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Abstract: Drug and gene delivery systems mediated by nanoparticles have been widely studied for
life science in the past decade. The application of nano-delivery systems can dramatically improve
the stability and delivery efficiency of carried ingredients, overcoming the defects of administration
routes in cancer therapy, and possibly maintaining the sustainability of agricultural systems. However,
delivery of a drug or gene alone sometimes cannot achieve a satisfactory effect. The nanoparticle-
mediated co-delivery system can load multiple drugs and genes simultaneously, and improve the
effectiveness of each component, thus amplifying efficacy and exhibiting synergistic effects in cancer
therapy and pest management. The co-delivery system has been widely reported in the medical
field, and studies on its application in the agricultural field have recently begun to emerge. In this
progress report, we summarize recent progress in the preparation and application of drug and gene
co-delivery systems and discuss the remaining challenges and future perspectives in the design
and fabrication.
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1. Introduction

Over the past decade, nanotechnology has been at the forefront of rapid advances in
fields as diverse as medicine, electronics, aerospace, life science, and agriculture [1,2]. The
application of nanomaterials can break through the bottleneck of many traditional crafts
and provide strong technical supports for nano-delivery platform, thus becoming a research
hotspot in the fields of medicine and modern agriculture [3–5]. Since the first research on
the delivery of drugs by nanomaterials, there have been numerous reports of the application
of nanomaterials to deliver active ingredients (AIs) [6–8]. To date, many nanomaterials
are employed for a nano-delivery system due to their unique physicochemical properties,
such as controllable size, low cytotoxicity, enhanced activity of carried ingredients, and
breaking the biofilm barrier. For example, polymeric NPs are fabricated from natural and
synthetic polymers and are characterized by low cost and biodegradability [9]. Lipids
are amphiphilic molecules consisting of a polar head group, a hydrophobic tail, and
an intermediate linker [10]. Inorganic NPs are usually synthesized by chemical methods
using heavy metal or inorganic material, such as mesoporous silica NPs [11,12], iron oxide
NPs [13], gold NPs [14], and quantum dots, etc. [15]. Recently, plants or crops have also
been used as feed stocks to develop green synthetic methods [16,17]. Multiple nanoparticles
(NPs) have been designed and evaluated as carriers to deliver small molecule drugs for
medical or agriculture field, including polymeric NPs, lipid NPs and other inorganic
NPs [18,19]. In addition, NPs can deliver various nucleic acid molecules, proteins or
photosensitizers, which have been extensively investigated [20–22].

Chemotherapy, biological therapy, and radiation therapy are the main forms of cancer
treatment, and the former is also considered to be one of the most effective methods in
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clinical practice [23]. In chemotherapy, patients are often treated with cytotoxic drugs to kill
cancer cells [24]. Biological therapy involves the application of biomacromolecules such as
nucleic acids to inhibit specific molecules that affect tumor growth [25]. However, the use of
chemotherapeutic agents is limited by three major limitations, such as poor water solubility,
poor bioavailability, and toxicity of normal tissues [26]. Poor solubility and bioavailability
often result in irregular biodistribution and systemic toxicity of chemotherapeutic drugs,
which in turn affect normal cells. Multidrug resistance (MDR) caused by long-term and
continuous administration is considered as a harmful consequence [27–29]. Thus, after
extensive attempts, researchers have developed multifunctional vectors that can precisely
deliver therapeutic drugs to the site of action. Currently, new therapeutic strategies have
been developed to improve treatment efficiency and reduce costs and side effects [30–32].

With nano-delivery platforms, small molecule drugs or nucleic acid molecules can be
efficiently transported to target tissues without degradation [7,33]. However, single delivery
of chemotherapy targeting one pathway is usually not enough, and multiple reasons (such
as MDR) hinder the development of effective and long-lasting cancer treatments. Therefore,
the combination of different treatments (delivery of genes or drugs) has been proposed as
a more ideal cancer treatment strategy and widely studied [34–36]. Co-delivery systems
can improve the pharmacokinetics and physicochemical properties of therapeutic drugs
and improve the efficacy of combination therapy through targeted design of drug delivery
regimens [37]. Many combination applications have been designed to achieve synergistic
therapeutic effect, and the co-delivery of multiple AIs in the same nanocarrier may achieve
desirable effects [38].

Pesticides play a vital role in defending against biological disasters and promoting
crop productivity [39]. Traditional pesticides are synthetic organic compounds with high
hydrophobicity, which is inconvenient to apply. Meanwhile, traditional processing and
formulation requires organic solvents which further poses environmental pollution and
biosafety risks [40,41]. Therefore, there is an urgency in scientific use of pesticides and
improve the control efficacy of plant diseases and insect pests for green food production.
Nanomaterials can be used as substitutes for organic solvents in processing and formula-
tion. Currently, nano-enabled pesticides (nanopesticides) are considered to be less than
1000 nm in size, including insecticides, fungicides, herbicides, and rodenticides, as well as
plant immune inducers, plant growth regulators and other AIs that can improve the resis-
tance of plants [42,43]. For precision agriculture, nanopesticides are prepared in different
formats of NPs, which show a variety of appealing characteristics, including long-term
stability and duration, controlled and stimulation-regulated release rates, increased AI
solubility, and improved adhesion to crops, etc. [44–47]. Recently, a review provided
a comprehensive analysis of nanopesticides in controlling agricultural pests compared
with their non-nanoscale analogues from 500 journal articles [48]. The overall efficacy of
nanopesticides against target organisms is 31% higher, and the toxicity of nanopesticides
toward non-target organisms is 43% lower, highlighting that nanopesticides are potentially
more efficient, sustainable, and have a lower adverse impact on the environment.

In this review article, we primarily focus on nanoparticle-mediated co-delivery sys-
tems. Combining our own work with evidence from the literatures, we highlight the
importance of NPs in delivery and co-delivery systems, summarize the latest research
and insights in the field of co-delivery, and hope that we will provide some new ideas
and stimulate more efforts to promote the widespread use of nano-delivery system in the
medical and agricultural field.

2. Co-Delivery System in Medical Field

Various NPs have been examined to design novel co-delivery systems, which can be
divided into inorganic-based NPs and organic-based NPs. The former mostly includes
mesoporous silica NPs, iron oxide NPs, metallic NPs (copper, gold, or silver), quantum
dots, etc. The latter includes polymeric micelles, polymeric NPs, liposomes, dendrimers,
etc. Recent advances in the development of NPs suggest that these systems can be designed
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to protect and deliver AIs with different types and sizes, ranging from chemical small
molecules to biological macromolecules, and from hydrophilic to hydrophobic agents [38].
The drugs and/or genes (cargoes) are enabled by NPs for efficient cellular uptake and
arrive at the target after the endosomal escape to take effect separately (Figure 1). In
addition to many types of drugs, nucleic acid molecules come in many varieties, including
messenger RNA (mRNA) which is decoded into peptides or proteins; microRNA (miRNA),
short interfering RNA (siRNA), and double-stranded RNA (dsRNA) that can induce gene
silencing; and plasmid DNA (pDNA) that gets further expression in the nucleus, etc.
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2.1. Co-Delivery of Drugs

Based on the achievements obtained from the delivery of single chemical drug, co-
delivery of two different chemical drugs has been developed and clinically applied to treat
different types of cancers [49–51]. Compared with monotherapy, combination therapy can
not only reduce the possibility of tumor resistance to drugs, but also alleviate the side effects
of drugs by reducing the dose of drugs. Different NPs are designed for delivery because
of the different physical, chemical and biological properties of these therapeutic agents.
Current studies have shown that the delivery of two chemical drugs in the same nanocarrier
is much more efficient than a system that delivers a single drug [50,52]. Meanwhile,
nanocarriers can improve the water solubility and delivery efficiency of hydrophobic drugs
in vivo.

On this basis, co-delivery of other chemotherapeutic drugs or natural active prod-
ucts also achieves synergistic therapeutic effect [53]. Chao and co-workers reported
a mesoporous magnetite ferrite NP as an inorganic drug carrier, which can efficiently
encapsulate hydrophobic drug (rifampin) and simultaneous co-load hydrophilic drug
(isoniazide) [54]. Besides, the prepared NPs exhibit excellent biocompatibility and cellu-
lar uptake, which can enhance drug loading capacity and solve the delivery problem of
hydrophobic drug molecules [55]. Karimifard et al. fabricated chitosan-adorned niosome
nanocarriers for co-delivery of doxorubicin (DOX) and vincristine to reduce drug dose
and overcome MDR [56]. The complex effectively inhibits cell migration and induces the
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apoptosis of breast cancer cells. In addition, the complex shows significant drug release in
acidic pH compared to physiological pH, decreasing the adverse off-target effects on normal
cells. The overexpression of the drug efflux pumping on the cell membrane is one of the
main mechanisms causing MDR, that limits the chemotherapy efficacy [57]. For example,
P-glycoprotein (P-gp) encoded by the mdr-1 gene is a key protein on cell membranes and
a major drug efflux pump that pumps the drug out of tumor cells. Tian et al. co-delivered
heparin and quercetin to breast cancer cells, achieving targeted combination chemotherapy
and MDR reversal [58]. The complex can significantly block tumor lymphatic formation
and inhibit the expression of P-gp in tumor cells.

In addition to co-delivery of two chemotherapy drugs, co-delivery of drugs and other
cargos has also been studied. For example, Hu et al. developed the co-delivery system of
the hydrophobic chemotherapeutic drug paclitaxel and biomacromolecule interleukin-12
(IL-12) based on the mPEG-Dlinkm-PDLLA [59]. The NPs are enriched in the tumor site,
which can significantly inhibit the growth and metastasis of breast cancer cells 4T1 and
prolong the overall survival of tumor-bearing mice.

2.2. Co-Delivery of Genes

Nucleic acid-based gene therapy is based on therapeutic molecules DNA or RNA, which
aims to achieve multiple goals in vivo, including (1) deliver siRNA, miRNA or dsRNA for
gene down regulations; (2) deliver pDNA or mRNA for gene over expression [60,61]. Co-
delivery of the nucleic acids has the potential to regulate target gene expression level,
hence changing protein content and even disease development. Similar to co-delivery of
antitumor drugs, different formulations containing various nucleic acid molecules have
been screened for overcoming MDR [62]. Some researchers have explored the co-delivery
of dual-gene nanoplatforms, such as siRNA-siRNA, pDNA-siRNA, siRNA-miRNA, etc., to
treat various diseases related to genetic disorders or cancers [59–61].

In 2013, Tabernero et al. used lipid NPs to co-deliver two modified siRNAs and
performed the first human clinical trials [63]. Ball et al. established the co-delivery system of
siRNA and mRNA based on the same lipid NP that can enhance the efficacy of both agents
in vitro and in vivo [64]. NPs co-delivering siRNA and mRNA can mediate significantly
higher levels of gene silencing compared to NPs loading siRNA alone. When the same set
of cells is assessed for mRNA delivery, the co-delivery system again produces better results.
Yang et al. used nano-carriers to co-deliver K-ras and Notch siRNA [65]. This strategy
increases the sensitivity of pancreatic cancer cells to the chemotherapy drug gemcitabine
and also helps to resolve MDR. Wang et al. designed and constructed liposomal NPs
loaded with both p38α MAPK and p65 siRNA [66]. The complex efficiently silences two
genes, and eventually alleviates the proteinuria and inflammation in mouse IgAN models.
This suggests that co-delivery of nucleic acids plays a role not only in cancer treatment,
but also in other disease treatment. With the development and optimization of gene
therapy, the CRISPR/Cas system has been studied and developed over years, and it
has the potential to enable true cure therapies that fight disease at the DNA level and
address its origin rather than just treating its symptoms [67]. The non-viral delivery
(nanoparticle delivery system) has been studied and widely used in gene editing, and
NPs can effectively deliver CRISPR/Cas9 systems into targeted cells [68,69]. For cancer
therapy, Cas9 protein/mRNA/pDNA and single guide RNA (sgRNA) co-delivery system
have been designed to knock out tumor-related genes and suppress tumor growth. As
an example, Wang et al. developed PEGylated NPs co-delivering Cas9 expression plasmids
and sgRNAs, and the gene editing efficiency can reach 35%, which results in significant
tumor suppression (higher than 71%) and improves the survival rate of tumor-bearing
mice (60%) [70].

2.3. Co-Delivery of Genes and Drugs

Although many effective research studies and treatments have been made, nucleic
acids face the same problems with cancer heterogeneity and adaptive resistance as tradi-
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tional small molecule drugs in cancer therapy. With the achievements obtained from the
fields of chemotherapy and gene therapy, co-delivery of drugs and genes has attracted
wide attention in combination therapy due to its synergistic therapeutic effects [71–73]. The
general incentive behind the co-delivery system is to disrupt MDR signaling pathways. For
example, the combination of anticancer drugs and siRNA has great potential in cancer treat-
ment to achieve synergistic effect and overcomes the hurdlers of using a single drug [74,75].
Zhang et al. reported the graft copolymer-based co-delivery of DOX and siRNA targeted
P-gp, that exhibited good effects on reversing MDR and synergistic cancer therapy [76].
This co-delivery can down regulate the expression of P-gp, enhance the cytotoxicity of
DOX, and suppress the growth of tumor more effectively than free DOX or DOX/NPs
complex in tumor-bearing mice. Similarly, Joshi and co-workers fabricated the hypoxia-
sensitive micellar NPs for co-delivery of DOX and siRNA targeted P-gp. Under hypoxic
conditions, this combination was 80% cytotoxic in monolayer cells and 20% cytotoxic in
spherical cells [77]. Meanwhile, researchers used the gold NPs for delivering both DOX and
morpholino AONs, which is one of the modified gene silencing DNA analogs [14]. This
complex provides enhanced intracellular uptake of DOX, and co-delivery of morpholino
and DOX shows better treatment efficiency compared to the free drug.

In addition to the treatment regimen of reversing MDR, induction of tumor apoptosis
through co-delivery of chemotherapy drugs and therapeutic genes is another possible
cancer treatment strategy. Recently, a co-delivery system was designed to simultaneously
deliver curcumin and p53 DNA to enhance the sensitivity of drug-resistant ovarian cancer
cells to cisplatin [78]. In a different example, a polycationic brush was used as a nanocarrier
for co-delivery DOX and pDNA of p53 [79]. The obtained DOX-NPs/pDNA complexes
can transport DOX and pDNA into the same cell. The synergistic delivery of DOX and p53
genes enhances the cell growth inhibition and reduces the dose of DOX.

3. Co-Delivery System in Agricultural Field

In agricultural and environmental fields, some nanoparticles can be used alone due
to their own properties [80]. Metal oxides TiO2 have been shown to have excellent dye
degradation activity and can be applied for environmental remediation [16,81]. Biosynthe-
sized AuNPs modulated the accumulation of nitric oxide and induced salt stress tolerance
in wheat plants [82]. Meanwhile, NPs can be directly used as nanopesticides due to their
antibacterial or insecticidal properties [81]. For example, copper oxide and calcium oxide
NPs can be used to control Spodoptera littoralis [83]. Bharani et al. synthesized nanosilver
with a good control effect against Spodoptera litura [84]. NPs exhibit not only biotoxic prop-
erties but also plant disease resistance. The use of silver NPs can control tomato early blight
and increase the fresh weight of tomato by 32.58% [85]. Furthermore, NPs can load AIs by
means of adsorption, entrapment, and encapsulation to prepare nanocapsule, nanosphere,
nanomicelle, and other formulations [86].

3.1. Nanoparticles Deliver Pesticides (Drugs)

Nanopesticides are similar to other common pesticide formulations in that they help to
improve the apparent solubility of the insoluble AIs, or release the AIs in a slow or targeted
manner, thereby protecting them from premature degradation [87–89]. For nanopesticides
composition, AIs can be loaded on the inorganic NPs surface, incorporated into the pores
of porous NPs or conjugated with polymer. The high surface-to-volume ratio of silica NPs
has been widely used as nanofertilizers and nanopesticides [90,91]. In a foliar nitrogen
fertilizer study, sea urchin-like micro- nanostructured hollow silica spheres with 500 nm
particle diameter were used to load a nitrogen fertilizer to improve the utilization rate on
plant leaves [92]. Compared with traditional fertilizer, the utilization rate of nanofertilizer
increased by 2.29 times, and the adhesion ability of nanofertilizer on peanut and corn leaves
increased by 5.9 times and 2.2 times, respectively. Zhu et al. synthesized mesoporous
silica NPs to deliver fenoxanil into rice plants, suggesting that the distribution behavior of
pesticides in plants can be regulated by NPs [93].
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Polymeric NPs are of significant interest for encapsulation of pesticides due to
many unique features such as renewable, biodegradable, low cost, and environmental
responsibility [94]. Yan et al. used a polymeric NP (Star polycation, SPc) to assemble with
botanical pesticide matrine, reducing its particle size to 10 nm in aqueous solution and
amplifying its bioactivity by about 20% in vitro and in vivo [95]. The SPc can not only
increase the bioactivity of loaded pesticides, but also reduce pesticide residue [89,96]. The
SPc can also assemble with calcium glycinate to prepare a calcium nutrition nanoagent
with nanoscale size (17.72 nm), thus enhancing transport and antiviral immunity [97]. The
calcium transport is accelerated into tomato leaves and the protective effect of calcium
glycinate is remarkably improved toward tomato mosaic virus. Furthermore, the SPc can
activate the endocytosis pathway of plants to amplify the defense responses induced by
chitosan elicitor, and NP-loaded chitosan exhibit enhanced control effects against potato
late blight [98].

NPs can greatly improve the environmental stability of AIs and build a controlled
release system of agents that respond to external pH, enzyme, light, temperature, and other
factors [99]. The stimulus-responsive nanocarriers typically employ widely available and
biodegradable natural polymers including ethyl cellulose and starch. Liu et al. developed
a composite that chemically functionalized chitosan and attapulgite clay as pesticide
carriers capable of responding to UV-accelerated release [100]. The release of the pesticide
under UV light stimulation is 3.5 times that under natural light, demonstrating a good
performance of light-controlled release of the smartly engineered pesticide. Ren et al. used
interface polymerization to combine modified biochar and polyurea microcapsules to co-
encapsulate allyl isothiocyanate, developing a model fumigant for controlled release [101].
It shows potent bioactivity against soil-borne pathogens and weeds, and further minimizes
fumigant usage. The controlled release systems reduce the dosage and frequency of
pesticide application, thus improving the utilization rate of pesticides.

3.2. Nanoparticles Deliver Nucleic Pesticides (Genes)

RNA interference (RNAi) is a conserved regulatory mechanism mediated by the siRNA
pathway, microRNA pathway, and Piwi-interacting RNA pathway, which can silence or
inhibit the expression of target genes [102–104]. For nanopesticides, the addition of NPs
enhances the stability of nucleic acid molecules and makes them free from degradation.
The lipid formulation of dsRNA is protected from the degradation by endonucleases
present in Sf9 cell conditioned medium, hemolymph, and mid-intestinal cavity contents of
Spodoptera frugiperda [105]. For another example, SPc and perylenediimide-cored cationic
dendrimer can prevent dsRNA from degradation by RNase A and hemolymph of aphids
and fall armyworms [106].

In addition to shielding and protecting dsRNA from nuclease degradation in the
environment, NPs can also facilitate the transport of dsRNA across the membrane and avoid
its degradation in endosomes or lysosomes. For instance, a cationic core–shell fluorescent
nanoparticle is able to accelerate endocytosis and deliver DNA across cell membrane for
efficient cellular uptake [107]. Lu and co-workers designed the block copolymer poly to
form well-defined, core–shell NPs to facilitate its passage through various physiological
obstacles and thus prolong the survival time of dsRNA in the digestive tract, so as to enter
the midgut cells of Locusta migratoria [108]. The SPc can also efficiently deliver dsRNA
across the cell membrane and achieve efficient gene silencing [109]. Compared to naked
dsRNA, crucial genes regulating endocytosis and exocytosis are remarkably up-regulated
in Sf9 cells treated with a dsRNA/SPc complex [106].

RNAi-based strategy has great potential in combatting plant diseases and pests [110–112].
Crops can be directly sprayed with dsRNA (spray-induced gene silencing, SIGS) tar-
geting key genes of plant pathogens or pests to induce specific silencing, thus leading
to the decline of pest infestation and finally realizing the sustainable eco-friendly pest
management [113,114]. A new formulation was developed with the help of a fluorescent
NP. The RNA pesticide rapidly penetrates the insect body wall and effectively inhibits gene
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expression [115]. Meanwhile, Yan et al. applied the dsRNA/SPc formulation targeting
V-ATPaseD and chitin synthase1 genes, and direct spray to soybean seedlings infected with
Aphis glycines results in a good control effect [116]. The combination of NPs and nucleic
acid pesticides can improve RNAi efficiency, deformity and mortality, and become a more
sustainable pest management strategy (Table 1). With the reduction of dsRNA synthesis
cost, Ma et al. further applied the spray method in the field trail, and the control efficacy
was as good as expectated [117]. In addition, NPs can also promote the delivery of dsRNA
through root tips in Arabidopsis [118], which is conducive to irrigation and trunk injec-
tion development. At present, there are few studies on improving the RNAi efficiency of
phytopathogenic fungi by NPs. Additionally, the types of NPs delivering RNA pesticides
for plant disease management are relatively single. Wang et al. used a variety of NPs to
deliver RNA fungicide, and the delivery efficiency and protective effect of SPc were the
best among them [5]. Table 2 presents selected applications of NPs-mediated RNAi in fungi
and viruses.

Table 1. Applications of NPs-mediated RNA pesticides for insect control.

NPs Target Pest Target Genes Effects Ref.

block copolymer Locust migratoria LmCHS2
10% died directly and 15%

were unable to walk
after molting

[108]

cationic dendrimers Aphis glycines hemocytin 80.5% suppression of
population density [115]

polyethylene glycol
and chitosan Nilaparvata lugens chitin synthetase A 65.8% mortality [119]

star polycation

Myzus persicae vestigial, ultrabithorax 63.3% and 32.2% wing
aberration rates [109]

Aphis glycines TREH, ATPD, ATPE and CHS1 high mortality up to 81.67% [116]
Myzus persicae ATP-d, ATP-G 61% control efficacy on 3 d [117]

Sogatella furcifera SfEGFR, Sfzfh-2,
SfAbd-A, SfAbd-B around 70% mortality [120]

chitosan
Helicoverpa armigera JHAMT, ACHE 100% mortality [121]
Spodoptera frugiperda IAP 47% mortality [122]

liposome Euschistus heros V-ATPaseA, Muscle
actin 45% and 42% mortality [123]

Blattella germanica α-tubulin 60% mortality [124]
quantum dot Chilo suppressalis G3PDH 70% mortality [125]
cerium oxide Euschistus heros troponin about 80% mortality [20]

Table 2. Applications of NPs-mediated RNA pesticides for plant disease management.

NPs Host Pathogen Target Genes Effects Ref.

minicell strawberry Botryotinia fuckeliana Chs3a, Chs3b, DCL1, DCL2 halted disease progression for 12 days [126]
star polycation rice Rhizoctonia solani RsAGO1, RsAGO2 the protection time up to 20 days [5]

nanovesicles tomato,
grape Botrytis cinerea Dicer-like 1, Dicer-like 2 extended the protection duration to

10–21 days [127]

layered double
hydroxide (LDH)

chitosan

cowpea common mosaic
virus CMV2b virus protection for at least 20 days [128]

cowpea bean common
mosaic virus coat protein prevent infection for spraying 5d in

advance [129]

grape,
cherry Botrytis cinerea erg13, erg11, erg1 reduced the decay development by

65 % after 3 weeks [130]

maize Rhizoctonia solani RsCRZ1 reducing lesion areas from 30% to 47% [131]

tomato Botrytis cinerea BcDCL1/2, BcVDS increased the protection window
3 weeks on tomato leaves [132]

3.3. Application of Co-Delivery System

For synergetic strategy, the co-delivery of multiple pesticides in a single nanocarrier
would allow the effective management with low drug concentration, which can help to
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greatly reduce pesticide residues and environmental contamination. Although pesticide
co-delivery systems are rarely reported for agricultural application, efficient and safe co-
delivery nanocarriers are necessary for the development of new environmentally friendly
pesticides. Suraphan and co-workers utilized premix membrane emulsion combined with
S/O/W double emulsion method to further prepare novel AV/CAP co-delivery micro-
capsule formulations [133]. The administration encapsulated insoluble chlorantraniliprole
(CAP) inside the microcapsules and soluble avermectin (AV) into polylactide shells. The
particle size of the porous AV/CAP PLA microcapsule is 3.4 µm, and the loading con-
tents of AV and CAP are not obviously different between the co-delivery microcapsules
and their corresponding single delivery microcapsules. The co-delivery system shows
the lowest LC50 value of 18.1 µg mL−1 compared to the commercial CAP and AV. This
is the first attempt of co-delivery in agriculture, but it does not fall under the category
of nanopesticides.

Firstly, our team constructed SPc as a low-cost multifunctional nanocarrier that can
co-deliver the dsRNA and pesticide to develop a novel multicomponent nano-pesticide
against devastating green peach aphids [134]. The SPc can self-assemble with botanical pes-
ticide matrine, and then complex with dsRNA to form a nano-sized matrine/SPc/dsRNA
complex, which can be efficiently delivered into Drosophila S2 cells. The dsRNA (dshem)
targeting immune gene hemocytin leads to efficient gene silencing and a high mortality
rate through SPc-based topical application, and the main lethal mechanism is via the
down-regulating hem gene, resulting in severe bacterial infection. In the field trial, the
dshem/SPc complex exhibits short persistence, and the matrine/SPc complex shows slow-
acting property, exposing their defects. Interestingly, both initial acting time and persistence
of co-delivery complex are remarkably improved, which overcomes the disadvantages
of both agents. The synergistic effect of co-delivery system based on NPs has achieved
good performance in pest control. The co-administration of thiamethoxam and dsRNA
of synapsin, both targeting the nervous system, effectively results in the death of melon
aphids [135].

4. Limitations and Challenges

While significant advances have been made in co-delivery of drugs and/or genes,
a number of issues still need to be resolved before applications. First, the safety and
regulatory aspects of nanomaterials are widely concerned. Whether they are used as
carriers of medical drugs or pesticides, their own cytotoxicity should be very low. In the
application of pesticides, a complete risk assessment is necessary for all aspects of pesticidal
nanoformulations, including degradation fate, transport, bioaccumulation, adverse effects,
and risk to the environment and human health [48]. In addition, NPs carrying multiple AIs
simultaneously will increase in particle size, but relevant studies have confirmed that large
size molecules are not easy to cross the cell membrane [136]. In order to achieve the desired
drug quality and small particle size requirements, more NPs are required to encapsulate
the cargoes, which also raises higher requirements for the safety and design methods of
co-delivery systems [137].

As for the fabrication of the co-delivery system, designers need to have a clear un-
derstanding of drugs and genes of each component, and fully consider the interactions
between nanocarrier and cargo, as well as the synergies between loaded reagents [138,139].
For drug and gene co-delivery systems, the biological distribution and pharmacokinetics of
the carried agents will be affected due to the huge differences in physicochemical properties
of the two components loaded by NPs, such as the difference in molecular weight and
hydrophilicity [140]. For example, Tang et al. constructed a pH-sensitive NP to co-deliver
DOX and survivin-targeting shRNA for reversing MDR [141]. The co-delivery system
increased the DOX accumulation and down-regulated 57.7% survivin expression. However,
in vivo biodistribution studies demonstrated that the copolymer remarkably increased
tumor accumulation of DOX by more than 10-fold and shRNA by more than 20-fold. The
differences in molecular weight, hydrophobicity, and metabolic stability between small
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molecule drugs and nucleic acids may greatly affect their biological distribution and phar-
macokinetics. The co-delivery of drug-nucleic acid combinations is a challenging task
because of the obvious differences in the of the two types of agents. Additionally, the
loading method of drug molecules and the synergetic strategy of the co-delivery system
need to summarize general rules and explore the optimal design route.

5. Perspectives in Pesticide

The application of NP-based co-delivery systems is mainly divided into synergistic
and complementary functions. The co-delivery system, no matter delivering drugs, genes
or multiple agents, should be based on solving the bottleneck of pesticide development.
Using the synergistic mode of co-delivery system to concentrate on a certain direction, the
corresponding drug and nanomaterials can be further reduced and enhanced [135]. For
example, the use of co-delivery of conventional pesticides and their corresponding RNA
pesticides targeting resistance-related genes avoids the high cost of developing new pesti-
cides and gives traditional pesticides a new lease of life (unpublished data). On the other
hand, complementary action in both aspects can reduce the frequency of pesticide applica-
tion and the dosage of nanomaterials, which is friendlier to the environment [133,134]. For
instance, co-delivery of the botanical elicitor cellobiose and dsRNAs of PiHmp1 + PiCut3 tar-
geting Phytophthora infestans achieves dramatic results. The multicomponent nano-pesticide
can not only enter into P. infestans more efficiently for gene silencing, but also enhance
the systemic resistance of plants. Its protective effect against potato late blight is even
higher than that of a widely-used commercial fungicide mancozeb (unpublished data).
Although environmental safety of most nanoparticles is still unclear, recent studies have
shown that the SPc has some negative effects on non-target organisms at extremely high
concentrations [142,143]. To prevent or suppress plant diseases, researchers can develop
nanofungicides for plant pathogens; immune inducers and multiple nanofertilizers for
plant stress. A variety of insecticides, including chemical or biopesticides and RNA pes-
ticides targeting pests, can be purposefully combined for both above and below ground
pests (Figure 2). Multiple application methods including foliar spraying, irrigation, and
trunk injection can also be refined to specific applications [113,137]. The production costs
of NPs and RNA pesticides should be further reduced, and the application of co-delivery
system in the field has been preliminarily realized.
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