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Abstract: Papain-like protease (PLpro) is critical to COVID-19 infection. Therefore, it is a significant
target protein for drug development. We virtually screened a 26,193 compound library against the
PLpro of SARS-CoV-2 and identified several drug candidates with convincing binding affinities. The
three best compounds all had better estimated binding energy than those of the drug candidates
proposed in previous studies. By analyzing the docking results for the drug candidates identified
in this and previous studies, we demonstrate that the critical interactions between the compounds
and PLpro proposed by the computational approaches are consistent with those proposed by the
biological experiments. In addition, the predicted binding energies of the compounds in the dataset
showed a similar trend as their IC50 values. The predicted ADME and drug-likeness properties also
suggested that these identified compounds can be used for COVID-19 treatment.

Keywords: COVID-19; virtual screening; PL protease; MD simulations; drug discovery

1. Introduction

With more than 756 million cases and 6.8 million deaths worldwide as of February
2023, the SARS-CoV-2 (COVID-19) pandemic is one of the most significant pandemics
in recent history [1]. In the United States, deaths due to this virus have surpassed the
1918 H1N1 pandemic, the most lethal flu pandemic in the last century [2–4]. To curb these
numbers, vaccines against COVID-19 have been in development since the sequencing of the
virus in early 2020 [5,6]. As of the writing of this article, many vaccines have been approved
worldwide and more are still in development: Pfizer-BioNTech and Moderna in the United
States, Oxford-AstraZeneca in the United Kingdom, Covaxin in India, etc. [7]. Despite this
success, cases continue to surge in the US, Japan, Germany, and many other high-income
nations [8]. Although they have not experienced as many infections, low-income nations
are disproportionally underserved by current vaccines, resulting in extended restrictions
on their populations [7]. To ease the negative impact of these issues, continued drug
development for COVID-19 is very important.

Drugs developed for COVID-19 vary in size and primarily target one of three viral
proteins: RNA-dependent RNA polymerase (RdRp), 3C-like protease (3CLpro or Mpro), and
papain-like protease (PLpro) [9,10]. Remdesivir, the first COVID-19 drug approved by the
FDA, is an adenine analog nucleoside inhibitor that disables RdRp by incorporating itself
into the new sequence and blocking transcription [11,12]. Molnupiravir (EIDD-2801) and
Favipiravir are further drugs of this type in development [9–11]. The next most prominent

Int. J. Mol. Sci. 2023, 24, 4397. https://doi.org/10.3390/ijms24054397 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24054397
https://doi.org/10.3390/ijms24054397
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-3202-3368
https://orcid.org/0000-0002-2958-5319
https://orcid.org/0000-0002-2262-5218
https://orcid.org/0000-0002-1539-5100
https://doi.org/10.3390/ijms24054397
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24054397?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 4397 2 of 11

drug in development is PF-07321332, developed by Pfizer, which binds to the active site
of 3CLpro using a series of hydrogen bonds, with Glu166, Gln189, and His164 of 3CLpro

being the most important residues anchoring and stabilizing the ligand throughout the
binding process [10,13]. Its mechanism is similar to Boceprevir, which inhibits COVID-19
3CLpro and has been approved by the FDA to treat HCV [10,14]. On a separate note, many
antibodies, such as REGEN-COV and Sotrovimab, approved by the FDA to treat mild
COVID-19 have different targets from the aforementioned proteins [9].

PLpro is a well-known cysteine protease. PLpro not only cleaves non-structural pro-
teins 1–3 (nsp1–3) from polyprotein 1ab, a major protein involved in early COVID-19
infection [10,15,16], but also aids in immune evasion by cleaving ubiquitin (Ub) and inter-
feron (IFN)-stimulated gene 15 (ISG15), which are significant parts of the NF-κB pathway.
Near the catalytic site, the last four residues of Ub bind to leucine, arginine, and two
glycines, respectively, which are known as P1–P4. Most of the above substrates are an-
chored by P1–P4 before cleavage by the catalytic site [10]. Along with this, PLpro plays a
role in attaching the replication/transcription complex (RTC) to the modified endoplasmic
reticulum (ER) membranes [15].

This wide range of functions makes PLpro an attractive drug target. Most drugs against
PLpro prevent Ub and ISG15 from reaching the catalytic site. GRL-0617, the most prominent
drug candidate against PLpro, binds to P3 and P4 using H-bonds and hydrophobic inter-
actions between Tyr265, Tyr 269, Pro248, and Pro249. GRL-0667, a more potent inhibitor
(IC50 = 0.32 µM), utilizes a similar mechanism, with its smaller size and conformation
allowing for greater interaction with the binding site [10]. Some derivatives of GRL-0617’s
functional groups are more potent than GRL-0617, such as XR8-89 (IC50 = 0.113 µM) and
XR8-83 (IC50 = 0.21 µM) [16]. Acting as a Zn2+ ejector and disrupting the interaction
with Cys111, Ebselen also inhibits PLpro with an IC50 of 0.67 ± 0.09 µM [10,17]. Re-
garding virtual screening studies, cyanobacterial metabolites, such as Cryptophycin 1
(−7.7 ± 0.09 kcal/mol), and compounds from natural sources, such as matcha green tea
and Nigella sativa, have good binding affinity when docked to PLpro, indicating likely
inhibitory activity as well [18–21].

To push drug development further, we screened a 26,193 compound library for po-
tential candidates against PLpro using molecular docking and molecular mechanics with
generalized Born and surface area (MM-GBSA) calculations. While the potential candidates
were compared to GRL-0617 and our previous best compound, the top three candidates
were selected to undergo further molecular dynamics (MD) simulations. Overall, this study
identified three novel drug candidates (F3077-0136, F2883-0639, and F0514-5148) against
PLpro that have lower binding affinities than the control compounds, potentially surpassing
them in inhibitory power.

2. Results
2.1. Docking Analysis of Top Three Compounds against SARS-CoV-2 PLpro

To develop effective drugs against SARS-CoV-2 PLpro, we docked 26,193 compounds
on PLpro (PDB ID: 7LBR) by performing ligand–protein docking. Based on the docking re-
sults, the binding energies were calculated using Prime MM-GBSA in Maestro. As a result,
the top three compounds with the best binding energies were found to be F3077-0136
(−91.92 kcal/mol), F2883-0639 (−90.96 kcal/mol), and F0514-5148 (−89.66 kcal/mol)
(Table 1). Moreover, a reported PLpro inhibitor (GRL-0617) [22,23], the best drug can-
didate kaempferol 3-O-sophoroside 7-O-glucoside from our previous study [21], and the
existing ligand XR8-89 in 7LBR were used as controls. From Table 1, it can be seen that these
three compounds show better binding energies than the control compounds, indicating
that these top three compounds may be drug candidates against SARS-CoV-2 PLpro.
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Table 1. The estimated binding energies of the top three compounds and the control compounds.

Compound Structure Binding Energy (kcal/mol)
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−60.75 [21]
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−87.97 [21]

XR8-89
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−87.41

From 2D ligand–protein interaction diagrams (Figure 1), we found that the top three
compounds could all interact with Tyr268. F3077-0136 and F0514-5148 interact with Tyr268
by each forming one pi–pi stacking. F2883-0639 interacts with Tyr268 by forming one
hydrogen bond and one pi–pi stacking. Furthermore, both F2883-0639 and F0514-5148
interact with Asn267 by each forming one hydrogen bond. Notably, Asn267 and Tyr268 are
the residues on blocking loop 2 (BL2), which plays an essential role in inhibitor binding [24].
This potentially explains why these top three compounds can tightly bind to PLpro.

Additionally, F3077-0136 interacts with Arg166 by forming a hydrogen bond and a
pi–cation interaction. F0514-5148 also interacts with Arg166 by forming a hydrogen bond.
Both F3077-0136 and F2883-0639 interact with Tyr273 by each forming one hydrogen bond.
All the interactions between the top three compounds and the residues in the binding
pocket are summarized in Table 2. We also calculated the strength of the hydrogen bonds
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between the top three compounds and the residues (Table S1), and the data indicated
that the hydrogen bonds between the top three compounds and the binding residues
were strong.
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Figure 1. The docking poses and 2D ligand–protein interaction diagrams for 7LBR and the top three
ligands: (A) F3077-0136; (B) F2883-0639; (C) F0514-5148. The pink arrow indicates the hydrogen bond;
the green line represents pi–pi stacking; the red line represents pi–cation interaction; the yellow line
represents the halogen bond.
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Table 2. The interactions between the top three compounds and the residues of SARS-CoV-2 PLpro

and their distances (H-bond: hydrogen bond).

Residue F3077-0136 F2883-0639 F0514-5148

Leu162
Halogen bond

(3.33 Å)

Asp164 H-bond
(1.87 Å)

Arg166 H-bond
(2.29 Å, 2.05 Å)

H-bond
(2.31 Å)

Pi–cation
(4.58 Å)

Tyr171
Pi–pi stacking

(4.82 Å)

Asn267 H-bond
(2.03 Å)

H-bond
(2.02 Å)

Tyr268
Pi–pi stacking

(4.64 Å)
H-bond
(2.67 Å)

Pi–pi stacking
(5.45 Å)

Pi–pi stacking
(4.78 Å)

Tyr273 H-bond
(1.85 Å)

H-bond
(1.75 Å)

Thr301 H-bond
(2.71 Å)

Asp302 H-bond
(2.03 Å)

2.2. Physicochemical Properties Prediction

To explore the physicochemical properties of the top three compounds, we predicted
the absorption, distribution, metabolism, excretion (ADME), and the drug-likeness prop-
erties by using Qikprop in Maestro. The results are shown in Table 3. First, the molec-
ular weights and the QPlogS of the top three compounds were in the recommended
ranges of 130.0 to 725.0 and −6.5 to 0.5, respectively. F3077-0136 and F2883-0639 showed
better solubility than F0514-5148 because the QPlogS value of F0514-5148 was close to
−6.5. In addition, Lipinski’s rule of five (RO5) and Jorgensen’s rule of three (RO3) were
used to evaluate the drug-likeness. Lipinski’s rule of five (RO5) requires molecular
weight < 500, an octanol–water partition coefficient (LogP) < 5, the number of hydro-
gen bond donors ≤ 5, and the number of hydrogen bond acceptors ≤ 10 [25]. Jorgensen’s
rule of three (RO3) requires aqueous solubility (LogS) > −5.7, the apparent Caco-2 cell per-
meability > 22 nm/s, and the number of primary metabolites < 7 [26]. All three compounds
passed the RO5 and RO3 tests, while both F3077-0136 and F2883-0639 showed no RO5
and RO3 violations and F0514-5148 had two violations for each test. These results demon-
strate that these three compounds are potential drug candidates. Therefore, F3077-0136,
F2883-0639, and F0514-5148 were studied further.

Table 3. Selected Qikprop descriptors for the top three compounds and the control compounds.

Compound mol_MW 1 QPlogS 2 RO5 3 RO3 4

F3077-0136 393.459 −5.404 0 0
F2883-0639 436.355 −5.440 0 0
F0514-5148 658.807 −6.367 2 2
GRL-0617 304.391 −4.952 0 0

F5367-0114 372.433 −4.230 0 0
1 mol_MW represents the molecular weights of the molecules. The recommended range is 130.0–725.0. 2 QPlogS is
the predicted aqueous solubility. The recommended range is −6.5~0.5. 3 RO5: number of violations of Lipinski’s rule
of five. The maximum is four. 4 RO3: number of violations of Jorgensen’s rule of three. The maximum is three.
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2.3. Molecular Dynamics (MD) Simulation Analysis

To further analyze the stability of PLpro bound to the top three compounds, we
conducted MD simulations to calculate the root-mean-square deviation (RMSD) for the
proteins (Figure 2), the total energies (Figure 3), the H-bond (Figure S5), the radius of
gyration (rGyr) (Figure S6), the solvent-accessible surface area (SASA) (Figure S7), and
the root-mean-square fluctuation (RMSF) (Figure S8). RMSD can be used to evaluate
the stability of a protein structure. As shown in Figure 2, the RMSD of 7LBR bound
to F2883-0639 and F0514-5148 stabilized around 0.25 nm from 4 to 100 ns, similar to the
RMSD for the cocrystal structure 7LBR-XR8-89. This suggested that the protein structures
of 7LBR bound to F2883-0639 and F0514-5148 were stable. The RMSD of 7LBR bound
to F3077-0136 ranged from 0.20 to 0.38 nm from 4 to 90 ns and then stabilized around
0.25 nm after 90 ns. Moreover, the complex 7LBR-F5367-0114, which showed worse binding
energy (−29.81 kcal/mol), was applied as a negative control. The RMSD of 7LBR-F5367-
0114 stabilized around 0.25 nm from 5 to 45 ns and then ranges from 0.3 to 0.4 nm until
100 nm. As the positive control, the RMSD of 7LBR bound to GRL-0617 ranged from
0.20 to 0.30 nm from 4 to 75 ns and then rose higher than 0.30 nm (Figure 2). Both the
negative and positive controls showed higher RMSD values than the top three complexes.
Therefore, we concluded that the proteins bound to the top three compounds were more
stable than the proteins bound to F5367-0114 and GRL-0617. The total energies of the top
three complexes and the control complexes are shown in Figure 3. The energies of the
7LBR–ligand complexes stabilized at around −1.49 × 106 KJ/mol, which also indicated
the good stabilities of these systems. In addition, as depicted in Figure S5, 7LBR bound
to F3077-0136 exhibited a higher number of hydrogen bonds than the other proposed
complexes and was even better than the cocrystal structure 7LBR-XR8-89 from 0 to 60 ns,
indicating the higher stability of 7LBR-F3077-0136. In Figure S6, the values for rGyr can be
seen to stabilize around 2.35 to 2.43 nm, except for the negative control 7LBR-F5367-0114,
indicating that the three proposed complexes have similar flexibilities compared to the
positive control and the cocrystal structure. Furthermore, the SASA analysis plot (Figure S7)
shows that the SASA values of the top three complexes were in the range of 159 nm2 –172
nm2, similar to the positive control and the cocrystal structure. This suggests that the top
three complexes have similar solvent accessibilities as those of the positive control and
the cocrystal structure. Notably, as shown in Figure S8, the top three complexes exhibited
similar RMSF distributions compared to the positive control and the cocrystal structure,
indicating their steady binding stabilities.
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Figure 2. The comparison of the proteins’ RMSD values. The blue, red, green, yellow, pink, and
purple lines represent the RMSD values for 7LBR after binding to F3077-0136, F2883-0639, F0514-5148,
F5367-0114 (negative control), GRL-0617 (drug candidate from a previous study), and the cocrystal
structure 7LBR_XR8-89, respectively.
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Figure 3. The comparison of the total energies of the protein–ligand complexes. The blue, red,
green, yellow, pink, and purple lines represent the energies of the complexes 7LBR_F3077-0136,
7LBR_F2883-0639, 7LBR_F0514-5148, 7LBR_F5367-0114, and 7LBR_GRL-0617 and the cocrystal struc-
ture 7LBR_XR8-89, respectively.

3. Discussion

COVID-19 has led to the largest economic, educational, and societal disruptions of
any pandemic seen throughout history, with an estimated USD 3.3 trillion deficit within
the United States and USD 202.6 billion in lost revenue throughout American healthcare
systems [27]. Hence, drug development for the treatment of COVID-19 has accelerated dras-
tically. PLpro is one of the critical therapeutic targets for COVID-19 treatment. Numerous
studies have proposed PLpro inhibitors, such as GRL-0617 and its derivative, XR8-89 [16,28].
GRL-0617 is not an ideal antiviral agent due to its insufficient potency [16]; however, it can
be used as a control for virtual screening. The cocrystal structure (PDB ID: 7LBR) of XR8-89
with SARS-CoV PLpro was applied for screening in this study. The existing ligand XR8-89
was used as another control. As one of the derivatives of GRL-0617, XR8-89 showed better
binding energy than GRL-0617 (Table 1), which was consistent with their IC50 data (the
IC50 of GRL-0617 is 1.61 µM and the IC50 of XR8-89 is 0.113 µM) [16]. The binding energy
of XR8-89 was close to those of the top three candidates, which indicates that the top three
candidates should have similar or better inhibitory potency against PLpro, as a previous
study acknowledged that binding energy is a significant indicator of drug potency [29].
Furthermore, in addition to XR8-89, we tested the other compounds listed in the paper by
Shen et al. [16] and compared the estimated binding energies with IC50 values. As can be
seen in Figure S1, our predicted binding energies showed a similar trend as the IC50 values,
suggesting the accuracy of the docking results.

In addition, there were six more candidates with better binding energies than the con-
trol group (Table S2). The binding energies of those candidates were around −88 kcal/mol.
By comparing the protein–ligand interactions, we found that five of them interacted with
Asn267, Tyr268, and Gln269 (Table S3). These three residues belong to the BL2 loop
(Gly266-Gly271) which is an essential structure in PLpro for inhibitor binding [24]. There-
fore, F3222-1354, F1827-0078, F3166-0259, F3222-3821, and F1614-0151 may exert inhibitory
effects on PLpro. Among these five compounds, the Qikprop descriptors for F1827-0078,
F3166-0259, and F1614-0151 fell within the recommended range, suggesting that these
three compounds may be used for COVID-19 treatment (Table S4). To further validate our
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results, we are also testing these candidates using biochemical methods in our collaborative
lab, and the outcomes will be published in the future once our collaborators complete
the experiments.

4. Materials and Methods
4.1. Ligand Preparation

The structures of the 26,193 tested compounds were provided by the College of
Pharmacy, University of Georgia. Before preparation, we analyzed this database using
DataWarrior [30]. More than 90% of the compounds had molecular weights (MWs) be-
low 450 (MW ≤ 450) (Figure S2), and around 96% of the compounds showed good hy-
drophilicity (cLogP ≤ 5) (Figure S3). After calculating the drug-likeness values in DataWar-
rior, around 70% of the compounds fell within the recommended range (drug-likeness
value > 0) (Figure S4). All the tested compounds were prepared using Ligprep in Maestro
12.4 (Schrödinger). The process employed by Ligprep involves adding hydrogen molecules,
computing the correct partial charges, and generating possible conformations. The force
field used was OPLS3e by default [31].

4.2. Protein Preparation

The protein structure of SARS-CoV-2 PLpro (PDB ID: 7LBR [16]) from RCSB’s Protein
Data Bank (https://www.rcsb.org/, accessed on 20 April 2022) [32] was prepared using
Schrodinger Maestro. The protein preparation included three steps [33]. The first step
was preprocessing, which included assigning bond orders, adding hydrogen, creating
zero-order bonds to metals, creating disulfide, and generating het states using Epik [34].
The second step was optimization, which involved optimizing the hydrogen bond using
PROPKA [35]. The third step was minimization, which was performed by using the OPLS3e
force field [31].

4.3. Ligand–Protein Docking

To estimate the interactions between target proteins and the tested compounds, we
conducted ligand–protein docking by using the Ligand Docking panel in Maestro. Before
running docking jobs, a receptor grid box was generated based on the existing ligand
XR8-89 (Ligand ID: XT7) in the structure 7LBR [16]. The size of the receptor grid box was
set as the default (20 Å). Ligand–protein docking was performed as flexible docking in
extra-precision (XP) mode.

4.4. MM-GBSA Calculation

To predict the binding energies of the tested compounds bound to PLpro, we per-
formed Prime molecular mechanics with generalized Born and surface area (MM-GBSA)
calculations in Maestro. The pose-viewer files generated after dockings were uploaded
into the Prime MM-GBSA panel to calculate binding energy. The force field used was
OPLS3e [31].

4.5. ADME and Drug-Likeness Properties Prediction

After the calculation of binding energies, we applied the Qikprop module in Maestro
to predict absorption, distribution, metabolism, excretion (ADME), and drug-likeness
properties for further screening [36]. For Qikprop, the top three compounds were prepared
using Ligprep. Finally, the descriptors, such as the rule of five (RO5) and rule of three
(RO3), were applied to analyze the candidates.

4.6. Molecular Dynamics Simulations

To further investigate the dynamic interactions between PLpro and the top three
compounds, we conducted molecular dynamics (MD) simulations using GROMACS ver-
sion 2030.4 and CHARMM36 force field [37,38]. The starting coordinates for the protein–
ligand complexes were obtained from our ligand–protein docking studies. Then, we used

https://www.rcsb.org/
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CHARMM-GUI to build the MD simulation solution box, which was a cubic box with a
length of 112 Å, and filled it with water molecules [39]. Next, the minimized structures
were equilibrated using a constant number of particles, volume, and temperature (NVT)
ensemble and a number of particles, pressure, and temperature (NPT) ensemble. The target
equilibration temperature was 303.15 K. Finally, MD simulations were performed for 100 ns
and the conformations were calculated and recorded every 2 ps. During the simulations,
the simulation solution box was isotropic and the periodic boundary condition was applied.
After the MD simulations, we calculated the root-mean-square deviation (RMSD) for the
protein and the energies of the system along the simulation trajectories.

5. Conclusions

This study demonstrated that F3077-0136, F2883-0639, and F0514-5148 were the best
three drug candidates. In particular, F3077-0136 and F2883-0639 showed better drug-
likeness properties. In this study, we applied several computational approaches to a
26,193 compound library provided by the College of Pharmacy, University of Georgia.
All compounds were available for the ensuing assays. Before the biological assays, we
docked all 26,193 compounds on PLpro, predicted the binding affinities to identify the best
inhibitors, predicted the drug-likeness, and performed MD simulations to validate the
predicted binding. Overall, this study not only provides clues for bench research but may
also speed up the process of COVID-19 drug development.
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