternative mi-

crofluidic separation technique involves the use of Dean flow fractionation (DFF), in 

which a blood sample and “sheath fluid” are, respectively, pumped through the outer and 

inner inlets of a device with a spiral microchannel, generating a centrifugal force. The 

RBCs and WBCs migrate along the Dean vortices while the larger CTCs are subject to 

strong inertial lift forces and are fractionated along the microchannel’s inner wall. This 

enables the continuous collection of viable CTCs [47]. The main component of the Clear-

Cell®  FX System (Genomax Technology, Bangkok, Thailand), one of the first automated 

DFF-based systems, is a CTChip®  FR biochip with spiral inner and outer microchannels 

designed to enrich viable CTCs from whole blood [48]. The ClearCell showed a higher 

than 60% recovery rate in blood samples spiked with the NCI-H1650 lung cancer cell line 

[49]. 

2.1.2. Immunology-Based Approaches 

CTC enrichment using the magnetic-activated cell sorting system (MACS)(Miltenyi 

Biotec GmbH, San Jose, CA, USA) involves labeling CTCs with superparamagnetic MACS 

MicroBeads coated with antibodies specific for CTC surface antigens. Samples for separa-

tion are passed through a MACS Column inside a MACS Separator that contains a strong 

permanent magnet, causing labeled cells to be retained while unlabeled cells pass through 

unimpeded. The retained cells are then eluted from the column; as a result, both labeled 

and unlabeled cells can be isolated (Figure 3), leading to flexible and specific CTC enrich-

ment. MACS offers high sensitivity—CTCs can be detected at concentrations as low as 1 

per 107 blood cells. In addition, recent updates to the system have enabled automated sep-

aration [50]. 

 

Figure 3. The magnetic-activated cell sorting (MACS) system uses antibody-coated magnetic beads 

to capture CTCs (A). The separator’s magnetic field causes labeled cells to be retained on the column 

while unlabeled cells pass through unimpeded (B), after which the labeled CTCs are released (C). 

Figure 3. The magnetic-activated cell sorting (MACS) system uses antibody-coated magnetic beads
to capture CTCs (A). The separator’s magnetic field causes labeled cells to be retained on the column
while unlabeled cells pass through unimpeded (B), after which the labeled CTCs are released (C).

Immunomagnetic beads such as those used in MACS have several useful properties
including a large surface area with many binding sites. This has been exploited to develop
a range of smart solutions for isolating viable CTCs [51]. For example, the StrepTactin
technology combines magnetic beads coated with mutated streptavidin molecules and a
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secondary antibody (anti-EpCAM, anti-EGFR, or anti-HER2) to specifically capture CTCs
with 90% recovery rate using cancer cell lines. The captured cells can then be released by
adding D-biotin [52]. Another smart solution is based on so-called NanoOctopus devices
featuring a “head” consisting of a magnetic nanoparticle and “tentacles” composed of long
single-stranded deoxyribonucleic acid (ssDNA) sequences that bind specifically to target
biomarker proteins on the cell membrane. The NanoOctopus was shown to capture cells
present at very low concentrations (1 to 10 cells per mL) in whole blood with a detection
rate of 20–35% [53].

Another recently described system uses magnetic beads coated with a thin layer of
hydrogel (MNPs@hydrogel) containing anti-EpCAM antibodies. In this case, CTCs are
released from the magnetic nanoparticles by adding glutathione and are counted using
flow cytometry or microscopy. A recovery rate of 98% was achieved in experiments using
these beads and MCF-7 cells, with 95% of the captured cells showing good viability [54].

The cell adhesion matrix (CAM) invasion assay was specifically developed to enrich
and identify invasive CTCs based on their ability to bind to, invade, and ingest a CAM,
which most non-tumor and dead cells lack [55]. Here, invasive CTCs are defined as cells
exhibiting CAM invasion and expressing standard epithelial markers (e.g., cytokeratins
and EpCAM). Importantly, the CAM-enriched cells are viable and amenable for further
analysis [55,56]. The benefits of this assay have been proven in studies on the invasiveness
and tumor progenitor phenotypes of CTCs [57]. CAM invasion assay kits are sold under
the Vita assayTM brand (Applied DNA Sciences, Stony Brook, NY, USA). These kits include
6-well plates in which the bottom of each well is coated with a CAM layer that may be
fluorescently labeled [22,58]. The methods mentioned in this section are summarized
in Table 1.

Table 1. CTC enrichment techniques.

CTC Enrichment Techniques

Name

Commercially
Available
Formats or
Providers

Mode of
Enrichment Antibodies Material Advantages Disadvantages References

M
or

ph
ol

og
y-

ba
se

d
ap

pr
oa

ch
es

Isolation by
size of

epithelial
tumor cells

(ISET)

Screen Cell
(Screen Cell,

Paris, France),
CTCBIOPSY®

(YZYBIO
Company,

Wuhan, China)

Filtration by
size through a
polycarbonate

membrane
with 8-µm
diameter

cylindrical
pores

-

Blood or
other

biological
fluid

Simplicity,
high sensitivity,
possibility to
detect CTCs
directly on

membrane or
isolate them.

Applicable to
all tumor types;
low price; fast

Results may be
affected by the
morphological
variability of

CTCs, possibly
leading to

false-negative
responses

[28,29]

Micro-
electro-

mechanical
system

(MEMS)

-

Filtration by
size through a

parylene
membrane
with 10-µm

diameter pores

- Blood

Simplicity,
high sensitivity,
possibility to
detect CTCs
directly on

membrane or
isolate them.

Applicable to
all tumor types

Results may be
affected by the
morphological
variability of

CTCs, possibly
leading to

false-negative
responses

[30]
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Table 1. Cont.

CTC Enrichment Techniques

Name

Commercially
Available
Formats or
Providers

Mode of
Enrichment Antibodies Material Advantages Disadvantages References

M
or

ph
ol

og
y-

ba
se

d
ap

pr
oa

ch
es

Ficoll density
gradient

Ficoll-
Hypaque
(Cytiva,

Marlborough,
MA, USA),
OncoQuick

Assay (Hexal
Gentech,

Holkirchen,
Germany, and

Greiner
Bio-One,

Kremsmünster,
Austria)

Density
gradient

centrifugation
-

Blood or
bone

marrow

Rapid and
convenient

method,
provides viable
cells, low price

Sensitivity is
low and

depends on
tumor

characteristics,
centrifugation

time, and
temperature

[35]

Dielectrophoretic
field-flow

fractionation
(DEP-FFF)

ApoStream®

(Apocell
company,

Houston, TX,
USA),

ParsortixTM

Cell Separation
System

(ANGLE,
Guildford,

UK), VTX-1
Liquid Biopsy
System (Vortex

Biosciences,
Pleasanton,
CA, USA),
JETTATM

(Denovo
Sciences,
Yerevan,

Armenia)

Separation
based on the

dielectric
characteristics

of CTCs
combined with

field-flow
fractionation

- Blood

Label-free,
possibility to
obtain viable
cells that can

be isolated and
cultured, short

processing
time

(~2.5 mL/h)

Possibility of
dielectric

interactions
between cells

and changes in
their dielectric

properties
during

prolonged
storage

[37,40,43,
44,46]

Dean flow
fractionation

(DFF)

ClearCell® FX
System

(Genomax
Technology,

Bangkok,
Thailand)

Microfluidic
separation
based on

centrifugal
force

- Blood

Possibility to
continuously
collect viable
CTCs, short
processing

time (36 mL/h)

Less efficient
for small CTCs [48]

Im
m

un
ol

og
y-

ba
se

d
ap

pr
oa

ch
es

Magnetic-
activated cell

sorting
(MACS)

MACS
(Miltenyi

Biotec, San
Jose, CA, USA)

Capture by
immuno-
labeled

magnetic
microbeads
using super-

paramagnetic
nanoparticles
and columns

Cytokeratin,
EpCAM,

EGFR, and
HER2

Blood or
bone

marrow

High
sensitivity,

enables
automated
separation

Expensive [47]

Cell/collagen
adhesion

matrix
(CAM)

invasion
assay

Vita AssayTM

(Applied DNA
Sciences, Stony

Brook, NY,
USA)

Based on CTCs’
ability to bind,

invade, and
ingest a CAM
and express
biomarkers

EpCAM,
Epithelial
specific
antigen

(ESA), and
pan-CK (CKs
4, 5, 6, 8, 10,
13, and 18)

Blood

Enrichment of
viable cells,

which can be
used to

determine
invasiveness
and tumor
progenitor

phenotypes of
CTCs

CAM may be
present in the

blood of
healthy

references as
well as cancer
cases; isolation
step requires

more than 12 h

[22,55]



Int. J. Mol. Sci. 2023, 24, 3902 7 of 28

2.2. CTC Detection Techniques

Many techniques developed for the quantitative detection of CTCs require preliminary
enrichment. However, some nucleic-acid- and optical-based methods can detect CTCs
without enrichment even in the presence of much larger numbers of other cells [59].

2.2.1. Nucleic-Acid-Based Detection Methods

Reverse transcription polymerase chain reaction (RT-PCR) analysis has been one of
the most frequently used methods for identifying CTCs [60,61]. In real-time RT-PCR, the
CTC-specific messenger ribonucleic acid (mRNA) is transcribed and amplified by PCR with
fluorescent dyes to quantify the exact amount of CTC-specific mRNA in the broad dynamic
range [62,63]. Real-time PCR is a highly sensitive method for detecting and quantifying
nucleic acids that can detect a single template molecule (and thus a single CTC) among
107 normal blood cells [64]. The high specificity and sensitivity of the real-time PCR is
ensured by the right selection and precise design of specific primers and probes [65]. Many
tumor-specific genes and their transcripts were used as robust CTC markers (e.g., EGFR,
CEA, and CKs). The combination of two or more specific markers has proven to be the
most effective. Zhao et al. detected a high positive rate with either one of the three markers
(EpCAM, CK19, and hMAM) in 87.8% of metastatic breast cancer patients. Simultaneously,
none of the 30 healthy volunteers were positive for the detected markers [66]. However,
its high sensitivity can also cause false-positive results resulting from the illegitimate
expression of some CTC markers in non-cancer cells [67]. Another considerable drawback
of this method is the inability to isolate, visualize, and characterize the detected CTCs.

2.2.2. Cytometry-Based Detection Methods

Immunocytochemistry (ICC) enables the detection of one tumor cell among 10,000
to 100,000 non-tumor cells [68] by using fluorescently labeled monoclonal antibodies
against specific tumor cell antigens in conjunction with automated imaging systems. The
disadvantages of ICC include the limited number of cells that can be evaluated, the risk
of cross-reactions with other epitopes, and a lower sensitivity than methods such as RT-
PCR [69–71].

Flow cytometry (FC) enables the determination of the quantities of surface and in-
tracellular antigens in individual cells (and thus the detection of specific kinds of cells)
using monoclonal antibodies conjugated with fluorescent dyes. The most frequent target
antigens for CTC detection are cytoskeletal proteins and cytokeratins [72,73]. The identified
cells can be easily isolated for further analysis using a fluorescence-activated cell sorting
(FACS) instrument [72]. The analysis of serial dilutions of the human breast cancer cell line
SKBR-3 in blood samples of healthy donors demonstrated the detection of one CTC per
100,000 WBCs [74].

Automated digital microscopy (ADM) and fiber-optic array scanning technology
(FAST) are cytometry-based techniques that involve the image analysis of ICC-labeled
tumor cells. ADM has several disadvantages—notably, it requires an enrichment step and
scans at very low rates (800 cells/s) [75,76]. Compared to ADM, FAST offers comparable
sensitivity, greater specificity, and 500 times the scan rate while requiring no enrichment
step [77]. The specificity of the FAST method was tested in the blood samples of healthy
donors spiked with the colorectal cancer cell line HT-29 and showed the detection rate
1.5 × 10−5, and sensitivity of 98% [78]. Both FAST and ADM have proven useful for identi-
fying very rare epithelial cells in whole blood samples after pretreatment with fluorescently
labeled anti-cytokeratin antibodies [75,77].

2.2.3. Microscopy-Based Detection Methods

A next-generation “liquid biopsy” technique enabling the detection and characteriza-
tion of CTCs has been commercialized by RareCyte® (RareCyte, Inc., Seattle, WA, USA).
In this method, CTCs are isolated from whole blood, applied to a slide, stained with spe-
cific immunofluorescent dyes, and analyzed via automated microscopic imaging with an
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integrated fluid-coupled picking system for single-cell retrieval. Kaldjian et al. reported
that the rate of successful CTC retrieval using this method was 80%–90% [25] and subse-
quently showed that the retrieved cells can be used for tumor characterization based on
tumor-specific protein biomarkers [11].

The CytoTrack (2C A/S, Lyngby, Denmark) method also uses automated microscopic
imaging for CTC detection. Cells are stained with a specific mix of immunofluorescent
dyes before being placed on a glass disc, immobilized, covered with mounting medium,
and scanned. The recovery rate of CytoTrack is comparable to that of CellSearch. As with
RareCyte, CytoTrack allows the retrieval of single cells and the further specific molecular
characterization of CTCs [79,80]. The methods mentioned in this section are summarized
in Table 2.

Table 2. CTC detection techniques.

CTC Detection Techniques

Name

Commercially
Available
Formats or
Providers

Mode of
Detection Antibodies Material Advantages Disadvantages References

N
uc

le
ic

-a
ci

d-
ba

se
d

de
te

ct
io

n

Reverse
transcriptase
polymerase

chain
reaction

(RT-PCR)

Range of
assays for
selected

diagnoses

Reverse
transcription of

CTC-specific
mRNA to com-

plementary
DNA (cDNA)
followed by

PCR-
amplification

of cDNA

-

Blood, bone
marrow,

tissue, and
other

biological
samples

High
sensitivity

RNA
instability,

illegitimate
expression,
and false

positivity; does
not allow

isolation of
viable cells

[2,62,64]

C
yt

om
et

ry
-b

as
ed

de
te

ct
io

n

Immunocyto-
chemistry

(ICC)

Range of
assays for
selected

diagnoses

Antibody
staining of

tumor-specific
antigens

Chosen
based on
proteins

expressed in
primary
tumors

Blood, bone
marrow,

tissue, and
other

biological
samples

Can be
conjugated

with
automated

imaging
system

Limited
number of cells

evaluated,
risks of

cross-reactions
with other

epitopes, low
sensitivity

[70,71]

Flow
cytometry

(FC)

Range of
assays for
selected

diagnoses

Quantification
of surface and
intracellular

antigens using
antibodies
conjugated

with
fluorescent dye

Chosen
based on
proteins

expressed in
primary
tumors

Blood, bone
marrow,

tissue, and
other

biological
samples

Ability to
measure
multiple

parameters of
large numbers

of cells
relatively

quickly. Cells
can be isolated

for further
analysis

Low sensitivity,
time-

consuming
[72]

Automated
digital

microscopy
(ADM)

-

Fluorescence
microscopy
and robotic

motion control
system to
automate
imaging

Antibodies
against
tumor-
specific

biomarkers

Blood

Identification
of very rare

epithelial cells
in whole blood

samples

Enrichment
step needed,

long exposure
time

(800 cells/s)

[75,77]

Fiber-optic
array

scanning
technology

(FAST)

FASTcell™
(SRI

International,
Menlo Park,
CA, USA)

Image analysis
of immunocy-
tochemically

labeled tumor
cells

Antibodies
to tumor-
specific

biomarkers

Blood

Does not
require

enrichment
step

Special type of
cytometer

needed
[75–77]
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Table 2. Cont.

CTC Detection Techniques

Name

Commercially
Available
Formats or
Providers

Mode of
Detection Antibodies Material Advantages Disadvantages References

M
ic

ro
sc

op
y-

ba
se

d
de

te
ct

io
n

Fluorescence
microscopy

Range of
assays for
selected

diagnoses, e.g.,
CytoTrack®

(Cytotrack Aps,
Lyngby,

Denmark),
RareCyte®

(RareCyte, Inc.,
Seattle, WA,

USA)

Optical
microscopic

examination of
cells stained
immunologi-

cally

Based on
genes

expressed in
primary

tumors, e.g.,
Anti-

EpCAM and
cytokeratins

Blood, bone
marrow,

tissue, other
biological
samples

Enrichment-
free;

automated
microscopic

imaging
system;

possibility of
single-cell

retrieval and
further

molecular char-
acterization of
CTCs; can be

used for
non-epithelial

cells

Limited
observation

time, manual
assessment

necessary; long
processing

time; isolated
cells are not

viable

[11,25,79]

2.3. Approaches Combining CTC Enrichment and Detection

The EPithelial ImmunoSPOT (EPISPOT) assay system uses antibodies to detect marker
proteins specifically produced and secreted by CTCs during a 48 h cultivation period [81–83].
Immunospots corresponding to one marker protein-secreting cell can be counted using
imaging microscopy [81]. Only viable cells are detected because dying cells secrete insuf-
ficient quantities of the marker proteins [84]. However, a cell culture facility is required
and the protein used to identify CTCs must be actively secreted, shed, or released from the
cells [81]. The EPISPOT reported a varying recovery rate of 37–100% depending on the
dilution in blood samples spiked with the MCF-7 breast cancer cell line [85].

In the AdnaTest detection system (Qiagen, Hilden, Germany), CTCs are detected and
isolated from the peripheral blood via a combination of immuno-magnetic separation and
multiplex RT-PCR in order to determine the gene expression profiles of specific tumor-
associated markers [86]. These assays offer specific enrichment and high sensitivity, with
the ability to detect as few as 2 CTCs/1010 blood cells [87–89].

The CellSearch system (Menarini Silicon Biosystems, Castel Maggiore, Italy), which
has been approved by the American Office of Food and Medical Devices (Food and Drug
Administration, Silver Spring, MD, USA), was developed by Menarini Silicon Biosystems
to detect CTCs in the blood of patients with metastatic breast, colorectal, or prostate can-
cer [90,91]. This semi-automated system involves EpCAM-based immuno-magnetic separa-
tion followed by immunofluorescence imaging and the detection of the CTCs of epithelial
origin (Cluster of Differentiation (CD) 45-; EpCAM+; CK8+, 18+, and/or 19+) [92,93]. Neg-
ative selection is performed using allophycocyanin-labeled antibodies against the common
leukocyte antigen CD45, while positive selection uses phycoerythrin-labeled antibodies
against the common epithelial cell antigens CK8, 18, and 19. DAPI (4′,6-diamidino-2-
phenylindole) is used to visualize the nuclei. This system allows CTCs to be separated from
other blood cells and counted. The recovery rate was up to 80% in blood samples spiked
with the SK-BR-3 breast cancer cell line [94].

The MAINTRAC method involves laser scanning cytometry after staining with Ep-
CAM and CD45 antibodies. CTCs are identified in just two steps via automated fluorescence
microscopy, which minimizes cell damage and loss [95,96]. Unlike other methods, MAIN-
TRAC does not clean or enrich cells and detects changes in CTC counts over time [97].

Researchers at Massachusetts General Hospital developed a highly sensitive silicon
CTC chip (Massachusetts General Hospital, Boston, MA, USA) to isolate viable tumor
cells from whole blood. This chip has the dimensions of a microscope slide and contains
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78,000 microspots coated with an EpCAM antibody [98,99]. The isolated CTCs are viable
and suitable for further analysis. The second generation version of this device, termed
the herringbone chip, offers higher sensitivity, with a recovery rate of 94% in spiked
cancer cell line samples, as well as a greater blood volume processing capacity and more
convenience [100,101] (Figure 4). Another chip-based device for CTC separation is the
CTC-iChip, which combines the advantages of microfluidics and magnetism-based cell
sorting. To use this device, CTCs, WBCs, and granulocytes must be immunomagnetically
labeled with EpCAM, CD45, and CD15 antibodies, respectively, and after which the cells
are sorted based on size. Combining the immunomagnetic labeling of target cells and WBCs
with size-based separation in this way increases the sensitivity and specificity of isolation,
leading to a recovery rate of 89.9% in spiked cancer cell line samples [102–104]. Another
CTC isolation tool using chip technology is the NanoVelcro chip (UCLA, Los Angeles, CA,
USA), in which anti-EpCAM antibodies are coated on silicon nanowires and cell capture is
accelerated by using a chaotic mixer to generate vertical flows [105]. NanoVelcro achieves
CTC recovery rates of 70% in spiked cancer cell line samples [105]. The methods mentioned
in this section are summarized in Table 3.
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Figure 4. Herringbone chips (HB chips) capture CTCs directly from whole blood (A) in herringbone-
etched microchannels, differentiating them from blood cells based on their size and mobility. Captured
cells can be directly stained and enumerated (B) on the chip using conjugated antibodies and/or
(C) washed out from the chip for further analysis (polymerase chain reaction, PCR; next-generation
sequencing, NGS).

Table 3. Approaches combining CTC enrichment and detection.

Approaches Combining CTC Enrichment and Detection

Name

Commercially
Available
Formats or
Providers

Mode of
Enrichment

Mode of
Detection Antibodies Material Advantages Disadvantages References

EPithelial
Im-

munoSPOT
assay

(EPISPOT)

-

Negative
selection using

anti-CD45
immuno-
magnetic

beads, culture
in plates

pre-coated
with antibodies

to capture
secreted

protein of
interest

Secreted
protein spots
are detected
via immuno-

logical
techniques

and counted

Cathepsin D,
MUC1,

CK19, PSA
Blood Detects only

viable cells

The protein
used to

identify CTCs
must be
actively

secreted, shed,
or released
from cells

[81–83]
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Table 3. Cont.

Approaches Combining CTC Enrichment and Detection

Name

Commercially
Available
Formats or
Providers

Mode of
Enrichment

Mode of
Detection Antibodies Material Advantages Disadvantages References

AdnaTest
AdnaTest

(Qiagen, Hilden,
Germany)

Immuno-
magnetic

separation
(AdnaTest

Select)

Multiplex
RT-PCR

(AdnaTest
Detect)

MUC-1,
HER-2,

EpCAM,
CEA, EGFR,
PSA, PSMA,
Aldehyde de-
hydrogenase
1 (ALDH1)

Blood

Specific
enrichment

and high
sensitivity

Not
automated;
processing
time of 5 h;
expensive

[86,89]

CellSearch
system

CellSearch
(Menarini

Silicon
Biosystems,

Castel
Maggiore, Italy)

Immuno-
magnetic

separation

Flow
cytometry

and
immunofluo-

rescence
imaging

EpCAM,
CKs 8, 18, 19 Blood

High
sensitivity,

specificity, and
reproducibil-

ity;
semi-

automated;
FDA approved

Low
sensitivity for
cells with low

EpCAM
expression

[90,92,93]

MAINTRAC -
Red blood cell

lysis and
centrifugation

Laser
scanning

cytometry,
automated

fluorescence
microscopy

EpCAM Blood

Does not clean
or enrich cells,

which
minimizes cell
damage and

loss

Cannot be
used for early

diagnosis
[95–97]

CTC-Chip

CTC-Chip,
CTC-iChip

(Massachusetts
General
Hospital,

Boston, MA,
USA),

NanoVelcro
chip (UCLA,
Los Angeles,

CA, USA)

Microfluidic
separation on

silicon chip
microposts

with EpCAM
antibodies

Cytokeratin
antibodies
and DAPI

Cytokeratin Blood

High
sensitivity;

isolates viable
CTCs; short
processing

time

Does not
detect

CTC-WBC
clusters

[98,102,
104,105]

2.4. Beyond the Detection—Studying the Biology of CTCs

The clinical relevance of CTCs in cancer dissemination and progression is well known [106];
however, a lot of efforts are made to go beyond CTC detection by elucidating their biol-
ogy. The molecular characterization of CTCs may unravel specific actionable aberrations
implicated in the tumor evolution and mechanisms of metastases [107]. However, the
molecular profiling of CTCs underwent slower progress, partly due to technical challenges
in isolating single cells. Immunohistochemistry, in situ hybridization, and RT-PCR have
been established tools for CTC detection and cell phenotype and genome assessment for
many years [6,9,108]. Additionally, methods such as digital PCR and BEAMing PCR (Beads,
Emulsion, Amplification, Magnetics) for the sensitive detection of specific therapy-related
mutations in CTCs have been often used [107]. Although genetic studies of CTCs can
exploit the benefits of NGS, they are limited by the low yield of DNA from a single cell.
Thus, methods for whole genome amplification (WGA) have been developed. Multiple-
displacement amplification is the first widely used non-PCR-based WGA method with
high coverage and uniformity. However, it may cause branched amplification on random
locations across the genome, introducing coverage biases. An innovation occurred by the
development of the MALBAC method (multiple annealing and looping-based amplification
cycles) as it reduces amplification bias and reduces allelic dropout [109]. Although further
innovations and new methods in the field of WGA need to be developed, some promising
advances have recently been made (see Section 3.4).
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3. Evolving Methods for CTC Detection and Characterization

Research efforts have been recently focused on developing novel and/or improved
CTC detection methods by exploiting technological advances in cutting edge fields such
as microfluidics and nanotechnology, as well as automation, in order to increase yields,
sensitivity, and specificity as well as the potential for downstream analysis [2,110]. The
development of artificial intelligence (AI) and machine learning has started a new, rapidly
developing chapter of medical research with improved speed and objectivity in the detec-
tion of rare cells [111]. Microfluidic-based technologies typically separate cells by employ-
ing either internal forces such as dynamic fluid forces or external forces such as magnetic
or electric fields in conjunction with cell properties such as size, density, and shape [112].
Target cells are selectively captured based on their physical properties or the presence of
specific biological molecules, depending on the design of the method. Despite possible high
initial costs and long set-up times, their wide-ranging capabilities have greatly facilitated
the development of new CTC analysis strategies [2].

While some challenges in CTC research remain, several new or combined approaches
provide the rapid and automatic capture of viable CTCs. Current efforts in CTC research
also seek to go beyond enumeration to improve the accuracy of cancer diagnostics. Par-
ticular areas of interest include genotypic and phenotypic analysis of CTCs via molecular
characterization, ex vivo expansion, and the investigation of crosstalk between CTCs and
other cells including stromal and immune cells. Such analyses could provide unprece-
dented insights into the metastatic process as well as revealing new prognostic biomarkers
and therapeutic targets for cancer management.

As the preceding discussion shows, several methods for CTC separation and analysis
developed in the last decade have been commercialized and are sold under specific brand
names. Many emerging methods for capturing, counting, and enriching CTCs use novel
technologies to expand on the capabilities of these existing methods. In this section we
therefore highlight technological innovations which we consider likely to be important for
the close future of the field. For example, any lab equipped with a 3D printer and/or IT
specialists could use them to develop new concepts or adapt existing ones for the rapid
detection of intact CTCs followed by innovative downstream analyses.

3.1. Enrichment Techniques
3.1.1. Morphology-Based Approaches

Many recently developed CTC detection methods rely on microscopic detection and
image analysis. This has prompted efforts to develop machine learning algorithms to
facilitate the location and classification of cells in fluorescence micrographs. Such algorithms
have several input variables that typically include the intensity of each pixel in the image,
the total and maximum intensity, and the intensity standard deviation, which are used
to automatically evaluate each potential CTC. Wang et al. [113] used a pre-screening
algorithm based on detecting the centers of cell-sized bright regions. A script was then used
to normalize each image by subtracting the median and dividing it by the median absolute
deviation in the pixel intensities. Normalized DAPI images are required for this step. CTCs
are distinguished from the background based on local maxima where the DAPI signal and
a positive marker signal (e.g., cytokeratin) are unusually bright. The next steps involve
evaluating the area, perimeter, eccentricity, signal intensity, and other parameters. Finally,
CTCs are distinguished from non-CTCs using machine learning algorithms implemented
in MATLAB Statistics and Machine Learning Toolbox (The MathWorks, Inc., Natick, MA,
USA) with pre-processing via principal component analysis [113,114].

A deep learning artificial intelligence (AI) model for multi-dimensional morphological
analysis is used by the Deepcell platform (Deepcell, Inc., Menlo Park, CA, USA). This
technology identifies and isolates viable cells based on morphological features. A cell
suspension is loaded onto a microfluidic chip and each cell flows through the imaging area,
where high-resolution bright-field images are captured for analysis using deep learning AI,
which identifies CTCs based on their morphological profiles. The CTCs isolated in this way
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are label-free and intact and can be used to study tumor heterogeneity using molecular
multi-omic techniques. The system’s capacity to detect malignant cells was evaluated using
copy-number variations (CNV), targeted mutation, bulk RNA-sequencing, and single cell
RNA (scRNA)sequencing analyses [115].

Some ongoing efforts seek to develop isolation techniques that do not rely on anti-
bodies or the size of cancer cells. For example, Loeian et al. [23] developed a nanotube
CTC chip that combines carbon nanotube surfaces with batch manufacturing techniques
in a 76-element microarray for antigen- and size-independent capture and the isolation
of tumor-derived epithelial cells. Their approach is based on the hypothesis that CTCs
will preferentially adhere to a carbon nanotube surface. This hypothesis is supported
by electron micrographs showing that cells in contact with a nanotube surface undergo
morphological changes and bind to the nanotube matrix via filaments extending from the
main body of the cell. The first step in CTC capture using this system involves lysing RBCs
from an 8.5 mL blood sample. WBCs are then pelleted via centrifugation and CTCs are
enriched by capturing them on the surfaces of chip-bound nanotubes. Finally, the attached
CTCs are immunostained on-chip using DAPI and antibodies against cell surface antigens
including CKs 8/18, Her2, and EGFR for CTC identification as well as anti-CD45 antibodies
for WBC identification. CTC recovery rates of 87–100% in spiked cancer cell lines have
been achieved in this way [23].

Another emerging method is based on the observation that non-adherent and circu-
lating tumor cells produce tubulin-based protrusions or microtentacles (McTNs) when
detached from the extracellular matrix, which helps tumor cells form clusters during metas-
tasis. Ju et al. [24] took advantage of this behavior by developing a microfluidic device
with a recovery rate of 98% in spiked cancer cell lines called TetherChip, where CTCs are
captured on the thermal-crosslinked polyelectrolyte multilayer nanosurface with a termi-
nal lipid layer. This allows non-adherent CTCs to be chemically fixed and stabilized for
over 6 months without alteration of their morphology or phenotype, which is particularly
important when studying free-floating tumor cells [24] (Figure 5).
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Figure 5. The TetherChip CTC capture system relies on the high affinity of CTC microtentacles for a
crosslinked polyelectrolyte multilayer formed by thermal imidization.

3.1.2. Immunology-Based Approaches

The CellCollector sold by GILUPI GmbH is a device consisting of an EpCAM-coated
gold wire that is inserted into a patient’s vein via a cannula to perform whole blood volume
analysis [116] (Figure 6). During trials in patients with colorectal cancer, its detection rate
was compared to that of the CellSearch System. Although a larger volume of blood passed
through the CellCollector, its CTC yield and sensitivity did not differ significantly from
those achieved with CellSearch [117].
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Figure 6. Operating principles of the GILUPI CellCollector for in vivo CTC enrichment on a function-
alized surface. CTCs are captured by antibodies immobilized on a hydrogel and can be released from
the surface for analysis after removing the cannula from the vein.

Other effective devices for CTC capture and recovery have been developed using
different modern technologies. For example, a microchip with a 3D conductive scaffold
made from porous polydimethylsiloxane with immobilized gold nanotubes (Au-NTs)
coated with an anti-EpCAM antibody achieved a recovery rate of 92.8% in spiked cancer
cell lines with 93.9% viability. The scaffold’s 3D structure induces chaotic migration and
promotes interactions between CTCs and the substrate, facilitating their capture [118].
Moreover, 84.3% of the captured cells could be reversibly released via electrical stimulation
of the scaffold. This system is also capable of CTC cluster enrichment, but clusters are
released with lower efficiency than single cells, possibly because they tend to be recaptured.

A general advantage of such 3D nanostructured systems is that they have large binding
surfaces and thus provide many binding sites for CTC capture. This is exemplified by a
novel 3D Zn(OH)F/ZnO nanoforest array that was synthesized in a glass capillary, causing
the capillary’s inner walls to be coated with Zn(OH)F nanowires. The lateral branches
of these nanowires were conjugated to an anti-EpCAM antibody, creating a very large
surface area for interaction cellular filopodia which allowed CTCs to be captured with
approximately 90% efficiency [119].

Chen et al. [120] developed a novel 3D printed functionalized device with a 2 cm long
3D printed channel whose inner surface was functionalized with an anti-EpCAM antibody.
In tests using three human EpCAM-positive cell lines (breast cancer [MCF-7], colon cancer
[SW-480], and prostate cancer [PC3]) and one EpCAM-negative cell line (kidney cancer
[293T]), this device achieved a CTC capture efficiency above 90% [120].

3.2. Detection Techniques

Epic Science (Epic Sciences, Inc., San Diego, CA, USA) introduced a novel and ex-
tremely sensitive platform with a recovery rate of up to 88% in blood samples spiked with
cancer cell lines for the simultaneous detection and characterization of rare CTCs, allowing
the detection of 1 CTC in up to 50 billion cells [121–123]. Uniquely, this platform facilitates
the analysis of all nucleated cells in a blood sample to not only identify CTCs but also
assess their genetic mutations and deviations in protein expression. Epic’s platform can
thus determine the number of cancer cells in a sample as well as each cell’s expression of
specific biomarkers and their subcellular localization. It can also provide information on
the cells’ genomic status and cancer type, and by extension the heterogeneity and clonality
of the patient’s cancer [124].

A new approach combines artificial intelligence with nanoarray technology to detect
both cancer cells and volatile organic compounds (VOCs) from cancer cells and their
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microenvironment. Blood samples are analyzed using an array of chemiresistors consisting
of molecularly capped spherical gold nanoparticles, 2D random networks of single-walled
carbon nanotubes capped with different organic compounds, and polymeric composites.
This allows the analysis to combine signals originating from multiple sensors for different
chemicals, giving high detection sensitivity. Specific VOCs associated with single cancer
cells are then analyzed via gas chromatography–mass spectrometry [125]. Experiments on
mouse models showed that the nanoarray achieved over 81% sensitivity and 80% specificity
for the early detection of breast, ovarian, and prostate cancer xenografts, as well as 100%
sensitivity and over 88% specificity for detecting metastasis [126].

3.3. Approaches Combining CTC Enrichment and Detection

Modern 3D printing technologies offer another attractive direction for future work on
CTC capture and characterization. Chu et al. [127] used 3D printing to create a microflu-
idic device consisting of two parts: a multilayered immunoaffinity section for leukocyte
capture and a filtration section. Most WBCs are captured in the device’s immunocapture
channels but RBCs, platelets, and all nucleated cells (including residual WBCs) migrate
to a commercially available membrane micropore filter that retains nucleated cells while
releasing RBCs and platelets. The membrane filter is removable, allowing tumor cells to
be analyzed using a microscope or stained on-chip. Experiments with prostate, breast, or
ovarian cancer cell lines yielded CTC recovery rates of around 90% [127].

The CTCelect system (Fraunhofer Institute for Microengineering and Microsystems
IMM, Mainz, Germany) is a new fully automated cancer profiling device that combines
immunomagnetic CTC enrichment with microfluidic sorting of fluorescence-activated
cells [123,128]. Single cells are dispensed into a 96-well plate in microliter droplets and
analyzed via fluorescence microscopy, yielding CTC recovery rates of 72% from whole
blood samples spiked with the cancer cell line (MCF7). RNA can then be extracted from
the isolated CTCs for analysis via real-time PCR [129].

Another notable device using multiple CTC separation technologies is the VyCAP
system (VyCap B.V., Enschede, Netherlands), which combines size-based filtration with
automated imaging and reportedly achieves recovery rates of 65–79% for epithelial and
mesenchymal human cancer cell lines [130,131]. Cells are filtered through a microsieve
filter chip with a 1 µm thick silicon nitride filter membrane that has 160,000 pores with
diameters of 5 ± 0.2 µm. Because the membrane is so thin, filtration is performed at low
pressure, which minimizes damage to the captured cells. After filtration, captured CTCs are
labeled using Cellstainer and automatically enumerated with the VyCap Imaging system.
The system’s standard CTC counting protocol is based on DNA+, CK+, CD16-, and CD45-
labeling, but other cancer-specific labels can be used such as MUC-1 and PDL-1.

The MyCTC microfluidic chip was recently introduced to facilitate drug response
prediction in patients with advanced cancer. It has a polydimethylsiloxane upper layer
and a bottom layer housing microfluidic structures made of a rigid cyclic olefin copolymer.
The chip is divided into two sections—one for CTC capture and culture, and another for
drug screening. Captured cells are thus cultivated and then transferred to drug screening
chambers. This allows cancer cells to be isolated from whole blood or other body fluids
without pre-processing or reliance on labels or antibodies. Single CTCs and CTC clusters
are captured with recovery rates of 95–98% and 97–99% in spiked cancer cell line samples,
respectively [132].

Xu et al. developed an in situ strategy that combines size- and deformability-based
microfiltration with CTC capture using nanoparticle probes targeting folic acid on the cell
surface [133]. Another combined system using nanoparticle probes was introduced by
Jia et al., who used magnetic nanoparticles coated with a peptide targeting N-cadherin
to capture CTCs that escape detection by EMT. The captured cells were then processed
using a microfluidic chip. It was shown that this system can successfully capture viable
mesenchymal cells that can subsequently be analyzed via RNA sequencing [134].



Int. J. Mol. Sci. 2023, 24, 3902 16 of 28

Finally, an approach using a so-called stereo acoustic streaming tunnel has been used
to capture cells from whole blood. The cells are first separated based on their physical
properties under the influence of ultrahigh-frequency bulk acoustic waves and then ana-
lyzed via immunofluorescence, leading to excellent separation efficiencies. This approach
was originally developed for single cell manipulation but could be exploited in novel
CTC detection and in situ characterization methods [135]. The methods mentioned in this
section are summarized in Table 4.

Table 4. Evolving methods for CTC detection and characterization.

Evolving Methods for CTC Detection and Characterization

Name

Commercially
Available
Formats or
Providers

Mode of
Enrichment

Mode of
Detection Antibodies Material Advantages Disadvantages References

En
ri

ch
m

en
tt

ec
hn

iq
ue

s

M
or

ph
ol

og
y-

ba
se

d
ap

pr
oa

ch
es

Deepcell

Deepcell
platform
(Deepcell,

Inc., Menlo
Park, CA,

USA)

Isolation of
viable cells

based on mor-
phological
distinction

Images are
analyzed

using deep
learning AI

-

Blood and
other
body
fluids

Permits
cluster

analysis
and further
molecular
characteri-
zation of

CTCs

Not clinically
validated [115]

Nanotube-
CTC-chip -

CTCs adhere
to a carbon
nanotube

surface via
filaments
extending

from the main
body of the

cell

CTCs are im-
munostained
on-chip and

analyzed
using

automated
fluorescence
microscopy

DAPI,
CKs 8/18,

Her2,
EGFR,

and anti-
CD45

Blood

Antigen-
and size-

independent
capture

RBC lysis is
necessary [23]

TetherChip -

CTCs are
captured

based on the
affinity of

their micro-
tentacles for a

polyelec-
trolyte

multilayer

Immunofluores-
cence staining
with Hoechst,

WGA, and
GFP followed

by
fluorescence
microscopy

analysis

- Blood

Preserves
microtenta-
cle structure

after
fixation and

isolation
from blood;

enables
testing of
functional

phenotypes
in CTCs

Only tested
on cell lines at

the time of
writing

[24]

Im
m

un
ol

og
y-

ba
se

d
ap

pr
oa

ch
es

GILUPI
CellCol-

lector

GILUPI
CellCollec-

tor (GILUPI
GmbH,

Potsdam,
Germany)

CTCs
captured by
antibodies

immobilized
on a hydrogel

Immunofluorescence
staining and

molecular
analysis (e.g.,

PCR,
sequencing,

gene
expression
analysis)

EpCAM Blood

Enriches
CTCs

directly
from blood-

stream
rather than

volume-
limited
blood

samples;
enrichment
time is 30

min

Used only for
enrichment of
CTCs directly
from patient’s
bloodstream

[116,117]
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Table 4. Cont.

Evolving Methods for CTC Detection and Characterization

En
ri

ch
m

en
tt

ec
hn

iq
ue

s

Im
m

un
ol

og
y-

ba
se

d
ap

pr
oa

ch
es

Name

Commercially
Available
Formats or
Providers

Mode of
Enrichment

Mode of
Detection Antibodies Material Advantages Disadvantages References

3D con-
ductive
scaffold

microchip

-

CTCs are
captured on a
3D conductive
scaffold made
from porous

polydimethyl-
siloxane with
immobilized

gold
nanotubes
(Au-NT)

coated with
an

anti-EpCAM
antibody

Immunocyto-
chemistry

using
FITC-CK,

PE-CD45, and
DAPI

EpCAM Blood

Captured
cells can be
reversibly
released

with high
viability;

high
sensitivity

CTC clusters
released less

efficiently
than single

CTCs because
of re-capture

by the 3D
scaffold

[118]

3D
nanofor-

est
array

-

Cellular
filopodia of

CTCs interact
with lateral
branches of
Zn(OH)F

nanowires
conjugated to

an
anti-EpCAM

antibody

Immunofluores-
cence staining

and
fluorescence
microscopy

analysis

EpCAM,
CD45, CK Blood

Large
binding
surfaces
provide

many
binding
sites for

CTC
capture

Only tested
on cell lines at

the time of
writing

[119]

3D-
printed

function-
alized
device

-

3D-printed
channel

whose inner
surface was
functional-
ized with

anti-EpCAM

Confocal laser
scanning

microscopy
EpCAM Blood

Microfluidic
device with

a large
binding

surface area

Only tested
on cell lines at

the time of
writing

[120]

D
et

ec
ti

on
te

ch
ni

qu
es

Epic
Sciences

Epic
Sciences

(Epic
Sciences,
Inc., San

Diego, CA,
USA)

-

Pyxis™—
whole slide
fluorescent

scanner

Cytokeratin,
CD45,
DAPI,
and

specific
antibod-

ies

Blood

Enrichment-
free; cancer

profiling
combining

CTC
technology

with
circulating

tumor DNA
(ctDNA)

and
immune cell

analysis

Samples must
be sent to the
company for
analysis, only
for prostate
and breast

cancer

[121,122,
124]

AI
nanoar-

ray
-

Detects both
cancer cells
and VOCs

from cancer
cells and their
microenviron-

ment

Gas chro-
matography
linked with

mass
spectrometry

- Blood

High
sensitivity

and
specificity
for early
detection

Only tested
on cell lines
and a mouse
model at the

time of
writing

[125,126]
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Table 4. Cont.

Evolving Methods for CTC Detection and Characterization

Name

Commercially
Available
Formats or
Providers

Mode of
Enrichment

Mode of
Detection Antibodies Material Advantages Disadvantages References

A
pp

ro
ac

he
s

co
m

bi
ni

ng
C

TC
en

ri
ch

m
en

ta
nd

de
te

ct
io

n

3D-
printed

microflu-
idic

device

-

WBCs are
captured in
the device’s
immunocap-

ture channels;
RBCs,

platelets, and
all nucleated
cells migrate

to a
membrane
micropore

filter

CTCs are im-
munostained
on-chip and

analyzed
using

fluorescence
microscopy

CD45 Blood

Label-free
negative

depletion of
CTCs;

isolation of
very small

CTCs

Only tested
on cell lines at

the time of
writing

[127]

CTCelect

CTCelect
system

(Fraunhofer
Institute for
Microengi-

neering and
Microsys-

tems, IMM,
Mainz,

Germany)

Combines
immunomag-

netic
enrichment

with
microfluidic

sorting of
fluorescence-

activated
cells

Fluorescence
microscopy EpCAM Blood

Fully
automated;

permits
further

molecular
characteri-
zation of

CTCs

Captures only
single cells,
not clusters

[128,129]

VyCAP

VyCAP
technology

(VyCap B.V.,
Enschede,

The Nether-
lands)

Size-based
filtration
through a
microsieve
filter chip

Fluorescence
microscopy

with
automated

imaging
system

CK, CD16,
and CD45.

Other
cancer-
specific

labels can
also be

used (e.g.,
MUC-1,
PDL-1)

Blood

Fully
automated;

filtration
under low
pressure,

which
minimizes
damage to
captured

cells

Not clinically
validated [130,131]

MyCTC
chip -

CTCs are
captured on
microfluidic
chip with a

polydimethyl-
siloxane

upper layer
and a rigid
cyclic olefin
copolymer
underlayer

Cultivation of
captured

CTCs
-

Blood or
other
body
fluids

Label- and
antigen-

free;
captures
clusters

with high
efficiency

Not clinically
validated [132]

3.4. Molecular Characterization Will Be Integral to Future Methods for CTC Detection

Recently, innovations in molecular biology and techniques for isolating and manip-
ulating single cells have facilitated more comprehensive analyses of CTCs [10,108]. The
genomic profiling of CTCs using targeted next-generation sequencing (NGS), microarrays,
and competitive genome hybridization arrays requires precise whole genome amplification
(WGA) of DNA extracted from a single cell [9]. Several PCR-based and non-PCR-based
WGA methods have been developed for this purpose. However, in vitro artifacts, reaction
uniformity, and allelic drop-out continue to present significant challenges in WGA; so,
the method to be used must be chosen based on the desired experimental outcomes [136].
Novel methods such as primary template-directed amplification (PTA) [137] and linear
amplification via transposon insertion (LIANTI) [138] have recently emerged to address
some of its limitations.
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Few large-cohort studies involving CTC characterization have been reported, and there
is a need for additional studies using recently introduced tools such as third-generation
sequencing technologies to support and enhance the current understanding of their biology
and role in metastasis [108]. However, the genomic and transcriptomic profiling of CTCs
has already yielded valuable insights. For example, single-cell whole genome bisulfate
DNA methylation profiling revealed selective hypomethylation of genome binding sites
for transcription factors promoting stemness and proliferation in CTC clusters [139]. Fur-
thermore, CTC copy number aberration profiles were exploited in the stratification of
chemosensitive and chemoresistive patients [140]. Additionally, whole-genome sequenc-
ing of CTCs revealed a 91% mutation overlap with metastases detected 10 months after
sequencing [141].

Single-cell transcriptome profiling of CTCs presents several challenges arising from
the dynamic nature of the transcriptome and the low stability of RNA [142]. Additionally,
stabilizing agents in specimen collection tubes and sample handling procedures may
induce transcriptomic changes and impact RNA quality [143]. Nevertheless, transcriptome
profiling of CTCs has attracted considerable interest and new methods for this purpose
have been introduced. A notable example is Hydro-Seq, which enables scRNA sequencing
and identification of stemness and EMT markers [144]. Other studies have showed that
the progress of cancer therapy can be monitored with high predictive accuracy by using a
combination of microfluidics and digital PCR to quantify CTC-derived estrogen receptors
and to thereby characterize CTC signatures [145,146]. Finally, sophisticated methods
combining scRNA sequencing with other approaches such as drop-seq, smart-seq, CITE-
seq, ChIP-seq, and ATAC-seq can characterize CTCs with single-cell resolution [144,147,148]
but must be coupled with an appropriate CTC capture method.

Single-cell proteomics and metabolomics are emerging approaches for CTC charac-
terization and can provide otherwise inaccessible information on their properties [10].
However, given the dynamic diversity of the cellular proteome and metabolome, CTC pro-
filing with single-cell resolution remains challenging. These problems may be overcome by
mass spectrometric methods, which can achieve very low detection limits, and microfluidic
methods which facilitate the isolation and manipulation of large numbers of cells [10,149].
A variety of novel techniques using such methods are therefore emerging, including a
microfluidic Western blot for an individual CTC protein panel that provides a deeper
understanding of CTC biology [150]; an oil-air-droplet chip enabling single-cell treatment
and liquid chromatography-mass spectrometry (LC-MS) analysis with minimal sample
loss [151]; and a technique that combines droplet-generating machinery with FACS and
NGS or LC-MS secretome analysis to provide information on the genotype and phenotype
of single cells [152].

The development of CTC-derived experimental models such as cell lines, cell-line-
derived xenografts, and patient-derived xenografts will facilitate single-cell research on
CTCs [6,153] and could be used for preclinical drug screening in conjunction with genomic,
transcriptomic, proteomic, and metabolomic profiling. However, the establishment of
CTC-derived experimental models remains challenging and further advances are needed
in this area [153].

4. Conclusions

Despite advances in diagnosis and treatment, cancer metastases are still some of the
most often causes of death worldwide [111]. CTCs are considered to be precursors of
metastases and their capture and analysis in body fluids, typically blood, may provide
insights into the metastatic process and identify new biomarkers and therapeutic targets. A
variety of methods for detecting and characterizing CTCs have been developed and shown
to provide information that is valuable for early cancer detection and follow-up. However,
these methods differ in their sensitivity and specificity, creating a risk of both false-negative
and false-positive results.
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The rapid development in fields such as microfluidics, nanotechnology, and com-
putational methods, as well as molecular biology, has facilitated the innovation of CTC
analyses. Thus, CTC detection and analysis methods have been improved significantly in
terms of accuracy, sensitivity, specificity, and the capacity of detection. The automation
and quick adoption of novel materials should significantly reduce current high initial costs
and facilitate their use. Therefore, new microfluidic approaches for CTC detection and
isolation have been developed which do not rely on labeling and can be combined with
advanced imaging analyses. These approaches are evolving rapidly and could potentially
be made suitable for routine point-of-care use while also providing the ability to isolate
viable CTCs for downstream multi-omic analyses that would provide deeper insights into
the metastatic process and thus facilitate treatment [154].

However, whether further improvements in sensitivity will translate to improvements
in clinical outcomes or simply complicate the interpretation of results remains to be deter-
mined [155,156]. Ideally, research on CTC-specific markers and the combined analysis of
CTCs with other biomarkers such as cell-free DNA or exosomes will ultimately enable the
clinical use of CTCs as a “liquid biopsy” which provide detailed information on a patient’s
cancer and treatment [154].
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Abbreviations

CTCs Circulating tumor cells
DTCs Disseminated tumor cells
RT-PCR Reverse transcriptase polymerase chain reaction
ISET Isolation by size of epithelial tumor cells
CLL Chronic lymphocytic leukemia
MEMS Micro-electro-mechanical system
DEP-FFF Dielectrophoretic field-flow fractionation
DFF Dean flow fractionation
MACS Magnetic-activated cell sorting
EpCAM Epithelial cell adhesion molecule
HER2 Human epidermal growth factor receptor 2
CAM Cell/collagen adhesion matrix
CK18 Cytokeratin 18
ICC Immunocytochemistry
FC Flow cytometry
ADM Automated digital microscopy
FAST Fiber-optic array scanning technology
FISH Fluorescence in situ hybridization
EPISPOT EPithelial ImmunoSPOT
CD45 Protein tyrosine phosphatase receptor type C
MUC1 Mucin 1
CK19 Cytokeratin 19
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PSA Prostate-specific antigen
CEA Carcinoembryonic antigen
EGFR Epidermal growth factor receptor
PSMA Prostate-specific membrane antigen
DAPI 4′,6-diamidino-2-phenylindole
MS-MOFF Multi-stage multi-orifice flow fractionation
STMBs Strep-Tactin-coated magnetic beads
PBS Phosphate buffered saline
MNPs Magnetic nanoparticles
WBCs White blood cells
RBCs Red blood cells
MRPs Multidrug-resistance-related proteins
ALDH1 Aldehyde Dehydrogenase 1
KRAS Kirsten rat sarcoma virus, KRAS proto-oncogene
BRCA1 Breast cancer suppressor gene
WGA Whole-genome amplification
CGH Comparative genomic hybridization
AI Artificial intelligence
AR Androgen receptor
EMT Epithelial-mesenchymal transition
VOCs Volatile organic compounds
PTA Primary template-directed amplification
LIANTI Linear amplification via transposon insertion
hMAM Human mammaglobin
FACS Fluorescence-activated cell sorting
BEAM Beads, Emulsion, Amplification, Magnetics
CKs Cytokeratins
CSF Cerebrospinal fluid
3D Three-dimensional
NGS Next-generation sequencing
ESA Epithelial specific antigen
mRNA Messenger ribonucleic acid
ssDNA Single-stranded deoxyribonucleic acid
cDNA Complementary deoxyribonucleic acid
CD Cluster of differentiation
MALBAC Multiple annealing and looping based amplification cycles
scRNA Single-cell ribonucleic acid
McTNs Microtentacles
ctDNA Circulating tumor deoxyribonucleic acid
LC-MS Liquid chromatography-mass spectrometry
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