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Abstract: Biomarkers are important in the assessment of health and disease, but are poorly studied in
still healthy individuals with a (potential) different risk for metabolic disease. This study investigated,
first, how single biomarkers and metabolic parameters, functional biomarker and metabolic parameter
categories, and total biomarker and metabolic parameter profiles behave in young healthy female
adults of different aerobic fitness and, second, how these biomarkers and metabolic parameters are
affected by recent exercise in these healthy individuals. A total of 102 biomarkers and metabolic
parameters were analysed in serum or plasma samples from 30 young, healthy, female adults divided
into a high-fit (V̇O2peak ≥ 47 mL/kg/min, N = 15) and a low-fit (V̇O2peak ≤ 37 mL/kg/min,
N = 15) group, at baseline and overnight after a single bout of exercise (60 min, 70% V̇O2peak). Our
results show that total biomarker and metabolic parameter profiles were similar between high-fit
and low-fit females. Recent exercise significantly affected several single biomarkers and metabolic
parameters, mostly related to inflammation and lipid metabolism. Furthermore, functional biomarker
and metabolic parameter categories corresponded to biomarker and metabolic parameter clusters
generated via hierarchical clustering models. In conclusion, this study provides insight into the
single and joined behavior of circulating biomarkers and metabolic parameters in healthy females,
and identified functional biomarker and metabolic parameter categories that may be used for the
characterisation of human health physiology.

Keywords: circulating biomarkers; health; lifestyle; aerobic fitness level; exercise; human; females

1. Introduction

Lifestyle factors play a dominant role in health maintenance and the prevention of
chronic diseases, such as type 2 diabetes [1], cardiovascular disease [2], and cancer [3].
Adopting a healthy lifestyle, including regular physical activity is associated with a lower
chronic disease risk [4]. Biomarkers and metabolic parameters, which together are consid-
ered measurable indicators of biological states or conditions, are important to evaluate the
impact of interventions on health status [5]. To monitor health status, biomarkers that re-
flect overarching physiological processes, such as metabolism, inflammation, and oxidative
stress, have been proposed [6]. Their application in monitoring the health-to-disease trajec-
tory depends on their ability to detect disease, but also on their behaviour in pre-disease
conditions. For example, how these biomarkers behave in healthy individuals adhering to
different lifestyles and whether they respond to short-term perturbations. Moreover, many
of these biomarkers and metabolic parameters have not been studied relative to each other,
especially not in healthy individuals.
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Physical activity is one of the lifestyle factors that has been linked to a reduced
chronic disease risk [7]. High levels of physical activity, reduced insulin resistance [8],
improved lipoprotein profiles [9], and lowered interleukin (IL)-6 levels in the long-term [10],
contribute to a lower chronic disease risk [11–14]. It is not well studied whether systemic
changes are already visible in the basal state in healthy individuals with different habitual
physical activity levels, reflected in differences in aerobic fitness. It is known that short-term
exercise, e.g., a single bout of exercise, provokes acute systemic changes, which can last
for up to 24 h [15–17]. It may be possible that these short-term exercise responses differ
between individuals with high and low levels of aerobic fitness, due to the metabolic and
physiological adaptations of the body to regular exercise [18,19]. This, however, has been
studied only to a very limited extent, with most studies focusing on male individuals [15],
while physiological responses between males and females can be strikingly different [20].

Here, we investigated whether serum and plasma biomarkers associated with over-
arching physiological processes are affected in the basal state and after a recent bout of
exercise in healthy, young female adults differing in aerobic fitness level, implicating a
potentially different metabolic disease risk. The original objectives of the study were to
investigate whether differences exist in vitamin B2 status, in muscle mitochondrial capacity,
and in circulating cellular and molecular parameters between high aerobically fit (high-fit)
and low aerobically fit (low-fit) females with a validated difference in V̇O2peak, and after
a recent bout of exercise. Previously, we found a significant difference in skeletal muscle
mitochondrial oxygen consumption rate [21] and mitochondrial function in white blood
cells [22] between the high-fit and low-fit females in our healthy study population. Circu-
lating biomarker and metabolic parameter analysis in this study will now show whether
single biomarkers, functional biomarkers, metabolic parameter categories, total biomarkers,
and metabolic parameter profiles differ between high-fit and low-fit females, i.e., whether
the biomarkers and metabolic parameter, including those that discriminate between health
and disease, already differ in healthy individuals with potentially a different long term
disease risk, in the basal state and after a recent bout of exercise. This information is a
prerequisite for the faithful application of these biomarkers and metabolic parameters in
preventative and health improvement interventions.

2. Results
2.1. Biomarker and Metabolic Parameter Analysis Was Reproducible across Analysis Platforms

All 102 biomarkers were analysed in samples from a well-characterised study [21–23]
of healthy females. This study population represents high-fit (V̇O2peak ≥ 47 mL/kg/min,
N = 15) and low-fit (V̇O2peak ≤ 37 mL/kg/min, N = 15) females (Table 1), which was
supported by a significantly higher skeletal muscle mitochondrial capacity for ATP genera-
tion [21] and a better mitochondrial function, including higher basal and uncoupled oxygen
consumption rate, in peripheral blood mononuclear cells (PBMCs) [22] in the high-fit
compared to the low-fit females.

Both groups were assessed at baseline and 22 h after a single bout of exercise. To
establish the reproducibility of the biomarker and metabolic parameter determination, a
random subset of 16 biomarkers and metabolic parameters involved in protein and lipid
metabolism, was also determined using a similar 1H NMR technology, but with different
matrices and laboratories. Significant correlations were observed for all 16 markers, with
correlation coefficients between 0.59–0.90 for the amino acids (all eight p < 0.0001), 0.42–0.65
for the six fatty acids (one p < 0.01, three p < 0.001, two p < 0.0001), and 0.63 and 0.86 for the
two ketone bodies (both p < 0.0001, Supplementary Figure S1). This supports the validity
of these biomarker measurements and demonstrates the robustness of our approach.
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Table 1. Subject characteristics.

Low-Fit (N = 15) High-Fit (N = 15) p-Value

Age (years) 24.5 [22.9–25.6] 21.8 [21.6–23.7] 0.18

Ethnicity Caucasian (10), Asian (1),
Indo-pacific (4) All Caucasian

Weight (kg) 59.7 ± 7.1 61.2 ± 7.0 0.95

Height (m) 1.63 ± 0.08 1.68 ± 0.05 0.052

BMI (kg/m2) 22.4 ± 1.4 21.7 ± 1.9 0.28

Fat mass (% of weight) 28.7 ± 3.9 25.1 ± 4.4 0.025 *

Hemoglobin (mmol/L) 8.4 ± 0.6 8.5 ± 0.6 0.62

Use of birth control pill 6/15 7/15

V̇O2peak (mL·kg −1·min −1) 35.0 [31.6–35.6] 50.4 [49.0–54.0] <0.0001 ****

Baecke total score 7.3 ± 1.0 9.5 ± 0.8 <0.0001 ****

mV̇O2 recovery constant (% min −1) 1.53 ± 0.46 # 2.06 ± 0.57 0.018 *

BMI = body mass index, V̇O2peak = maximal oxygen consumption values, mV̇O2 = maximal oxygenation recovery
constant in the gastrocnemius as a proxy for skeletal muscle mitochondrial capacity. # N = 11. Values are mean ± SD
for normally distributed data, and median [IQR] for not normally distributed data. Significance was tested using
unpaired two-tailed t-tests for all normally distributed data and using the Mann Whitney test for the not normally
distributed VO2 peak data. * p < 0.05, **** p < 0.0001.

2.2. Single Biomarker and Metabolic Parameter Analysis Demonstrates a Similar Biomarker Profile
between High-Fit and Low-Fit Females

To better evaluate which functional processes are affected by alterations in biomarker and
metabolic parameter levels, we first linked each biomarker and metabolic parameter to one of
the following physiological processes: hormone signaling, inflammation and oxidative stress
responses, and metabolism. This resulted in three overarching, functional biomarkers and
metabolic parameter categories: (1) peptide hormones (Supplementary Table S1), (2) inflam-
mation and oxidative stress responses (Supplementary Table S2), and (3) metabolism, which
was further divided into protein, carbohydrate, and lipid metabolites (Supplementary Table S3).
Since many biomarkers were related to lipid metabolism, this subcategory was further
subdivided into fatty acids, cholines, ketone bodies, acylcarnitines, cholesterol metabo-
lites, and lipoproteins. All mean or median biomarker values and ranges for high-fit
and low-fit females at baseline and after recent exercise are in Supplementary Table S4,
which provides all the results in a comprehensive manner. To assess the effect of fitness
level and the recent bout of exercise on the individual biomarker and metabolic param-
eter responses, RM-ANOVA on the raw data (for normally distributed biomarkers and
metabolic parameters) or transformed data (for not normally distributed biomarkers and
metabolic parameters) was performed. This resulted in a fitness level effect (rawPgroup),
a recent exercise effect (rawPexercise), and an interaction effect (rawPgroup*exercise) for each
biomarker and metabolic parameter, and these raw p-values were corrected for multiple
testing, with a significance cut-off of <0.10 for adj.Pgroup, adj.Pexercis, and adj.Pgroup*exercise.
The detailed results of these analyses and the measure of effect size (partial eta squares)
are in Supplementary Tables S1–S3 and an overview is presented in Figure 1. None of the
individual biomarkers and metabolic parameters were significantly impacted by fitness
level, except for the ‘peptide hormone’ leptin (Figure 1), which was significantly higher
in low-fit females compared to high-fit females (adj.Pgroup = 0.076, Figure 2A), in line with
their different adiposity, supporting data validity. None of the markers and metabolic
parameters related to inflammation, oxidative stress, or metabolism was significantly im-
pacted by fitness level in our healthy females, indicating that healthy high-fit and low-fit
females have similar biomarker and metabolic parameter profiles.
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Figure 1. The effect of fitness level and a recent exercise bout on individual biomarker and metabolic
parameter levels. Graphical summary representing the fitness level effect (PadjGroup), recent exercise
effect (PadjExercise), and interaction effect (PadjGroup*Exercise, shown as PadjInteraction) on individ-
ual biomarker and metabolic parameter levels within each functional biomarker and metabolic param-
eter category (indicated by colour). Significant fitness level effects (Padjgroup < 0.10) or recent exercise
effects (Padjexercise < 0.10) are depicted by upward and downward green triangles that indicate the
direction of the effect. Non-significant effects (Padjgroup, Padjexercise, or Padjgroup*exercise > 0.10)
are depicted in grey squares (all interaction effects were not significant). The main effects (fitness
level and recent exercise) and interaction effects were analysed using RM-ANOVA.

2.3. Recent Exercise Regulates Single Biomarkers and Metabolic Parameter Related to
Inflammation, Lipid Metabolism, and Hormone Signaling

Next, we assessed whether recent exercise altered individual biomarkers and metabolic
levels, and examined whether high-fit and low-fit females responded differently to recent
exercise. Recent exercise significantly regulated 35 of the 102 biomarkers and metabolic
parameters. These biomarkers and metabolic parameters were related to hormone sig-
naling, inflammation and oxidative stress, lipid metabolism, and protein metabolism
(Figure 1). The peptide hormone adiponectin was significantly increased after exercise in
both groups (adj.Pexercise = 0.001, Figure 2B). Of the 10 biomarkers and metabolic parame-
ters that are related to inflammation and oxidative stress, seven were significantly regu-
lated by exercise, the top five being N-acetylglycoproteins (up; adj.Pexercise = 4.16 × 10−6),
MCP1 (down, adj.Pexercise = 4.16 × 10−6), TNF (down, adj.Pexercise = 3.09 × 10−4), CRP
(up, adj.Pexercise = 0.003), and IL10 (down, adj.Pexercise = 0.003, Figure 2C–G). In total
27 metabolic markers and metabolic parameters were significantly regulated by exercise,
with the top five all linked to lipid metabolism, with increased levels of lysophosphatidyl-
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choline (adj.Pexercise = 3.51 × 10−6, Figure 2H), and increased levels of apolipoprotein
A1, total esterified cholesterol, total cholesterol, and HDL cholesterol (Figure 2I–L, all
adj.Pexercise = 0.001). Importantly, for none of the 102 biomarkers, the exercise response
differed significantly between high-fit and low-fit females (all adj.Pgroup*exercise > 0.10).
We, therefore, performed an additional main effect analysis without the interaction term,
which resulted in the same significantly regulated biomarkers and metabolic parame-
ters as compared to the full interaction model, except for MUFA (adj.Pexercise = 0.101,
Supplementary Tables S5–S7).

Figure 2. The response of the top five significantly regulated biomarkers and metabolic parameters
within each biomarker and metabolic parameter category by fitness level, or a recent bout of exercise.
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(A,B) Median group levels (box plots, left) and individual levels (scatter plots, right) of leptin,
(A) and adiponectin (B) in low-fit (N = 15, grey), and high-fit (N = 15, orange) females at baseline
(transparent bars and dots) and after recent exercise (post-exercise; dashed bars and transparent
dots). (C–G) Median group levels (box plots, left) and individual levels (scatter plots, right) of
N-acetylglycoproteins (C), MCP1 (D), TNF I, CRP (F), and IL10 (G) in low-fit (N = 15, grey) and
high-fit (N = 15, red) females at baseline (transparent bars and dots) and post-exercise (dashed bars
and transparent dots). (H–L). Median group levels (box plots, left) and individual levels (scatter
plots, right) of lysophosphatidylcholine (H), apolipoprotein A1 (I), total esterified cholesterol (J), total
cholesterol (K), and HDL cholesterol (L) in low-fit (N = 15, grey (N = 14 for lysophosphatidylcholine))
and high-fit (N = 15, blue) females at baseline (transparent bars and dots) and post-exercise (dashed
bars and transparent dots). The main effects (fitness level and recent exercise) and interaction effects
were analysed using RM-ANOVA. Significant adj.p-values (<0.10) are indicated in underlined bold.

In summary, this single biomarker and metabolic parameters analysis demonstrated
that various biomarkers and metabolic parameters linked to inflammation, lipids, protein
metabolism, and adiponectin were significantly regulated by recent exercise, while only
leptin was affected by fitness level in these healthy females (Figure 3).

Figure 3. The effect of fitness level and a recent exercise bout on biomarkers and metabolic param-
eters category responses. Graphical summary representing the number of significantly regulated
biomarkers and metabolic parameters between high-fit and low-fit females (fitness level effect, and
left bars) and the number of significantly regulated biomarkers and metabolic parameters between
baseline and post-exercise (recent exercise effect, right bars). Non-significant effects (adj.Pgroup
or adj.Pexercise > 0.10) are depicted in light-coloured bars and significant effects (adj.Pgroup or
adj.Pexercise < 0.10) are depicted in dark-coloured, dashed bars. The filled area is calculated relative
to the number of biomarkers and metabolic parameters within the corresponding functional category.

2.4. Data-Driven Biomarker and Metabolic Parameter Clusters Link with Functional Biomarker
and Metabolic Parameter Categories

Next, we studied the joined dynamics of these biomarkers and metabolic parameters.
Hierarchical clustering was applied on the scaled biomarker and metabolic parameters
levels in all four groups and visualised in a heatmap (Figure 4). The heatmap generated
multiple biomarker and metabolic parameters clusters that corresponded to our prede-
fined functional biomarker and metabolic parameters categories, indicated by clustering
of inflammation and oxidative stress-related markers, amino acids, fatty acids, ketone
bodies, acylcarnitines, lipoproteins, and cholesterol metabolites along the y-axis (Figure 4).
Although some of these functional biomarkers and metabolic parameters categories also
displayed x-axis clustering (e.g., the lipoproteins and fatty acids), the overall heatmap
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pattern was only slightly related to fitness level and not related to recent exercise. Instead,
the intra-individual biomarker and metabolic parameters response, i.e., baseline and post-
exercise values within one subject, accounted for most of the x-axis clustering. The notion
that biomarker and metabolic parameters levels were primarily affected by interindividual
differences, rather than by fitness level or the recent bout of exercise, was confirmed by
a principle component analysis (PCA), where no clear separation was observed between
our experimental conditions (Supplementary Figure S2). To obtain a more detailed under-
standing of data-driven relationships between biomarkers and metabolic parameters, a
hierarchically clustered (p < 0.05) correlation matrix was generated (Figure 5), with signif-
icant Spearman r > 0.6 or <0.6 correlations indicated as potential physiological relevant
links (Figure 5). As above, these data-driven correlations corresponded to functional cat-
egories, such as amino acids (especially the branched-chain amino acids (BCAAs)), fatty
acids, ketone bodies, acylcarnitines, cholesterol metabolites, and lipoproteins (Figure 5).
However, some data-driven correlated biomarkers and metabolic parameters were not
in line with our predefined functional biomarker and metabolic parameters categories,
such as CRP and glycine (r = −0.72), glutamine and hydroxyisovalerylcarnitine (C5:0-OH,
r = 0.60), tyrosine and hydroxyisovalerylcarnitine (C5:0-OH, r = 0.64), tyrosine and methyl-
crotonylcarnitine (C5:1, r = 0.66), betaine and octadecadienylcarnitine (C18:2, r = 0.65), and
N-acetylglycoproteins and lysophosphatidylcholine (r = 0.65), all having a p < 1.0 × 10−7.
Several markers showed particular strong, independent correlations (p < 1.0 × 10−9), such
as TNFA and MCP1, CRP and glycine, isoleucine, leucine and valine, 3-hydroxybutyrate,
acetoacetate and acetone; a subgroup of fatty acids (SCFA, total FA, Omega3 FA, Linoleic
acid, MUFA, Oleic acid, PUFA, and ARA&EPA); two subgroups of carnitines (≤C5; ≥C6)
and cholesterols containing lipids (Supplementary Table S8). Of note, similar patterns
were observed when not all the groups, but only the baseline levels of high-fit and low-fit
females, were included (Supplementary Figure S3). Overall, this integrated biomarker and
metabolic parameters analysis demonstrated that data-driven biomarkers and metabolic
parameter clusters are composed of biomarkers and metabolic parameters that are func-
tionally linked and that these clusters largely correspond with our predefined functional
biomarkers and metabolic parameters categories.

Figure 4. Heatmap of hierarchically clustered biomarkers and metabolic parameters and the
association with fitness level and recent exercise. Heatmap based on hierarchical clustering of all
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102 biomarkers and metabolic parameters based on Euclidean distance and complete linkage cluster-
ing. Biomarkers and metabolic parameters are clustered along the y-axis and individual subjects are
clustered along the x-axis. Subject ID (S0x) and timepoint (T0 for baseline, T1 for post-exercise) are
given for each subject. Subject IDs are coupled to fitness level (dark grey for high-fit and light grey for
low-fit subjects) and timepoint (dark brown for baseline and beige for post-exercise). The colour scale
represents low (dark orange) to medium (dark blue) biomarkers and metabolic parameter values.

Figure 5. A correlation matrix showing the relationships between biomarker and metabolic parameter
pairs. The correlation matrix based on Spearman correlation coefficients between biomarker and
metabolic parameters pairs. Spearman rank correlation analysis was performed on the scaled
biomarker and metabolic parameters values for all biomarker and metabolic parameters pairs using
the combined data of high-fit and low-fit females at baseline and post-exercise. Relationships were
considered statistically significant when p < 0.05. Significant relationships are indicated in red
(negative correlation) or blue (positive correlation). Non-significant relationships (p > 0.05) are
left blank.
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3. Discussion

We performed an elaborate analysis of 102 circulating biomarkers and metabolic
parameters, previously studied in disease conditions such as diabetes type 2, obesity, and
cardiovascular disease [24–27], but hardly in healthy individuals with different lifestyles.
Analysis of a selection of these biomarkers and metabolic parameters across two platforms
showed similar results, underpinning their reliability, and indicating the robustness of
these platforms. Except for leptin, individual biomarkers, and metabolic parameters, levels
were not significantly different between high and low aerobically fit females. Since leptin
levels have been positively correlated to body fat percentage [28,29], the difference in leptin
presumably results from a significant difference in body fat percentage between high-fit and
low-fit females, further underpinning the validity of our data. Our observation that all other
biomarkers and metabolic parameters were similar between the two groups, while previous
studies in high and low aerobically fit individuals found significant differences in e.g., lipid
and protein metabolites [30–35], is likely related to our standardised experimental set-up, as
compared to other studies. We studied healthy, young-adult females of similar age and BMI
in a highly controlled setting, while previous studies were performed with metabolically
impaired individuals [26], and individuals with substantially different BMIs [30–32,35], or
wider age ranges [30,35] in experimental conditions that were less standardised [30–33,35],
and these factors especially impact circulating metabolite levels [26,30,31]. Given that
the levels of the analysed biomarkers and metabolic parameters were similar among the
healthy females in our study, and multiple of these biomarkers and metabolic parameters
showed dysregulation during disease, our findings imply that this biomarker and metabolic
parameters set could be used to monitor progress from a healthy to an unhealthier state
and may be used in health improvement interventions. Previously, we reported that
maximal and basal respiration of the peripheral blood mononuclear cell (PBMC) fraction
was different between the high-fit and low-fit individuals that were studied here, but there
was no additional effect of exercise [22]. This suggests that PBMC oxidative metabolism
may be a more sensitive fitness biomarker and metabolic parameter than the circulating
metabolites studied here.

Studies that focus on recent exercise effects, i.e., effects on the day after exercise
completion, are scarce compared to studies on acute or chronic exercise [15,18]. Yet, recent
exercise is especially relevant for biomarkers and metabolic parameters, as they can indicate
whether the physical activity of the study’s subjects should be controlled prior to sampling.
Here, we demonstrated that adiponectin, lipid metabolites, and inflammatory markers were
most responsive to recent exercise, which is in line with data from other studies [36–39].
These findings suggest that future biomarker and metabolic parameter studies should
consider the standardisation of study subjects’ physical activity at least 24 h prior to blood
sampling, especially when they include hormones and markers related to lipid metabolism
and inflammation.

Multiple separate clusters that were obtained in the heatmap and correlation ma-
trix included biomarkers and metabolic parameters that corresponded to biomarkers and
metabolic parameters embedded in our predefined, functional biomarker and metabolic pa-
rameter categories. Examples are the BCAAs, fatty acids, ketone bodies, short-chain acylcar-
nitines, long-chain acylcarnitines, cholesterol metabolites, and lipoproteins, which suggests
that the response of biomarkers and metabolic parameters within these (sub)categories
are interdependent. This has two important implications. First, one biomarker and
metabolic parameters within a cluster could be considered representative of the total
cluster (e.g., isoleucine for the BCAAs), which could be of relevance for studies that mea-
sure only one or a limited number of biomarkers and/or metabolic parameters from one
correlated cluster. Second, it provides opportunities for future studies to compute one total,
standardised score for all is within a cluster that are strongly correlated (e.g., a total BCAA
score). From a disease risk assessment point of view, such an integrated score will likely
have a larger power and stronger predictive value as compared to individual biomarker
levels. Previously, Wang et al. have found that BCAA levels could predict diabetes type 2
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risk [24]. Integrated BCAA analysis is therefore promising as health-status biomarker. Not
all biomarkers from functional categories can be integrated because of differences in the
individual responses (e.g., peptide hormones, inflammation markers, and short- versus
longer-chain acylcarnitines). Clustering outside the functional category was also observed.
The inverse association between CRP and the amino acid glycine has also been demon-
strated previously [40,41] and likely results from the inflammation-modulating capacity
of glycine [42,43]. The positive association between N-acetylglycoprotein and lysophos-
phatidylcholine is also likely mediated via inflammation since N-acetyglycoproteins plasma
levels correlate with lipoprotein-associated phospholipase A2 levels [44], which generates
lysophosphatidylcholine to promote inflammation [45,46]. Direct positive links between
glutamine, tyrosine, C5:0-OH, and C5:1 acylcarnitines have not yet been described but could
be mediated by BCAA breakdown [47,48]. The positive link between betaine and C18:2
acylcarnitine has not yet been demonstrated in humans but may be related to fatty acid
incorporation, as previously demonstrated in pigs [49]. The observed correlations imply
some revision of our a-priory functional categorisation and, importantly, provide leads for
biomarker and metabolic parameter integration and functional interpretation of changes in
biomarker and metabolic parameter levels, especially the observed sets of highly correlated
markers arising from this non-supervised correlation analysis (Supplementary Table S8).

Next to the functional links between biomarker pairs, the hierarchical clustering mod-
els also showed that the degree of clustering for the intraindividual biomarker and/or
metabolic parameters response i.e., the baseline and post-exercise biomarker or metabolic
parameters values of one subject, was higher than the degree of clustering of the group
(high-fit versus low-fit) and the timepoint (baseline versus post-exercise) biomarker and
metabolic parameters responses. This finding suggests a considerable level of interindi-
vidual variation in our study population, which might also explain our observation that
~35% of the biomarkers and metabolic parameters were significantly impacted by recent
exercise, but that clustering did not separate total baseline and post-exercise biomarker and
metabolic parameters profiles. Since Krug et al., also showed that the interindividual vari-
ability was increased by using challenge tests [50], one could speculate that the challenged
biomarker and metabolic parameters responses within one individual over time might act
as a better predictor of health status, as compared to a singular analysis of the average
biomarker and metabolic parameters levels of a larger group during basal homeostasis.

Our study included some strengths and limitations. One of the strengths is the inte-
grated approach to analyse single as well as joined biomarker and metabolic parameters
behavior in a healthy, homogenous study population at basal as well as challenged condi-
tions, which provided us with better insight into the behaviour of biomarker and metabolic
parameters, relative to each other. An understanding of biomarkers in healthy individuals
is a prerequisite for their use in preventive health, for example, biomarkers and metabolic
parameters guided dietary advice for health improvement. Another strength of our study
is the focus on female individuals, since sex can affect metabolic responses [20,30], and
females are often underrepresented in biomarker studies [15]. One limitation of our study is
the relatively small sample size with mixed Caucasian and non-Caucasian healthy females.
Nevertheless, it allowed us to identify PBMC mitochondrial oxygen consumption rate as a
biomarker and metabolic parameter for differences in fitness in healthy females [22], while
here we established the sensitivity of circulating biomarkers and metabolic parameters to
a recent bout of exercise. Another limitation of our study is that we could not determine
the contribution of intraindividual variation, i.e., the day-to-day variation within an in-
dividual, as we sampled only twice in a relatively short time span. Although previous
studies have demonstrated that the intraindividual variation for circulating adipokines [51],
inflammatory markers [51,52], and metabolites [53,54] is smaller than the interindividual
variation, we cannot exclude this source of error in our study. Third, we did not include
additional post-exercise sampling time points, e.g., immediately post-exercise or a few
hours post-exercise, nor established the post-exercise dynamics of the biomarkers and
metabolic parameters. The levels of most inflammatory markers, oxidative stress-related
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markers, and metabolites change acutely or in the first few hours after exercise, with
each marker having its own kinetic profile [15,18], biomarker, and metabolic parameter
kinetics can also differ between individuals as a result of interindividual variation [50],
therefore sampling at multiple timepoints after the exercise bout would have given insight
in the exercise-induced biomarker and metabolic parameters behavior with time. Here, we
provided insight into which biomarkers and metabolic parameters were still not back to
baseline after 22 h after exercise. Fourth, our study focused on a total of 102 biomarkers
and metabolic parameters related to hormone signaling, inflammation and oxidative stress,
and metabolism, while fitness level and single exercise stimulation have been associated
with alterations in markers that were not included in our study, such as vitamins [32,33],
ceramides [26], individual lysophosphatidylcholines [26,30] and bile acids, which could
possibly have provided additional insights in these biomarkers and metabolic parame-
ters in view of the homogeneity of our study subjects characteristics and high level of
study standardisation.

In conclusion, we showed that the overall circulating biomarker and metabolic param-
eters profiles were similar in young adult females with different aerobic fitness levels, i.e.,
with potentially different disease risks, in the healthy state. Recent exercise significantly
affected a selected number of individual biomarkers and metabolic parameters but was
not dependent on fitness level. This study provides insight into the single and joined
behaviour of circulating biomarkers and metabolic parameters in healthy females, and
identified functional biomarker and metabolic parameter categories that may be used for
the characterisation of human health physiology.

4. Materials and Methods
4.1. Ethical Approval and Study Registration

The protocol for collection and handling of human samples was ethically approved
by the medical ethical committee (METC) of Wageningen University (since January 2021
replaced by METC Oost-Nederland) with reference number NL70136.081.19 and registered
in the Dutch trial register (NL7891) on 23 July 2019. All procedures performed were in
accordance with institutional ethical standards, national law (WMO, The Hague, 1998),
and with the 1964 Helsinki declaration and its amendments. Written informed consent was
obtained from all individual subjects included in the study.

4.2. Study Subjects

Healthy young females (18–28 years of age, BMI 18.5–25 kg/m2) were recruited from
the local university and community population. Exclusion criteria were as follows: his-
tory of cardiovascular, respiratory, haematological, or metabolic disease; use of prescribed
chronic medication; anaemia (haemoglobin concentration < 12 g/dL); blood donation
within two months before the start of the study; smoking (>5 cigarettes per week); recre-
ational drug use, or over the counter drug use during the study; use of performance-
enhancing supplements; pregnancy or lactating. Subjects were selected if they had a
V̇O2peak ≥ 47 mL/kg/min (high-fit group), or ≤ 37 mL/kg/min (low-fit group) deter-
mined using a maximal exercise test, measured using the validated screening protocol
of Lagerwaard et al. [21,55], which minimised the risk for selective bias. The cut-off for
VO2-peak can be found in [21]. Sixteen high-fit and sixteen low-fit subjects were included.
The V̇O2peak data and results of skeletal muscle mitochondrial capacity of these subjects
have been published previously by our group [21]. A total of 111 maximal exercise tests
were performed to end up with the desired sample size. One subject was excluded due
to medication intake and one subject was excluded due to symptoms of illness directly
after completion of the study protocol. The use of oral contraceptives was not excluded;
only the use of monophasic oral contraceptives containing low synthetic oestradiol and
progesterone was allowed and was controlled for (N = 7 in the high-fit and N = 6 in the
low-fit group). The 17ß-estradiol levels were measured using a chemiluminescent im-
munoassay on a Lumipulse G1200 analyser (Fujirebio Incl) at the Erasmus Medical Centre
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(Rotterdam, the Netherlands) and were not significantly different between those high-fit
(527.7 [353.1–610.0]) and low-fit females (217.4 [109.1–895.2]) that did not use oral OC
(p = 0.321).

4.3. Study Design

Subjects participated within the end of their follicular phase until menstruation, based
on self-reported menstruation or during the final 14 days of the contraceptive-cycle (con-
traceptive usage was equal between the groups). Subjects refrained from heavy physical
exercise 48 h prior to the first study day and any physical exercise and alcohol consump-
tion 24 h prior to the first study day. Subjects adhered to dietary guidelines 24 h prior to
each study day, which included the consumption of a standardised evening meal (73%
carbohydrates/16% protein/11% fat, 1818 kJ) before 8:00 PM and dietary guidelines for the
consumption of breakfast, lunch, drinks, and snacks. After an overnight fast, blood was
collected on the morning of the first study day (= baseline time point) and on the morning
of the second study day, i.e., 21 h after a single bout of exercise (= post-exercise time
point). Blood samples (3 × 6 mL) were collected by venipuncture in vacutainers containing
dipotassium EDTA (K2-EDTA) as an anticoagulant for plasma collection (2 × 6 mL, BD
Biosciences, Vianen, Netherlands) and a vacutainer containing silica as a clot activator
for serum collection (1 × 6 mL, BD Biosciences, Vianen, The Netherlands). Blood tubes
for plasma collection were kept on ice-water and processed within 30 min after blood
collection. Blood tubes for serum collection were kept at RT for 60 min to allow clotting
and immediately processed afterwards. Body fat percentage was measured according to
the four-site method by Durnin-Womersley using the skinfold measurements of the triceps,
biceps, sub scapula, and supra iliac, measured using a skinfold calliper (Harpenden, UK).
Subjects received breakfast and after two hours, subjects completed an individualised
exercise protocol consisting of 60 min cycling on an electrically braked bicycle ergome-
ter (Corival CPET, Lode, The Netherlands) at a workload aiming to equal 70% of their
V̇O2peak. Oxygen consumption, carbon dioxide production, and airflow were measured
using MAX-II metabolic cart (AEI technologies, Landivisiau, France). Exhaled air was con-
tinuously sampled from a mixing chamber and averaged over 15 s-time windows. Oxygen
consumption was measured in the first and last 15 min of the exercise test and used to
confirm the relative oxygen consumption. If needed, small adjustments in workload were
made to reach 70% of the V̇O2 peak of the individual. After the exercise protocol subjects
went home, refrained from moderate to heavy physical activity, were instructed to keep
low levels of light physical activity, and refrained from alcohol consumption until blood
collection on the second study day. The habitual dietary intake of the study subjects was
determined via a validated food frequency questionnaire (FFQ) that assessed dietary intake
in the past four weeks [56]. The self-reported diets of the high-fit and low-fit subjects were
similar with no significant differences in total daily energy intake, carbohydrate intake,
protein intake, or fat intake (Supplementary Figure S4).

4.4. Plasma and Serum Isolation

Plasma tubes were centrifuged for 10 min at 1200× g at 4 ◦C, and the supernatant
(plasma) was collected, transferred to a new tube, and mixed. In the case of turbid plasma,
samples were centrifuged again for 10 min at 1200× g at 4◦ to remove any insoluble matter.
Plasma samples were snap-frozen in liquid nitrogen and afterwards cryopreserved at
−80 ◦C. Serum tubes were centrifuged for 10 min at 1300× g at RT, and the supernatant
(serum) was collected, transferred to a new tube, and mixed. In the case of turbid serum,
samples were centrifuged again for 10 min at 1300× g at RT to remove any insoluble
matter. Serum samples were snap-frozen in liquid nitrogen and afterwards cryopreserved
at −80 ◦C. For biomarker and metabolic parameters analysis, plasma and serum samples
were thawed on ice and individually mixed until a clear solution was reached.
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4.5. ELISAs in Serum and Plasma

Commercially available ELISA kits were used to analyse serum levels of the peptide
hormones leptin, insulin, and adiponectin and the plasma levels of inflammatory and
oxidative stress-related markers (tumour necrosis factor (TNF), IL6, IL10, CRP, the soluble
monocyte differentiation antigen cluster of differentiation 14 (CD14), monocyte chemoat-
tractant protein 1 (CCL2, better known as MCP1), soluble intercellular adhesion molecule 1
(ICAM1), lipopolysaccharide-binding protein (LBP), and oxidised low-density lipoprotein
(oxidised LDL) according to the manufacturer’s instructions (Supplementary Table S9).

4.6. Proton NMR (1H NMR) in Plasma

EDTA-plasma samples were measured using the standardised, targeted high-
throughput proton NMR (1H NMR) metabolomics from Nightingale Health (Nightingale
Health Ltd., Helsinki, Finland, nightingalehealth.com/biomarkers). This platform provides
simultaneous quantification of 162 individual metabolites and 87 metabolite ratios or sizes.
For analysis of this study, all individual metabolites were selected, except for metabolite
concentrations within lipoproteins or lipoprotein subclasses (e.g., ‘total lipids in VLDL’),
and concentrations of clinical LDL cholesterol, remnant cholesterol, total cholesterol minus
HDL cholesterol, and total branched-chain amino acids (BCAAs). All metabolite ratios
or sizes were also excluded from the analysis. A complete list of the selected metabolites
included in the analysis can be found in Supplementary Table S10.

4.7. Proton NMR (1H NMR) in Serum

Serum samples were measured using targeted high throughput 1H NMR metabolomics
at the EURECAT Technology Centre (Barcelona, Spain). For metabolite extraction, samples
were placed in 2 mL 96 deep well plates using 200 mL methanol:water (8:1, for aqueous
extraction), or 100 mL methyl-tert-butylether (MTBE):methanol:water (3:10:2, for lipidic
extraction) in an automated fashion in the Bravo liquid handler (Agilent Technologies Santa
Clara, CA, USA). Methanol and MTBE were purchased at Merck (Darmstadt, Germany). Af-
ter extraction, solvents from the samples were removed using a speed vacuum concentrator
and samples were stored at −80 ◦C until analysis. Some samples were lyophilised before
1H NMR analysis. For 1H NMR measurements, the hydrophilic extracts were reconstituted
in 600 µL deuterium oxide (D2O, Deutero, Kastellaun, Germany) PBS (Sigma-Aldrich, St.
Louis, MO, USA), 0.05 mM, pH 7.4, 99.5% D2O) containing 0.73 mM 3-(Trimethylsilyl)
propionic-2,2,3,3-d4 acid sodium salt (TSP, Sigma-Aldrich), and the dried lipophilic extracts
were reconstituted with a solution of deuterated chloroform (CDCL3)/deuterated methanol
(CD3OD) (2:1, chloroform d-1 and methanol d-4 from Deutero) containing 1.18 mM tetram-
ethylsilane (TMS, Sigma-Aldrich) and then vortexed. Both extracts were transferred into
a 5 mm NMR glass tube for 1H NMR analysis. 1H NMR spectra were recorded at 300 K
on an Avance III 600 spectrometer (Bruker, Billerica, Massachusetts, MA, USA) operating
at a proton frequency of 600.20 MHz using a 5 mm PABBO gradient probe. Aqueous
extracted samples were measured and recorded in processing number (procno) 11. For
aqueous extracts one-dimensional 1H pulse experiments were carried out using the nuclear
Overhauser effect spectroscopy (NOESY) presaturation sequence (RD–90◦–t1–90◦–tm–90◦

ACQ) to suppress the residual water peak, and the mixing time was set at 100 ms. Solvent
presaturation with irradiation power of 160 mW was applied during the recycling delay
(RD = 5 s) and mixing time. The 90◦ pulse length was calibrated for each sample and varied
from 9.72 to 10.06 µs. The spectral width was 12 kHz (20 ppm), and a total of 256 transients
were collected into 64 k data points for each 1H spectrum. Lipidic extracted samples were
measured and recorded in procno 22. In the case of lipophilic extracts, a 90◦ pulse with
presaturation sequence (zgpr) was used to suppress the water residual signal of methanol.
An RD of 5.0 s, with an acquisition time of 2.94 s, was used. The 90◦ pulse length was
calibrated for each sample and varied from 9.92 to 10.04 µs. After four dummy scans, a
total of 128 scans were collected into 64 K data points with a spectral of 18.6 ppm. The
exponential line broadening applied before the Fourier transformation was 0.3 Hz. The
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frequency domain spectra were phased, baseline-corrected, and referenced to TSP or TMS
signal (d = 0 ppm) using TopSpin software (version 3.6, Bruker). All acquired 1H NMR were
compared to standards of the pure selected compounds from the AMIX spectra database
(Bruker), HMDB, and Chenomx databases for metabolite identification. In addition, we
assigned metabolites by 1H–1H homonuclear correlation (COSY and TOCSY) and 1H–13C
heteronuclear (HSQC) 2D NMR experiments and by correlation with pure compounds
run in-house when needed. After pre-processing, specific 1H NMR regions identified in
the spectra were integrated using the AMIX 3.9 software package. Curated identified
regions across the spectra that were integrated using the same AMIX 3.9 software package
were exported to Excel to evaluate the robustness of the different 1H NMR signals and to
calculate the concentrations.

4.8. LC-MS/MS in Plasma

Plasma acylcarnitines were quantified or semi-quantitated in plasma by LC-MS/MS.
Plasma samples were thawed at 4 ◦C and 30 µL samples were mixed with 270 µL 100%
methanol containing the set of labelled internal standards (see Supplementary Table S11).
The mixture was vortexed for 15 s and centrifuged for 10 min at 3800× g at 4 ◦C. The
supernatant was transferred into a new plate and injected onto a Kinetex 2.6 µm Polar C18
column, 100 Å, 150 × 2.1 mm (Phenomenex, Torrance, CA, USA) using a UHPLC 1290
Infinity II Series system coupled to a QqQ/MS 6470 Series system (Agilent Technologies,
Santa Clara, CA, USA). Metabolite extraction was carried out with a semi-automated
process using Agilent Bravo Automated Liquid Handling Platform (Agilent Technologies,
Santa Clara, CA, USA).

4.9. Statistical Analyses

Statistical analyses were performed using IBM SPSS Statistics for Windows (Version
25.0, IBM Corp, Armonk, NY, USA), and R (Version 4.1.2. R Core Team, Vienna, Austria).
Graphs were created using GraphPad Prism (Version 8.0, Graphpad Software, CA, USA)
and R. In total, 102 variables were included in the main analyses (RM-ANOVA, main
effect analysis, PCA, heatmaps, correlation matrices). In the comparative analysis between
identical metabolites in serum and plasma, 16 variables per platform (Nightingale or
EURECAT) were included.

4.9.1. Data Representation and Transformation

Normality was checked using Shapiro-Wilk normality tests and tests for skewness
and kurtosis. Normally distributed data are presented as mean ± SD and not normally
distributed data are presented as median [interquartile range (IQR)]. For univariate analyses
(repeated-measures analysis of variance (RM-ANOVA) and main effect analysis), not
normally distributed data was transformed (log, inverse, square, inverse square root).
For multivariate analyses (principal component analysis (PCA), hierarchical clustering
and heatmap plotting, and correlation matrix analyses) all data was range scaled using
the formula (x − min(x))/(max(x) − min(x)) [57] because all biomarkers and metabolic
parameters were measured in different units. Scaling resulted in a value ranging from 0–1
for every variable but preserved the dynamic range within each biomarker and metabolic
parameter. One sample on the EURECAT platform did not pass the quality assurance tests
during 1H NMR analysis and was excluded from the analysis, resulting in N = 14 samples
for the low-fit and N = 15 samples for the high-fit group for some analytes.

4.9.2. Bivariate Tests, RM-ANOVA, and Main Effects Analysis

Subject characteristics were compared using a Student’s unpaired t-test or Mann-
Whitney U test. RM-ANOVA was used to study the effect of fitness level (between-subjects
factor) and the effect of a recent bout of exercise (within-subjects factors) on single biomarker
and metabolic parameter levels and the interaction between these two factors. All assump-
tions for RM-ANOVA were met. Partial eta square (η2) is given per effect as a measure
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of effect size. Since our study includes two repeated measures and the non-parametric
alternative for a RM-ANOVA (Friedman ANOVA) requires three repeated measures, the
six variables that did not achieve normality after data transformation were analysed using
non-parametric bivariate analyses. Mann-Whitney U tests on the ranked baseline values
were used to study the fitness level effect and on the ranked difference between baseline
and post-exercise values to study the interaction effect. Wilcoxon-Signed rank tests on
the ranked baseline and post-exercise values were used to study the exercise effect. No
partial effect size measure could be calculated for these non-parametric tests. Raw p-values
were corrected for multiple testing using Benjamini-Hochberg correction in the R package
‘FSA’ and a false discovery rate (FDR) was set at 10%. FDR-corrected p-values < 0.10 were
considered statistically significant. None of the interactions between fitness level and the
recent bout of exercise (Pgroup*exercise) were <0.10 and the main effects of fitness level and
the recent bout of exercise were therefore also analysed in a model without the interaction
term (Supplementary Tables S5–S7).

4.9.3. PCA, Hierarchical Clustering, and Heatmap Plotting

For PCA, the covariance matrix was computed, eigenvector decomposition was per-
formed for principal component identification, and the first and second largest principal
components were plotted in a projection matrix, using the R packages ‘ggplot2’‘tidyverse’,
factoextra’ and ‘FactoMineR’. Hierarchical clustering was performed using Euclidean dis-
tance as the dissimilarity measure and complete linkage as the similarity measure between
the clusters using the hclust function from R. Heatmaps were generated using the R package
‘ComplexHeatmap’.

4.9.4. Correlation Analyses

Levels of identical metabolites measured in serum (at EURECAT) and plasma (Nightin-
gale) were compared using Spearman rank (for not normally distributed data) or Pearson
(for normally distributed data) correlations on the raw data (16 variables per platform) to
compare relative as well as absolute values. Spearman rho (ρ) or Pearson r (r) are given
as effect size measures and p-values < 0.05 were considered statistically significant. The
correlation matrix was generated by performing Spearman rank correlation analyses for all
biomarker and metabolic parameter pairs. All scaled biomarker and metabolic parameter
data (102 variables) of high-fit and low-fit subjects at baseline and at post-exercise (Figure 5),
or at baseline only (Supplementary Figure S3), were included. The correlation analysis used
all scaled biomarker and metabolic parameter values without considering the fitness level
or recent exercise effect. The correlation matrix was generated using the hclust function
from R and the R packages ‘corrplot’ and ‘Hmisc’, returning a correlation plot based on
hierarchically clustered biomarkers and metabolic parameters. Significant correlations
(p < 0.05) are depicted by coloured wells and non-significant correlations (p > 0.05) are
left blank.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24044202/s1.
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