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Abstract: A series of complexes [Cu2X2(Pic3PO)2] (X = Cl, Br, I) based on tris(pyridin-2-ylmethyl)
phosphine oxide (Pic3PO) has been synthesized. At 298 K, these compounds exhibit thermally
activated delayed fluorescence (TADF) of 1(M+X)LCT type with λmax varying from 485 to 545 nm,
and quantum efficiency up to 54%. In the TADF process, the halide effect appears as the emission
intensification and bathochromic shift of λmax in the following order X = I < Br < Cl. Upon X-ray
irradiation, the title compounds emit radioluminescence, the emission bands of which have the same
shape as those at TADF, thereby meaning a similar radiative excited state. By contrast to TADF, the
halide effect in the radioluminescence is reversed: its intensity grows in the order X = Cl < Br < I, since
heavier atoms absorb X-rays more efficiently. These findings essentially contribute to our knowledge
about the halide effect in the photo- and radioluminescent Cu(I) halide emitters.

Keywords: Cu(I) complexes; thermally activated delayed fluorescence; X-ray radioluminescence;
halide effect; phosphorescence

1. Introduction

Metal halide complexes continue to attract ever-increasing attention because of their
remarkable functional properties, stability, and facile synthesis [1–4]. Especially promising
are Cu(I) halide complexes featuring intriguing luminescent properties as well as rich struc-
tural diversity, various molecular complexity, and robustness [5–14]. It is well known that
upon excitation, the Cu(I) complexes supported by C-, N-, P-, S-, and As-donating ligands
can generate the excited states of metal-to-ligand charge transfer type (MLCT) [15,16]. The
latter can be radiatively relaxed via phosphorescence or, when the energy gap between
S1 and T1 excited states is relatively small (<1500 cm−1), via thermally activated delayed
fluorescence (TADF) [16–18]. Moreover, the simultaneous appearance of phosphorescence
and TADF was demonstrated for some Cu(I) emitters [19–22]. Because of the great diver-
sity of π-acceptor ligands on the one hand, and various structural motifs of CuxXy units
on the other hand, the emission wavelengths of Cu(I)-organic halides can be fine-tuned
from deep blue to NIR range. Although emission decay times of Cu(I) complexes do
not reveal a clear correlation with the structure, they can also be regulated for specific
applications via molecular design approaches [21,23]. Thanks to these advantages, Cu(I)
halide complexes are considered promising low-cost TADF and phosphorescent emitters
for energy-saving PHOLED and TADF OLEDs, respectively [24–26]. Apart from OLED-
related applications, Cu(I) halide complexes also attract interest as “smart” materials, since
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their luminescence often has a reversible response to external stimuli such as tempera-
ture, mechanical stress, pressure, and VOCs [6,27]. Most recently, Cu(I) halide hybrids
have been proposed as efficient X-ray scintillators generating strong radioluminescence
at ambient temperature [28–31]. Additionally, these materials have found applications in
X-Ray imaging [29]. It should be noted that most of the known Cu(I) halide-based X-ray
scintillators, i.e., {Cu4I4} clusters [28,30] and halocuprates (TBA)CuX2 (TAB = Bu4N) [30],
emit phosphorescence. To now, the only Cu(I) scintillator exhibiting TADF is presented
by [CuI(PPh3)2(4-tBuPy)], reported in 2022 [31]. Although the authors do not claim this
complex as a TADF-emitting one [31], similar compounds have previously been proven to
be TADF emitters [18].

Meanwhile, despite a plethora of works on Cu(I) halide emitters, the relationships
between their structure and photophysical properties are not fully understood. For instance,
the impact of halide atoms (Cl, Br, I) on the emission wavelength of Cu(I) halide complexes
has been well documented. Generally, a heavier halide induces a hypsochromic shift of
the emission bands of the isostructural complexes [21,23,32–43], although this dependence
is not always explicit [41,44]. The data on the halide effect on the emission type and its
intensity are much more scarce [22,42,45]. The influence of a halide atom on the X-ray
radioluminescence of Cu(I) emitters is still unexplored, although it has been noted that
iodine atoms enhance emission. Again, it is unclear how the variation of halide atoms
affects the relationship between efficiencies of photo- and X-ray-excited luminescence. On
this account, it is obvious that the elucidation of such relationships is very important for
the further development of more efficient Cu(I) emitters for advanced applications.

Herein, we report a series of tris(2-pyridyl)phosphine oxide-supported Cu(I) halide
dimers, [Cu2X2(Pic3PO)2] (X = Cl, Br, I), showing efficient TADF and X-ray radiolumines-
cence at ambient temperature. It is noteworthy that the TADF intensity of these compounds
enhances in the order I < Br < Cl, whilst the radioluminescence improves in reverse
order. To our knowledge, similar effects have not been previously described. The molecu-
lar/electronic structures as well as photophysical and radioluminescence properties of the
designed compounds are also discussed.

2. Results and Discussion
2.1. Synthesis and Characterization

Previously, two research groups [43,46] independently reported the formation of scorpi-
onate complexes by the reaction of tris(2-pyridyl)phosphine oxide (Py3PO) with Cu(I) halides.
By contrast, herein we have found that tris(pyridin-2-ylmethyl)phosphine oxide (Pic3PO), a more
flexible ligand, interacts with CuCl, CuBr, or CuI to form dinuclear complexes [Cu2X2(Pic3PO)2]
(1–3), in which the ligands feature N,N’-chelating coordination (Scheme 1). The reaction occurs
at the equimolar ratio of the reactants in acetonitrile (r.t., 5 h) to afford the solvated complexes
[Cu2X2(Pic3PO)2]·2MeCN in 82–87% yields. Note that varying the CuX/Pic3PO molar ratios
does not result in other products, apart from the above ones. The observed difference in the
reactivity of Pic3PO and Py3PO ligands toward Cu(I) halides can be explained by the higher
flexibility of Pic3PO; thereby the formation of dimeric complexes, rather than scorpionate ones
(as in the case of Py3PO [43,46]), becomes more favorable.
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now. 

Scheme 1. Reaction of Pic3PO with Cu(I) halides.



Int. J. Mol. Sci. 2023, 24, 5145 3 of 13

The phase purity of the prepared products has been proved by both powder X-ray
diffraction (Figure S4) and microanalysis data, which show that the experimental results
agree well the calculation data. Mid-IR spectra of solvates [Cu2X2(Pic3PO)2]·2MeCN inter
alia contain specific bands at 2445–2448 cm−1, belonging to νC≡N stretching vibrations of
lattice MeCN molecules (Figure S6). Overall, IR spectra of 1–3 are very similar to that of
free Pic3PO [47], except for the bands associated with νC=C and νC=N vibrations of pyridine
rings. In complexes 1–3, these bands are shifted in higher wavenumbers by 2–5 cm−1

compared to those of Pic3PO [47], thus confirming the coordination of the ligand to Cu(I).
According to TGA and DTA data (Figure S5), losing the MeCN molecules

of [Cu2X2(Pic3PO)2]·2MeCN occurs in the range of 50–150 ◦C. The desolvated complexes
1–3 themselves start to decompose at about 160 ◦C. Through this method, non-solvated
complex 1 has also been obtained, the photophysics of which were studied in comparison
with 1·2MeCN (vide infra).

The molecular structures of complexes 1–3, established for their acetonitrile solvates
[Cu2X2(Pic3PO)2]·2MeCN, are shown in Figure 1 (for more details, see Table S1 and
Figures S1–S3). The selected bond lengths are summarized in Table 1. The [Cu2X2(Pic3PO)2]
molecules have a symmetric structure with the inversion center lying between two Cu
atoms. Each metal atom of the rhomboid Cu2X2 unit is N,N’-chelated by the Pic3PO ligand,
thereby adopting a distorted tetrahedral {Cu@N2X2} arrangement with a tetrahedricity
τ4 index of about 0.85. The intramolecular Cu···Cu distances are elongated in the series
1·2MeCN (3.122 Å) < 2·2MeCN (3.224 Å) < 3·2MeCN (3.274 Å) due to the increase in the
halide atom size (Cl < Br < I). The comparison of the Cu···Cu separations with twice Bondi’s
van der Waals radius of Cu (2.80 Å) allows metallophilic interactions to be ruled out in
these complexes. The Cu–N and Cu–X bond lengths are comparable with those of the
related Cu(I) complexes, and C–N, C–C, C–P, and P–O bond lengths in the ligand scaffold
correlate well with those in the free ligand [47,48]. The dihedral angles between averaged
planes of the coordinated pyridine rings of 1–3 are 42.5◦, 42.3◦, and 44.1◦, respectively. In
crystal packing, the [Cu2X2(Pic3PO)2] molecules form a 3D supramolecular structure by
mean of weak C–H···O/N/X contacts as well as π···π stacking interactions between coordi-
nated pyridine rings. The distance between two parallel pyridine rings of 1 is just 3.282
Å (cf. 3.314 Å in 2, 3.462 Å in 3), while the displacement angle βPy–Py is ~30.9◦ (cf. 28.9◦

in 2, 26.6◦ in 3). Therefore, the π···π interactions are strong in 1·2MeCN, are apparent in
2·2MeCN, and are almost absent in 3·2MeCN. Note that the lattice MeCN molecules of
(1–3)·2MeCN do not form short intramolecular contacts in the crystals. This is consistent
with the fact that desolvation of these compounds begins already at 50 ◦C (vide supra). It
should be remarked that the metal complexes bearing Pic3PO ligands were unknown until
now.
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Table 1. Selected bond lengths (Å) in complexes 1·2MeCN, 2·2MeCN, 3·2MeCN.

1·2MeCN 2·2MeCN 3·2MeCN

Cu···Cu 3.1220(4) 3.2239(11) 3.2739(8)

Cu–N 2.0173(19), 2.030(2) 2.019(5), 2.025(6) 2.035(4), 2.048(4)

Cu–X (X = halide) 2.3471(7), 2.5916(8) 2.4894(11), 2.6973(14) 2.6612(7), 2.7919(8)

2.2. Theoretical Consideration

To elucidate the electronic structure of complexes 1–3, we have performed DFT calcula-
tions for chloride 1 as a representative example. Its structure is optimized in the ground (S0)
and lowest triplet (T1) excited state at the B3LYP/def2TZVP level of theory (more details
are given in §6, ESI). Note that the B3LYP functional and def2TZVP basis set are widely
used for the calculation of emissive Cu(I) complexes, providing reasonable agreement with
the experimental results [16,17,20–23,33,35,37,39,43,44]. It is revealed that the HOMO and
nearby HOMO-n (n = 1–11) are mainly located on the Cu2Cl2 unit, while LUMO and nearby
LUMO+n are distributed over the pyridine rings. The pattern is observed for the lowest
and highest single occupied molecular orbitals (LSOMO and HSOMO) of the T1 state of 1
(Figure 2). Such distribution of the frontier orbitals suggests that the lowest excited states
of 1 should be of metal+halide-to-ligand character, (M+X)LCT, which is very specific for
Cu(I) halide emitters [15,16]. The fact that the HOMO and LUMO of 1 are separated well
in space points to a small energy gap between S1 and T1 excited states that, in turn, gives a
reason to expect a TADF manifestation at ambient temperature. Upon S0 → T1 excitation,
the structure of 1 undergoes significant geometric distortions, which mainly appear in
pyridyl rings and Cu2Cl2 units (Table S2). The latter, being planar in the S0 state, becomes a
butterfly-shaped one with an angle between two CuCl2 planes of 159.08◦ (Table S2). Note
that the S0 → T1 excitation brings about elongation of the Cu···Cu distance from 3.039
to 3.241 Å, which points to the absence of metallophilic interactions in the excited state.
Time-dependent DFT calculations also predict the (M+X)LCT character of the low-energy
electronic transitions in 1 (Table S3, Figure S13), thereby confirming the above assignment.
Considering the similarity of absorption spectra of 1–3 and the literature data on Cu(I)
halide complexes, we believe that the predictions made for 1 are valid for compounds 2
and 3 too.
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2.3. TADF Properties

UV irradiation of solid samples of (1–3)·2MeCN at 298 K results in the appearance
of moderate to strong photoluminescence (PL) in the cyan-to-green region (Figure 3a).
The emission and excitation spectra are presented in Figure 3b,c, and the corresponding
photophysical data are given in Table 2. The emission spectra show broad bands typi-
cal for Cu(I) complexes with charge-transfer emission. The emission maxima (λmax) of
(1–3)·2MeCN correlate well with the observed PL color (Figure 3a). As seen from Table 2, in
the series 1·2MeCN—2·2MeCN—3·2MeCN, the λmax shifts in the shorter wavelength do-
main due to the weakening of ligand field strength of halides in the same order (Cl > Br > I).
Previously, this effect was established for many Cu(I) halide emitters. The PL quantum
yields (ΦPL) vary from 30% (3·2MeCN) to 54% (1·2MeCN), and the PL lifetimes lie in the
microsecond range (4.3–9.0 µs), implying TADF or phosphorescence origin of the lumines-
cence. Thus, the PL quantum yield decreases in the following order: chloride 1·2MeCN >
bromide 2·2MeCN > iodide 3·2MeCN (Figure 3d). The excitation spectra (Figure 3c) reveal
featureless curves with a maximum intensity below 430–450 nm; the excitation edge falls
close to 470 nm for 1·2MeCN, 445 nm for 2·2MeCN, and 435 nm for 3·2MeCN. Overall, the
excitation spectra (Figure 3c and Figures S9–S12) closely resemble the absorption profiles
(Figure S7). The observed overlapping of the excitation and emission curves implies a
significant spin-orbital coupling effect in the title compounds.
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Table 2. Photoluminescence characteristics of synthesized complexes (a).

1·2MeCN 1 (b) 2·2MeCN 3·2MeCN

λmax (298 K), nm 530 545 507 485

ΦPL (298 K), % 54 35 44 30

τ (298 K), µs 4.3 5.2 9 9

λmax (77 K), nm 535 547 514 492

τ (77 K), µs 25 26.6 34.5 48

∆E(S1–T1), cm−1 (c) 762 391 734 765
(a) The data were recorded at λex = 390 nm; (b) Desolvated complex 1 was obtained by heating 1·2MeCN at 120 ◦C
in vacuum; (c) Estimated by fitting τ(T) datasets with the equation for TADF model [17].

The complex 1·2MeCN demonstrate a solvatochromic luminescence. Thus, its desolva-
tion into 1 brings about red shifting of λmax by 15 nm, dropping the quantum yield to 35%,
and elongation of decay time to 5.2 µs (Table 1, Figure S8). This effect can be well rational-
ized by the formation of voids in solid 1 from leaving lattice MeCN molecules [49]. As a
consequence, the matrix environment of molecules of 1 becomes less rigid, which enhances
excitation-driven geometric distortions (proved by our DFT calculations, see Table S2). On
this account, the Franck–Condon factors between vibrational modes of electronic ground
and excited states become higher [50,51], thereby increasing non-radiative deactivation
processes, and thus decreasing the emission quantum yield.

A gradual decrease of temperature from 300 to 77 K intensifies the emission bands
of (1–3)·2MeCN and shifts their maxima and right flanks to the longer wavelength re-
gion by 5–10 nm (Figure 4). At that, the emission lifetimes noticeably increase, and their
temperature dependence plots τ(T) (Figure 5) suggest manifestation of TADF at ambi-
ent temperature. For solvates (1–3)·2MeCN, the τ(T) curves reach the low-temperature
plateau (pure phosphorescence regime) at about 100 K, whereas the τ(T) curves of 1 do
not reach this plateau even at 77 K. By contrast, the τ(T) curve of 1·2MeCN likely reaches
a high-temperature plateau (pure TADF regime) at ambient temperature. The curves of
(1–3)·2MeCN obviously continue to decrease at this temperature, meaning an admixture
of phosphorescence to the major (TADF) emission channel [19,21,22,45]. Fitting the τ(T)
datasets (Figure 5) with a Boltzmann type equation proposed for the TADF model [17]
allows the energy gap between T1 and S1 excited states to be roughly estimated as
∆E(S1–T1) = 391, 762, 734, and 765 cm−1 for 1, 1·2MeCN, 2·2MeCN, and 3·2MeCN, respec-
tively. The estimated ∆E(S1–T1) magnitudes being below 1500 cm−1 enables the reversible
intersystem crossing (T1 → S1) at ambient temperature, which is required for the appear-
ance of TADF.
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2.4. X-ray Radioluminescence

At ambient temperature, solid samples of (1–3)·2MeCN display quite strong X-ray radi-
oluminescence (RL). The recorded RL spectra (Figure 6a) match well with the corresponding
PL bands (Figure 3b), thus confirming that the same excited states are active in both pro-
cesses. Overall, the similarity of PL and RL spectra is typical for metal–organic phosphors.
The relative RL intensities, measured for thin samples of similar thickness and normalized
by sample amount, increase in the order 1·2MeCN (60%) < 2·2MeCN (85%) < 3·2MeCN
(taken as 100%) (Figure 6b). It is seen that iodide complex exhibits stronger RL than bro-
mide, let alone the chloride one, which reverses the trend observed for PLQY. The order
of RL increase should be attributed to more efficient X-ray absorption by higher-Z atoms
[I(Z = 53) > Br(Z = 35) > Cl(Z = 17)] in otherwise isostructural compounds, leading to more
efficient harvesting of the exciting high-energy radiation and creation of a higher emission
of electronically excited states overcompensating for the decreasing emission efficiency for
heavier halogens. Furthermore, the compounds studied display a linear response to X-ray
dose rate (Figure S15), though they are sensitive to X-ray irradiation and show noticeable
degradation during ca. 1 h of experiment (Figure S14).
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3. Materials and Methods
3.1. General

Materials and methods. CuI (99%, Sigma, St. Louis, MO, USA) and MeCN (HPLC
grade, Cryochrom, St. Petersburg, Russia) were used as purchased. CuBr was freshly syn-
thesized by treatment of CuBr2 with Cu powder in MeCN solution. CuCl (≥99%, Sigma)
was additionally purified prior to use by subsequent washing with HCl. Tris(pyridin-2-
ylmethyl)phosphine oxide was prepared following the known procedure [47]. XRPD analy-
ses were performed on a Shimadzu XRD-7000 diffractometer (Cu-Kα radiation, Ni—filter,
3–35◦ 2θ range, 0.03◦ 2θ step, 5 s per point). FT-IR spectra were collected on a Bruker
Vertex 80 spectrometer. The microanalyses were carried out on a MICRO cube analyzer.
Thermogravimetric analyses were performed in a closed Al2O3 pan under helium flow at
10 ◦C/min−1 heating rate using a Netzsch STA 449 F1 Jupiter STA.

The solid-state reflectance spectra were recorded on a Shimadzu UV-3101 spectropho-
tometer. Samples were prepared by thorough grinding of a mixture of a complex (ca.
5 mol%) with BaSO4. The reflectance data were converted into a spectrum by applying a
Kubelka–Munk function using BaSO4 as a standard.

Emission and excitation spectra were recorded on a Fluorolog 3 spectrometer (Horiba
Jobin Yvon) equipped with a cooled PC177CE-010 photon detection module and an R2658
photomultiplier. The absolute PLQYs were determined at 298 K using a Fluorolog 3 Quanta-
phi integrating sphere. Temperature-dependent excitation and emission spectra, as well as
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emission decays, were recorded using an Optistat DN optical cryostat (Oxford Instruments)
integrated with the above spectrometer.

X-ray radioluminescence (RL) spectra were recorded on a home-built spectrometer [52]
following the earlier developed protocol for powder samples as described in more detail in
ESI. The setup includes a CW X-ray tube 2,5BSV-27-Mo with a 40 kV DC anode voltage and
an objective-based optical imaging system followed by a grating monochromator and a
Hamamatsu H10493-012 PMT photosensor module, and is optimized for measuring naked
powder samples in air at ambient conditions.

3.2. Synthesis and Characterization Data

General procedure for the preparation of [Cu2(Pic3PO)2X2]·2MeCN: To a stirred so-
lution of corresponding copper(I) halide (0.155 mmol) in acetonitrile (2.5 mL), tris(pyridin-
2-ylmethyl)phosphine oxide (50 mg, 0.155 mmol) was added. The reaction mixture was
stirred at ambient temperature under argon for 5 h. The precipitated powder was cen-
trifuged, washed with small amount of acetonitrile, and dried in vacuum.

[Cu2(Pic3PO)2Cl2]·2MeCN (1·2MeCN). Off-white powder. Yield: 125 mg (87%). Anal.
Calc. for C40H42Cl2Cu2N8O2P2: C, 51.8; H, 4.6; N, 12.1%. Found: C, 52.0; H, 4.5; N 12.2%.
FT-IR (KBr, cm−1): 407 (m), 420 (m), 498 (s), 729 (m), 752 (m), 764 (s), 795 (m), 812 (m),
831 (m), 854 (s), 868 (s), 995 (w), 1051 (m), 1138 (m), 1148 (m), 1175 (vs), 1204 (m), 1217 (s),
1258 (s), 1310 (m), 1395 (m), 1410 (m), 1435 (vs), 1476 (vs), 1566 (m), 1597 (s), 2249 (vw),
2887 (w), 2922 (m), 3019 (w), 3053 (w), 3069 (w).

[Cu2(Pic3PO)2Br2]·2MeCN (2·2MeCN). Off-white powder. Yield: 134 mg (85%). Anal.
Calc. for C40H42Br2Cu2N8O2P2: C, 47.3; H, 4.2; N, 11.0%. Found: C, 47.1; H, 4.2; N, 11.1.
FT-IR (KBr, cm−1): 405 (m), 420 (m), 474 (w), 490 (s), 496 (s), 608 (w), 729 (m), 752 (m),
764 (s), 791 (m), 812 (m), 827 (m), 854 (s), 868 (s), 995 (w), 1016 (w), 1053 (m), 1084 (m),
1094 (w), 1123 (m), 1138 (m), 1148 (m), 1175 (vs), 1217 (s), 1258 (s), 1308 (m), 1395 (m),
1410 (m), 1435 (vs), 1476 (vs), 1566 (s), 1595 (s), 2249 (vw), 2886 (w), 2920 (m), 3017 (w),
3053 (w), 3069 (w).

[Cu2(Pic3PO)2I2]·2MeCN (3·2MeCN). Off-white powder. Yield: 141 mg (82%). Anal.
Calc. for C40H42I2Cu2N8O2P2: C, 43.3; H, 3.8; N, 10.1%. Found: C, 43.5; H, 3.9; N, 9.9%. FT-
IR (KBr, cm−1): 405 (m), 420 (m), 473 (w), 488 (s), 496 (s), 608 (w), 727 (m), 764 (s), 789 (m),
799 (m), 812 (m), 827 (m), 854 (s), 868 (s), 995 (m), 1015 (w), 1055 (m), 1086 (m), 1123 (m),
1138 (m), 1150 (m), 1175 (vs), 1217 (s), 1258 (s), 1308 (m), 1404 (m), 1410 (m), 1435 (vs),
1474 (s), 1568 (s), 1597 (s), 2251 (w), 2880 (w), 2918 (m), 3019 (w), 3055 (w), 3071 (w).

Complex 1: The compound was obtained by desolvation of 1·2MeCN by heating at
120 ◦C in vacuum (10−2 Torr) for 20 min. Off-white powder. Anal. Calc. for
C36H36Cl2Cu2N6O2P2: C, 51.2; H, 4.3; N, 9.9%. Found: C, 51.0; H, 4.2; N 9.8%. FT-IR
(KBr, cm−1): 420 (m), 490 (s), 758 (s), 787 (m), 827 (s), 856 (s), 995 (w), 1055 (w), 1080 (w),
1140 (m), 1175 (vs), 1219 (s), 1252 (s), 1312 (m), 1398 (m), 1437 (vs), 1476 (vs), 1566 (s),
1597 (s), 2891 (w), 2928 (w), 2949 (w), 3019 (w), 3053 (w).

3.3. X-ray Crystallography

Single crystals of 1·2MeCN, 2·2MeCN, and 3·2MeCN were grown by slow evaporation
of a MeCN solution of the corresponding compound. The diffraction data were collected on
a Bruker Kappa Apex II CCD diffractometer using φ,ω-scans of narrow (0.5◦) frames with
MoKα radiation (λ = 0.71073 Å) and a graphite monochromator. The structures were solved
by SHELXT 2014/5 [53] and refined by a full matrix least-squares anisotropic–isotropic (for
H atoms) procedure using the SHELXL-2018/3 program set [54]. Absorption corrections
were applied using the empirical multiscan method with the SADABS program [55]. The
positions of the hydrogen atoms were calculated with the riding model.

CCDC 2232003 (for 1·2MeCN), 2232004 (for 2·2MeCN), and 2232005 (for 3·2MeCN)
contain the supplementary crystallographic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic Data Center at https://www.ccdc.
cam.ac.uk/structures/ (accessed on 10 December 2022).

https://www.ccdc.cam.ac.uk/structures/
https://www.ccdc.cam.ac.uk/structures/
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4. Conclusions

In conclusion, dinuclear complexes [Cu2X2(Pic3PO)2] (X = Cl, Br, I) have been designed
exploiting tris(pyridin-2-ylmethyl)phosphine oxide (Pic3PO). The complexes are struc-
turally characterized and investigated in terms of photophysics and quantum chemistry. At
ambient temperature, the above compounds show cyan-to-green TADF of 1(M+X)LCT kind
with quantum yields up to 54% and decay times of 4.3–9 µs. When passing from iodide
(X = I) to chloride (X = Cl), an increase in the emission efficiency as well as a bathochromic
shift of its maxima (λmax) are observed. In addition, X-ray radioluminescence is found
for the obtained compounds. The similarity of emission profiles, recorded for the photo-
and radioluminescence point to the similar radiative excited state for both processes. It is
noteworthy that, compared to TADF, the radioluminescence efficiency grows in the order
X = Cl < Br < I. The observed order is likely attributable to the increased absorption of
X-rays by heavier atoms. The presented results provide new knowledge about the effect of
halogens on photo- and radioluminescence of Cu(I) halide complexes.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24065145/s1. References [56–63] are cited in the supplementary materials.
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