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Abstract: Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most detrimental
toxicity to a patient’s quality of life. Pathophysiological mechanisms involved in CIPN pathogenesis
are complex, multifactorial, and only partially examined. They are suspected to be associated with
oxidative stress (OS), mitochondrial dysfunction, ROS-induced apoptosis, myelin sheath and DNA
damage, and immunological and inflammatory processes. Unfortunately, medications commonly
used for the management of other neuropathic pain syndromes, including gabapentinoids, opioids,
and tricyclic antidepressants (such as desipramine and nortriptyline), do not bring satisfactory
results in CIPN. The aim of this review is to evaluate the existing literature on the potential use of
medical ozone as a treatment for CIPN. This paper would explore the potential therapeutic benefits
of medical ozone. The review would evaluate the existing literature on the use of medical ozone in
other contexts, as well as its potential application in treating CIPN. The review would also suggest
possible research methods, such as randomized controlled trials, to evaluate the efficacy of medical
ozone as a treatment for CIPN. Medical ozone has been used to disinfect and treat diseases for over
150 years. The effectiveness of ozone in treating infections, wounds, and a variety of diseases has
been well documented. Ozone therapy is also documented to inhibit the growth of human cancer
cells and has antioxidative and anti-inflammatory effects. Due to its ability to modulate oxidative
stress, inflammation, and ischemia/hypoxia, ozone may have a potentially valuable effect on CIPN.

Keywords: CIPN; ozone; pain treatment

1. Introduction

Chemotherapy (CT) remains one of the mainstays of cancer treatment. Due to the
advances in medicine and technology, its efficacy is growing and overall cancer mortality
has decreased [1].

Unfortunately, oncological patients and cancer survivors have to face multiple un-
pleasant adverse consequences of using antineoplastic agents. This is caused by the fact that
chemotherapeutics work by targeting rapidly dividing cancerous cells, but they also affect
proper functioning, healthy cells. One of the most common mechanisms that underlie the
causes of chemotherapy-induced toxicity involves loss of homeostatic control of reactive
oxygen species (ROS) [2].

For some drugs, the most detrimental toxicity to a patient’s quality of life is chemotherapy-
induced peripheral neuropathy (CIPN), which can occur in 19% to more than 85% of
patients. Incidence of this condition varies among the different classes of agents. The risk
of such impairment of the peripheral nervous system is the highest during platinum-based
drug therapy—between 70% and 100% [3].

Pathophysiological mechanisms involved in CIPN pathogenesis are complex, multi-
factorial, and only partially examined. They are suspected to be associated with oxidative
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stress (OS), mitochondrial dysfunction, ROS-induced apoptosis, myelin sheath and DNA
damage, and immunological and inflammatory processes [3–5].

CIPN displays sensory symptoms more often than motor symptoms. Its manifestation
often includes paresthesia, dysesthesia, hypoalgesia or pain (burning, shooting or electric-
shock-like), and cramping of the extremities [6,7]. Symptoms are symmetric and typically
spread from distal to proximal level. With lower prevalence, the perioral region can be
affected which leads to laryngospasm [6].

Painful symptoms sometimes persist well beyond the discontinuation of treatment [6,7].
The clinical presentation of this condition typically begins with symptoms in the

feet and hands, which then progress proximally to involve the ankles and wrists in a
characteristic “stocking and glove” distribution. One hallmark symptom of the condition is
a loss of sensitivity to heat, which occurs due to selective damage to myelinated primary
afferent sensory nerve fibers, with or without accompanying demyelination [7].

Local alterations may aggravate general cancer-related symptoms, such as anxiety,
depression, or fatigue.

The development of CIPN may be a serious obstacle in chemotherapy because of its
considerable impact on the patient’s quality of life. CIPN can lead to dose reduction and
even cessation of CT which may have a direct contribution to its effectiveness [4].

Unfortunately, medications commonly used for the management of other neuropathic
pain syndromes do not bring satisfactory results in CIPN [8]. Further research for the
suitable treatment for CIPN is needed because of its unclear pathogenesis. However,
various pharmacological and nonpharmacological treatment approaches (i.v. lidocaine,
cannabinoids, oral glutamine, cryotherapy, acupuncture, massage therapy, and exercise)
are being considered as possible CIPN management options. Some of them show tremen-
dous potential but require further clinical studies [9]. The only agent mentioned in the
recommendations that proved to be effective against CIPN is duloxetine [10]. While the
exact mechanisms by which duloxetine exerts its therapeutic effects in CIPN are not fully
understood, it is thought to act in part by reducing inflammation and oxidative stress in the
nerves. Therefore, the therapies that take into account the OS role in CIPN pathogenesis
may appear to be promising [11].

Ozone (O3) is a gas discovered in the mid-19th century and was initially used as a
potent disinfectant. Its molecule contains three atoms of oxygen in a dynamically unstable
structure due to the presence of mesomeric states [11,12]. The gas is colorless, acrid in odor,
and explosive in liquid or solid form. It has a half-life of 40 min at 20 ◦C and approximately
140 min at 0 ◦C. Its primary function is to shield humans from the harmful effects of
UV radiation. Ozone has been demonstrated to be toxic to both animals and humans,
irritating the eyes and respiratory tract. Inhaling higher concentrations of ozone may
cause damage to the bronchial mucosa and pneumocytes, leading to pulmonary edema.
It has been calculated that breathing pure ozone at a concentration of 0.02 µg/mL leads
to death in 4 h. There have been no other toxic effects discovered. It should be noted
that the main gasses in the air we breathe, oxygen, nitrogen, and carbon dioxide, are also
toxic and lethal if inhaled in high concentrations [12]. Ozone concentration is measured
in µg/mL or g/L of oxygen; 5%, or 70 µg/mL, is usually the maximum concentration
used in clinical medical applications. High concentrations will damage red blood cells
and inhibit the growth of healthy cells [13]. The best technology for producing ozone gas
was designed and built by Nikola Tesla in the 1920s. Medical ozone is a 5% ozone and
95% oxygen mixture obtained from medical oxygen by using a medical device—a medical
ozone generator [14,15]. Generators use several techniques to produce ozone, such as UV
lamps, corona discharge, and cold plasma generators [13].

Medical ozone has been used to disinfect and treat diseases for over 150 years. The
effectiveness of ozone in treating infections, wounds, and a variety of diseases has been well
documented. A text on medical ozone therapy was published by Dr. Charles J. Kenworth
in 1885 [13]. Ozone has been shown to have numerous therapeutic benefits due to its
antibacterial, antiviral, and antifungal properties [16]. Ozone therapy is also documented
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to inhibit the growth of human cancer cells and has antioxidative and anti-inflammatory
effects [17]. The administration of ozone therapy varies depending on the treatment goals
and location of the therapy: direct i.v. infusion, major autohemotherapy, rectal/vaginal
insufflation, limb or body bagging, ozonated water, ozone in saline or LRS, intramuscular,
intradiscal, paravertebral, intra-articular administration, prolo/sclerotherapy, acupunc-
ture, ozonated olive oil, inhalation (ozone bubbled through olive oil and humidified),
subconjunctival injection, gingival and tooth apex injection, urinary bladder insufflation,
and auricular [13,18]. Ozone’s clinical use may be classified into eight categories: car-
diovascular (coronary artery disease and previous myocardial infarction), subcutaneous
tissue (diabetic foot ulcer, Buruli ulcer, nonhealing or ischemic wound), peripheral vascular
disease (obliterative atheromatosis and peripheral artery disease), neurological (multiple
sclerosis, refractory headache, and radiation-induced brain ischemia), head and neck (sen-
sorineural hearing loss, head and neck tumors, vestibulocochlear syndrome, and dry form
of age-related macular degeneration), orthopedic (herniated lumbar discs, spine and joint
osteoarthritis, first-degree spondylolisthesis, and spondylolysis) gastrointestinal (chronic
hepatitis C, liver cirrhosis, and gastrointestinal tract ulcers), and genitourinary (chronic
cystitis, renal complications secondary to hepatitis, radiation-induced cystitis with hema-
turia, and urinary tract infection). The indications listed above are the results of human
clinical trials for specific pathologies associated with the aforementioned systems [18].
Despite existing evidence that ozone therapy is safe and effective, more research is needed
to establish it as an essential treatment option in medicine.

2. Methodology

In the light of possible ozone CIPN treatment, the revelations describing the usage
of ozone in the treatment of pain pathology stemming from nerve damage and pain
conductivity dysfunction hold significant value.

The aim of this review is to evaluate the existing literature on the potential use of
medical ozone as a treatment for chemotherapy-induced peripheral neuropathy (CIPN),
a condition that can severely impact a patient’s quality of life. The majority of the exist-
ing literature focuses on the complex and multifactorial pathophysiological mechanisms
that contribute to the development of CIPN, including oxidative stress, mitochondrial
dysfunction, inflammation, and DNA damage.

This review is to explore the potential therapeutic benefits of the potential application
of medical ozone in treating CIPN. The methodology involves a comprehensive search of
relevant databases (PubMed, Google Scholar), using appropriate keywords related to the
theme (CIPN/oxidative stress/pain reduction/pain management and ozone therapy). All
identified publications on the use of ozone therapy for CIPN treatment or pain management
were included. Data from selected articles have been presented as a classical review.
Identified clinical trial results have been provided in Table 1, while the reported studies on
neuropathic and cancer-related pain treated with ozone have been summarized in Table 2.

The main limitation of the review is the relatively small amount of available literature,
including randomized clinical trials. There is much more information about the treatment
of pain with ozone than about its use in induced neuropathic pain treatment. In addition,
the poorly understood pathophysiology of CIPN results in a lack of a solid theoretical basis
for the assessment of the collected material, which increases the risk of bias.
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Table 1. Clinical trials on pain treatment with ozone.

Trail Number Years Conducted Location Study Title Condition Number Recruited Ozone Implementation
Form Dosage Reviewed Data Status

NCT01172457 2009–2012

University of São
Paulo Medical

School
São Paulo, Brazil

The Effect of
Epiduroscopy and
Ozone Therapy in

Patients With Failed
Back Surgery

Syndrome

Low Back Pain
Failed Back Surgery

Syndrome
40 Epiduroscopy

30 mL of ozone at a
concentration of 30

µg/mL

Visual analog pain
scale—VAS Completed

NCT00832312 2009–2016
Ben Gurion
University

Beer Sheva, Israel

Intraarticular Ozone
Therapy for Pain

Control in
Osteoarthritis of the

Knee

Osteoarthritis of the
Knee 20 Intraarticular injections

10 cc of an
ozone–oxygen

mixture with an
ozone concentration
of 10,000 µg/L (10

µg/mL)

Pain control Terminated

NCT01709058 2012–2015
INRCA Hospital, via
della Montagnola, 81

Ancona, Ital

Study on the Effects
of Oxygen-ozone
Therapy on Back
Pain in Subjects

Aged 65 or Older

Back Pain 130 Intramuscular/paravertebral
injections

5–20 mL of
oxygen–ozone to
each point, at a
concentration of

10–20 µg/mL, for a
total volume of 40

mL

Oswestry Disability
Index (ODI) Unknown

NCT02997410 2014–2017 Tamer Celakil,
Istanbul University

Ozone Therapy for
Masticatory Muscle

Pain (OTMMP)

Orofacial Pain
Temporomandibular

Joint Disorders
60 Dental treatment with

occlusal splint Not disclosed

Pressure pain threshold
measurement (PPT)

using a Pressure
Algometry; pain scores
on the Visual Analog

Scale

Unknown

NCT03056911 2017–2019

Sakarya University
Research and

Training Hospital
Sakarya, Turkey

Clinical Effects of
Ozone Therapy in

Cervical Disc Hernia
Neck Pain 43 Chemonucleolysis Not disclosed Visual analog scale (VAS)

score for pain Unknown

NCT04789135 2020–2021
Distal Nefrologia e

Urologia
Jacareí, SP, Brazil

Evaluation of
Response to Use of
Intravesical Ozone
Gas in Interstitial
Cystitis/Bladder
Pain Syndrome

Interstitial Cystitis,
Chronic

Bladder Pain
Syndrome

50
Direct instillation into the
bladder of ozone gas via

urethral catheter

Concentration of
20–60 µg/mL

O’Leary Sant Symptom
and Problem Index

questionnaire

Active, not
recruiting

NCT04562493 2020–2021 Wael Fathy Hassan
Banı̄ Suwayf, Egypt

Comparative Effect
of Transforaminal

Injection of
Magnesium

Sulphate Versus
Ozone Therapy on

Oxidative Stress
Biomarkers in

Lumbar Disc Related
Radicular Pain

Effect of Drug 90 Transforaminal epidural
injection Not disclosed

Oxidative stress
biomarkers: Glutathione
(GSH) and superoxide
dismutase (SOD); Pain
relief: Numeric Rating

Scale
Disability improvement:

Numeric Rating Scale

Unknown
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Table 1. Cont.

Trail Number Years Conducted Location Study Title Condition Number Recruited Ozone Implementation
Form Dosage Reviewed Data Status

NCT04299893 2020–2023

Complejo
Hospitalario

Materno Insular
Las Palmas De Gran
Canaria, Las Palmas,

Spain
Hospital

Universitario de
Gran Canaria Dr.

Negrín
Las Palmas De Gran
Canaria, Las Palmas,

Spain

Ozone Therapy in
Chemotherapy-

induced Peripheral
Neuropathy: RCT

(O3NPIQ)

Chemotherapy-
induced Peripheral

Neuropathy
Pain, Neuropathic

Pain Syndrome

42 Rectal insufflation

Concentration of
O3/O2 increasing

from 10 to 30
µg/mL

Brief Pain
Inventory-Short Form

(BPI-SF)
Recruiting

NCT05000463 2022
Emad Zarief Kamel

Said
Assiut, Egypt

Ozone Therapy in
Patients With

Diabetic Neuropathy
Chronic Pain 60 Nerve injection Ozone/oxygen

mixture (25 µg/mL)
Visual analog scale of

pain (VAS)
Not yet

recruiting

NCT05417737 2022–2026
Dr. Negrín

University Hospital
Las Palmas, Spain

Patients Referred to
the Chronic Pain
Unit for Palliative
Treatment With
Ozone Therapy

Between 2022 and
2025

Radiation Toxicity
Chemotherapeutic

Toxicity
Chemotherapy-

induced Peripheral
Neuropathy

Delayed Wound
Healing

Chronic Pain
Refractory Pain

105 Systemic and/or local
ozone administration Not disclosed

5-level, 5-dimension
EuroQol (EQ-5D-5L)

questionnaire
Recruiting

NCT05291715 2022–2023

Cairo
University-Faculty

of Dentistry
Cairo, Manial, Giza,

Egypt

The Effect of Ozone
Therapy on Pain
Perception After

Free Gingival Graft
Surgery in Patients
With Mucogingival

Defects

Open Wound of
Palate Without
Complication

Pain, Postoperative
Free Gingival Grafts

Mucogingival
Defects

Gingival Recession
Donor Site

Patient Satisfaction

24 Ozone generator device Not disclosed Visual analog scale (VIS) Recruiting
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Table 2. Comprehension of reported studies on neuropathic and cancer-related pain treated with ozone.

Author Year Condition Way of Administration Dosage Therapeutic Effect

Javier Hidalgo-Tallo’n
et al. [19] 2012 Fibromyalgia Rectal insufflation

8 mg (200 mL of gas, at a concentration of
40 µg/mL), 5 days a week in the first week, 2 times
a week from weeks 3–6, weekly from weeks 7–12

Significant decrease in FIQ total scores,
significant improvement in depression

scores and in the Physical Summary
Score of the SF-12

U. Tirelli et al. [20] 2019 Fibromyalgia Autohemotransfusion, rectal
insufflation

According to SIOOT protocols, twice a week for
1 month, then twice a month as

maintenance therapy

Significant improvement in 45 of
65 patients (70%), no side

effects reported

Moreno-Fernández et al. [21] 2019 Fibromyalgia Autohemotherapy
150 mL of O3 in 150 mL of blood at a concentration

of 30–60 µg/mL, 10 sessions
(2 sessions/week) for 7–10 min

Significant decrease in tender points
and FIQ, improvement in sleep and

mental alertness, a moderate increase in
serotonin levels, an important decrease

in LP and PC, decrease in ROS

Jian-Feng Zhang et al. [22] 2022 Postherpetic neuralgia Ozonated water injection
through the inner cannula

10 mL (truncal OT)/7 mL (facial OT) of mixture at a
concentration of 11.5 µg/mL with the infusion

speed of 3 mL/min for truncal OT and 2 mL/min
for facial OT, once a day, Monday to Friday for

1–2 weeks

Significant improvement in pain and
tactile sensation

Bin Hu et al. [23] 2018 Postherpetic neuralgia Autohemotherapy
40 mL of ozone in 200 mL of blood at a

concentration of 30 µg/mL, transfused back within
15 min, 3 times/week for 2 weeks

Significant improvement in the VAS,
MPQ, PGIC, and WHOQOL-BREF

Li-Mei Li et al. [24] 2022 Acute zoster neuralgia O2/O3 injection - Improved pain intensity and
sleep quality

Robert Jay Rowen, Howard
Robins [25] 2019 Complex regional pain

syndrome
Direct intravenous gas

(DIV)

At the beginning: 5 cc of gas at a concentration of
55 µg/cc, gradually increased to 30 cc at 55 µg/cc
5 times/week for 26 weeks (120 sessions in total)

Complete remission of pseudoseizures
and pain

J. F. Pollo Gaspary et al. [26] 2020
Stage IV rectal

adenocarcinoma with liver
and lung metastases

Rectal insufflation
Ozonated Olive Oil inhalation

(OT combined with PEMF)

Rectal route: 8 mg/day, 5 times/week
Ozonated Olive Oil: 40 min/day, 5 times/week

Improvement in well-being, autonomy,
and pain control, pause in tumor

growth despite more than 60 days
without using classic treatment

Bernardino Clavo et al.
[27,28] 2020

Chronic pelvic pain
secondary to cancer

treatment

Rectal insufflation, intravesical
insufflation/instillations of

ozonated water, vaginal
insufflation/vaginal washing

with ozonated water

Rectal insufflation: 180 mL/session at the beginning,
increase up to max. of 300 mL/session if tolerated,
initial concentration: 10µg/mL, increased 5µg/mL

every two sessions up to max. of 30µg/mL

Significant decrease in pain in five of six
patients, improvement in associated

symptoms (vaginal dryness, hematuria,
rectal or vaginal wounds, tenesmus,

and the number of bowel movements
per day)

Bernardino Clavo et al. [29] 2022 Pain secondary to grade II or
III CIPN Rectal insufflation

Initial concentration: 10 µg/mL, increased by
5 µg/mL every two sessions until max. of
30 µg/mL, the gas volume started at 180

mL/session and was slowly increased in successive
sessions (depending on patient tolerance of bowel
bloating) up to max. of 300 mL/session if tolerated

Clinically relevant pain improvement

Note: FIQ—Fibromyalgia Impact Questionnaire; SIOOT—Scientific Society of Oxygen Ozone Therapy; VAS—Visual Analog Scale; MPQ—McGill Pain Questionnaire; PGIC—Patients’
Global Impression of Change; WHOQOL—BREF—World Health Organization Quality of Life.
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3. Pathophysiology and Molecular Characteristics of CIPN

Classical antitumoral drugs are widely known for their cytotoxicity and prominent
side effects, especially in fast-dividing cells such as those of the bone marrow, GI tract,
reproductive system, and hair follicles [30]. Even though nervous tissue is not rapidly
proliferating, antitumoral drugs may cause neurotoxicity, both directly and indirectly,
causing sensory symptoms that include hyperalgesia, allodynia, spontaneous shooting
or burning pain, dysesthesia, paresthesia, and other deficits in not only sensory but also
autonomic and motor function [31]. Neurotoxicity induced by chemotherapy mainly affects
the peripheral nervous system (PNS) due to its lack of protection from a structure similar
to the blood–brain barrier (BBB) that protects the central nervous system (CNS) [32]. The
longer the axon, the more vulnerable it is to the toxicity of chemotherapeutic agents which
may be caused by their higher metabolic requirements [33].

The effects of anticancer drugs on the nervous system depend on their physical and
chemical properties and their dosage, so they vary across the different classes of chemother-
apeutics [32]. Research on CIPN from the past 20 years points to four main mechanisms of
antitumor drugs: (1) directly targeting the mitochondria and producing oxidative stress;
(2) functionally impairing ion channels; (3) triggering immunological mechanisms through
activation of satellite glial cells; and/or (4) disruption of microtubules [34]. There are six
main substance groups that contribute to the development of CIPN: the platinum-based
antineoplastics (oxaliplatin and cisplatin), the vinca alkaloids (vincristine and vinblastine),
the epothilones (ixabepilone), the taxanes (paclitaxel, docetaxel), the proteasome inhibitors
(bortezomib), and the immunomodulatory drugs (thalidomide) [7].

3.1. Oxidative Stress in CIPN Development

Many antineoplastic agents are known for their ability to cause oxidative stress,
which is the imbalance between the production of ROS and the ability to detoxify their
detrimental effects [35]. Both bortezomib and paclitaxel can increase the production of
ROS, which is also produced in small amounts in healthy tissues as a by-product of
oxygen metabolism but in excess may worsen mitochondrial function [36]. Overproduction
of ROS can lead to damage of intracellular biomolecules such as phospholipids, which
results in demyelination, oxidation of proteins, releasing carbonyl by-products that can
sensitize TRPV channels, inactivate antioxidant enzymes, and damage microtubules [37].
ROS can also indicate the activation of apoptotic pathways and the overproduction of
pro-inflammatory mediators [38].

The role of oxidative stress and mitochondria dysfunction in the pathobiology of
CIPN is supported by many in vitro and in vivo studies [33]. Observations of sectioned
peripheral nerves in rodents previously treated with anticancer drugs show swollen and
vacuolated mitochondria [4,10]. Preclinical studies on strategies targeting ROS based on
external antioxidant stimulation were promising but it did not translate into clinical studies.
With the results of many studies on antioxidants such as α-lipoic acid being disputed,
endogenous antioxidants and peroxisome-proliferator-activated receptors (PPARs) were
proposed as potential targets for in vivo CIPN studies [33,36]. Substantial evidence shows
that further study of 4-hydroxy-2-nonenal (4-HNE), a secondary intermediate of oxidative
stress and one of the most formidable reactive aldehydes, and the mechanisms of its
regulation may be applicable to many oxidative-stress-related injuries. Furthermore, it is to
be expected that other molecular targets, such as aldehyde dehydrogenase (ALDH2) and
Alda-1, a selective activator of ALDH2, will be increasingly studied [39].

The transient receptor potential ankyrin 1 (TRPA1) channel is a major oxidant sensor
profusely expressed by a subpopulation of primary sensory neurons. It is proposed that,
during the therapy with some antitumoral drugs such as thalidomide, platinum-based anti-
tumor drugs, vinca alkaloids, and paclitaxel pain may be induced through the upregulation
of its expression [5].
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3.2. Platinum-Induced Neurotoxicity

Platinum-based drugs are an important part of chemotherapy which are used to
treat different types of solid tumors; however, PT chemotherapy is not tumor-specific and
always affects normal tissue leading to many serious side effects such as neurotoxicity.
Platinum-induced neurotoxicity can be the result of the following mechanisms: nuclear
DNA damage in dorsal root ganglion (DRG) neurons, mitochondrial DNA damage, chan-
nelopathy, oxidative stress and mitochondrial dysfunction, and intracellular signaling
pathway dysregulation [40,41]. Currently, there are three members of this drug family
in use: cisplatin, carboplatin, and oxaliplatin [9]. Carboplatin neurotoxicity seems to be
insignificant compared with that of cisplatin and oxaliplatin. It requires a 10-fold higher
drug concentration than cisplatin to induce the same cytotoxic effect and predominantly
affects the hematopoietic system, while cisplatin and oxaliplatin are primarily associated
with CIPN [7,40].

3.2.1. Damage in DRG Neurons

The bodies of sensory neurons located in DRG are believed to be the main target
of Pt-based drugs because they need to sustain high metabolism for the maintenance of
long axons [41]. Cisplatin and oxaliplatin are apparently substrates of transporters on the
neuronal plasma membrane, such as the copper transporters (CTR-1), the organic cation
transporters (OCT-1, OCT-2), and the cation and carnate transporters (OCTN-1, OCTN-2)
which are likely involved in the influx of Pt-based drugs into DRG neurons [39]. Once inside
the cell, platinum compounds reach the nucleus and form DNA adducts, which results in
lesions that block DNA replication and transcription [42] that finally leads to accelerated
accumulation of unrepaired platinum–DNA adducts and results in cell death [43].

3.2.2. Oxidative Stress and Mitochondrial Dysfunction

Preclinical studies demonstrated that cisplatin forms adducts with mitochondrial
DNA at a similar rate as nuclear DNA, which results in inhibition of mtDNA replication,
disruption of mtDNA transcription, and morphological changes within mitochondria [44].
However, the main mechanism of platinum-induced toxicity is associated with the over-
production of ROS [45].

3.2.3. Neuroinflammation

Oxaliplatin treatment may trigger an acute inflammatory response that leads to an
increase in pro-inflammatory cytokines. Research on rats showed an increase in IL-1β
and TNF-α and a decrease in IL-10 and IL-4 in the spinal cord after 25 days of Oxaliplatin
treatment [46]. Platinum compounds may also indicate the increase in pro-nociceptive
acting chemokines, such as CCL2/CCR2, which are proven to have a significant role in
chronic pain in rodents [41]. In addition to changes in cytokine concentrations, the main
mechanisms of platinum-related neurotoxicity are also suspected to be supported by the
decrease in levels of vitamin E and prealbumin [45].

3.2.4. Enhanced Responsiveness of TRP Channels

Studies in rodents support the idea of TRPV1’s responsibility for the heat-sensitive
hyperalgesia and mechanical allodynia in sensory neurons induced by cisplatin, oxaliplatin,
bortezomib, and paclitaxel [41].

3.3. Neurotoxicity Caused by Vinca Alkaloids

Vincristine alters neuron structure primarily by disrupting the normal assembly and
disassembly functions of microtubules, which leads to mitosis block and cell death [47].

3.4. Taxane-Induced Neurotoxicity

Taxanes are part of the group of chemotherapeutic agents known as microtubule-
stabilizing agents (MTSAs) [48]. Unlike vinca alkaloids, which induce the disassembly
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of microtubules, paclitaxel inhibits this action, leading to the polymerization of tubulin
and the formation of extraordinarily stable and dysfunctional microtubules [49]. Properly
functioning microtubules are required for axonal transport and therefore also neuron
survival [50].

3.5. Bortezomib-Induced Neurotoxicity

Bortezomib-related neurotoxicity may occur through mechanisms of indirect oversta-
bilization of microtubules [51]. Other mechanisms, such as mitochondrial toxicity, endo-
plasmic reticulum stress in Schwann cells, and inhibition of transcription, transport, and
cytoplasmic translation of mRNAs due to accumulation of ubiquitin-conjugated proteins,
are also taken into account [52,53].

3.6. Thalidomide-Induced Neurotoxicity

For thalidomide, the antitumor mechanisms are suspected to be the cause of its
neurotoxicity. TNF-α inhibition and NF-B activation blockade cause neurotrophin and
receptor dysregulation, resulting in cell death. The antiangiogenic effect of thalidomide
leads to hypoxia and ischemia of nerve fibers [54].

4. Current Preventive and Therapeutic Options for CIPN

Prevention and treatment for CIPN are exceedingly challenging because of the varying
pathophysiological background of CIPN for different antineoplastic agents [55]. Addi-
tionally used so far preventive medications, such as vitamins B and E, glutathione, alpha
lipoic acid, acetylcysteine, amifostine, calcium and magnesium, diethyldithiocarbamate,
dithiocarbamate, Org 2766, oxcarbazepine, and erythropoietin, were proven to counteract
the cancer therapy [56]. Many prevention techniques such as cooling during chemother-
apy infusion have been tried to reduce the prevalence of CIPN but without satisfactory
results [57]. ASCO and ESMO guidelines suggest checking patients regularly for the devel-
opment of CIPN and being particularly aware of patients with a high risk of developing
neuropathic pain [55].

4.1. Pharmacologic Treatment

The only recommended drug that has been clinically proven to reduce pain and other
sensory symptoms accompanying CIPN is duloxetine. Although the other options such as
tricyclic antidepressants (venlafaxine) and anticonvulsants (gabapentin, pregabalin, and
ethosuximide) were tested, the results were controversial [55,57].

4.2. Therapies Based on CIPN Mechanisms
4.2.1. Nerve-Protective Therapy

Erythropoietin (EPO), the cytokine produced in kidneys, is proven to have neuro-
protective and neurotrophic effects [42]. Studies in rodents have shown that EPO partly
prevents the reduction in nerve conduction velocity (NCV) and intraepidermal nerve fibers
(IENF) damage caused by docetaxel and cisplatin [58–61]. EPO may seem to be ideal for
peripheral neuropathy but its use is highly contraindicated due to its association with
tumor cell proliferation [62].

4.2.2. Ion-Channel-Targeted Therapies

Lidocaine, the inhibitor of voltage-gated sodium channels, is a local anesthetic of
amide type also used systematically as an antiarrhythmic drug [63]. A clinical study
showed that a single infusion of lidocaine decreased pain in eight out of nine patients
with CIPN. The analgesic effect was moderate with a mean duration of 23 days [64,65].
To avoid irritation caused by i.v. injection, lidocaine may be replaced by mexiletine [64].
Examination in mice demonstrated significant reversion of vincristine-induced neuropathic
pain after mexiletine treatment [66].



Int. J. Mol. Sci. 2023, 24, 5279 10 of 25

Calcium and magnesium infusions were also postulated as potential CIPN treatment
options but research results regarding their effectiveness are inconclusive [55].

Gabapentin and pregabalin are both anticonvulsant drugs whose main mechanism
of action is attributed to the α2δ1 subunit of the voltage-dependent calcium channels
responsible for modifying the release of neurotransmitters and reducing neuronal excitabil-
ity [57,67]. This mechanism is responsible for their antiepileptic, analgesic, and sedative
properties. Gabapentin may also act by blocking new synapse formation [67]. Despite
the apparently identical action mechanisms of gabapentin and pregabalin, the response
to those medications varies due to their different pharmacokinetic properties, so that is
why patients who do not respond well to gabapentin may experience improvement after
pregabalin [68].

4.2.3. Anti-Inflammatory Therapies

The blockage of the nerve growth factor–tyrosine kinase receptor A pathway and
treatment with TNF or CCL2 antibodies, as well as increased levels of anti-inflammatory
IL-1ra and IL-10, significantly reduce bortezomib- and paclitaxel-induced neuropathic
pain [69]. Some studies suggest that the best approach to CIPN treatment is to start with
nonsteroidal anti-inflammatory drugs (NSAIDs), eventually followed by an opioid as a
second-line agent in the event that NSAIDs fail. However, this strategy requires further
research [70].

4.2.4. Neurotransmitter-Based Therapy

Duloxetine and venlafaxine are antidepressants in a group of medicines called selective
serotonin and norepinephrine reuptake inhibitors (SSNRIs) that restore the balance of
serotonin and noradrenaline in the brain. They are both used for severe depression, anxiety
disorder, and other mood problems. Studies revealed that duloxetine is more effective in
reducing pain in CIPN than venlafaxine, but regarding the high cost of duloxetine, it may
be recommended that venlafaxine would be the first-line medicine in CIPN. In that case,
duloxetine would be used in case of no response to venlafaxine [71,72].

Micov et al. investigated the effects of the antidepressant vortioxetine on pain and
depression-like behavior in mice with oxaliplatin-induced neuropathy. Vortioxetine re-
duced mechanical and cold allodynia and depression-like behavior, similar to duloxetine,
possibly through increased 5-HT and NA content in the brainstem, suggesting its potential
as a treatment option for chemotherapy-induced neuropathy in both pain and depressive
symptoms [73].

4.2.5. Antioxidants

Amifostine is an analog of cysteamine that can protect normal cells during chemother-
apy by free radical scavenging, donating hydrogen ions to free radicals, depleting oxygen,
and binding to active derivatives of antineoplastic compounds [73].

Some randomized trials looked into the neuroprotective effects of amifostine. Indeed, it
turned out that premedication with amifostine protected against paclitaxel- and carboplatin-
induced sensory neuropathy [74].

Mangafodipir, the superoxide dismutase (SOD) mimetic, is also proven, in both rats
and humans, to have protective efficacy against oxaliplatin-associated CIPN. Mangafodipir
inhibits oxidative stress by catalyzing the dismutation of superoxide and disarming redox-
active iron [75].

5. Ozone in the Pain Treatment
5.1. Multimodal Mechanism of Action in Pain Management

Most of the potential usage of ozone therapy in various pain treatments stems down
from the multimodal mechanism of action of the ozone [76–80]. The most basic mech-
anism is based on the oxygenation of the infiltrated tissue and the restoration of the
cellular redox balance [76–80]. Moreover, ozone modulates the local antioxidant system
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and, thereby, reduces the inflammatory response, enabling better management of the is-
chemia/reperfusion processes and promoting fibroblasts and chondrocytes [76,81]. Various
studies confirm anti-inflammatory properties along with antigerminal [82,83], antiedema,
nerve-regenerating, and analgesic effects [76,82]. Ozone has been found to modulate pain
signaling, simultaneously causing alleviation of mechanical allodynia and thermal hyperal-
gesia [84]. Studies on neuropathic pain caused by chronic constriction injury (CCI) in rats
mark the decreased expression levels of upregulated pain signaling components, linked
with central sensitization, such as glutamate receptor 6 (GluR6), nuclear factor kappa-
B (NF-κB)/p65, IL-1β, IL-6, and TNF-α and phosphorylated NMDA receptor subunit 1
(NR1), NMDA receptor subunit 2B (NR2B), protein kinase C γ (PKCγ), and extracellular
signal-regulated kinase (ERK) in the spinal cord after administration of ozone [84]. Ozone
administration increases 5′-adenosine monophosphate (AMP)-activated protein kinase
(AMPK) activation, simultaneously suppressing increased phosphorylation of NR1, NR2B,
PKCγ, and ERK, aforementioned pain-promoting agents and alleviating pro-inflammatory
response by suppressing NF-κB activation in macrophages [85,86]. Despite promising
premises, contradictory results were obtained in several studies implying the possibility of
pain induction by reactive forms of oxygen [87,88].

In addition, ozone has been proven to obtain miorelaxing properties improving mobil-
ity of the treated area [89]. The ozone therapy administered in hernia patients modulates
the composition of the nucleus pulposus of the intervertebral disk matrix by the reac-
tion with building compounds resulting in the shrinking size of the disk and reduced
compression [90–92].

5.2. Therapeutic Usage of Ozone in Various Pain Syndromes

Ozone in pain treatment was first reported as early as 1960; despite growing interest in
the usage of ozone therapy and application in clinical practice, the accessible literature on
the topic remains sparse. Due to the lack of the anaphylactic reaction and low infection risk
caused by ozone’s antigerminal properties, ozone remains as one of the safest forms of treat-
ment with most of the adverse effects connected to the administration process. Currently,
several main areas of the usage of ozone in pain management can be distinguished.

5.2.1. Spinal Pathologies: Lower Back Pain and Disc Hernia

Among spinal pathologies treated with ozone most prevalent are disk hernia [93–105]
and lower back pain [100,102,103,106–108] syndromes, although several studies included
patients with disk protrusions [95] and spondylosis [95,109]. Ozone was administered
in the form of intradiscal, periganglionic, periradicular, and intraforaminal injections or
intradiscal, epidural, periradicular, periganglionic, and paravertebral infiltrations. In
most research, steroids were implemented along with ozone, although the dosage and
application form varied—in the majority, the best results were obtained with the combined
treatment [98,104,106]. Most studies reveal promising results within the research group—
with a good response rate of up to 78% [110]. Side effects of the treatment are mostly linked
to the administration of the ozone and remain reported on a very low scale [111].

5.2.2. Knee Pathologies

Most studies covering the usage of ozone in knee pathologies include osteoarthri-
tis [112–123] with up to 71.4% positive results [106]. The application of the ozone involved
intra-articular and periarticular infiltrations [112] and injections [106,114,115,122]. In com-
parison to the usage of hyaluronic acid, no statistically significant differences in efficacy
were found with the prevalence of ozone treatment in the early stages of illness, when the
inflammation stage is dominant and deformities are less prevalent [106,112–116]. Other
knee pathologies treated with ozone constitute posttraumatic arthritis [112,124,125], re-
fractory knee tendinopathies, and patellofemoral chondromalacia, where in most cases
improvement was achieved.
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5.2.3. Neuralgia, Fibromyalgia, and Nerve Damage

The biggest insight on ozone efficacy has been reported in the field of fibromyal-
gia, where Hidalgo et al. in two consecutive studies in 2005 and 2013 treated 21 and
36 patients, respectively; Tirelli et al. conducted a study in 2016–2018 on a group of
65 patients; and Moreno-Fernandez in 2019 published the results of the treatment con-
ducted on 20 patients [19–21,116,126]. Ozone was administered by autohemotherapy or
rectal infusion. In all studies, the majority of patients reported significant improvement,
involving a decrease in pain, fatigue, and mental distress. None of the studies reported
significant side effects [19–21,116,126].

A secondary group of studies on ozone efficacy can be described in the field of postviral
nerve damage, with Hu et al.’s study in 2017 on ozone autohemotherapy combined with
pharmacological therapy in postherpetic neuralgia, Li et al.’s study in 2022 on acute zoster
neuralgia treatment with high-voltage pulsed radiofrequency combined with oxygen–
ozone injection, and Zhang et al.’s in 2023 study on the postherpetic neuralgia treated with
combined high-voltage pulsed radiofrequency and ozone therapy versus ozone therapy
alone [22–24]. In the study of Hu et al. patients treated with ozone autohemotherapy
obtained significant improvement in comparison to the pharmacological group, meanwhile
Zhang et al.’s study results found no statistical differences between the two groups with
significant pain improvement in both groups—with an efficacy rate of 73% for combined
treatment and 57% for ozone only at 1 year after the treatment [22,23]. Li et al.’s study
obtained promising results with a reduction in pain intensity and an improvement in sleep
quality, enabling a significant decrease in the implemented pain medication [24].

Ozone therapy in refractory headache has been examined by Clavo et al. in a group of
five patients, with significant improvement of the symptoms pre- and posttreatment with
best results at 6 months after the treatment (1.1± 2.5 on a visual analog scale in comparison
to 8.7 ± 0.8 pretreatment) [127].

Rowen and Robins reported major clinical success in the pharmacologically unmanage-
able regional pain syndrome in 11 years old treated with 120 doses of ozone administered
as direct intravenous gas resulting in symptom-free status [25].

Two animal models in rats examining the influence of ozone on nerve regeneration
in nerve damage were conducted: Somay et al. in sciatic nerve crush and Ozbay et al.
in facial nerve crush [128,129]. Both studies found ozone beneficial in the process of
nerve regeneration with the effect on vascular congestion, vacuolization, and myelin
thickness [128,129].

5.3. Clinical Trials in Ozone Pain Management

Currently, 11 clinical trials involving the usage of ozone in pain treatment are regis-
tered, 2 of which cover cancer and chemotherapy-related pain syndromes (Table 1). Most
remain of unknown status, with only two actively recruiting, one terminated, and one
completed [130–139]. The most commonly researched condition is back pain, although
orofacial pain, osteoarthritis of the knee, diabetic neuropathy, and bladder pain syndrome
are also examined under the potential ozone usage [130–139]. The only completed trial The
Effect of Epiduroscopy and Ozone Therapy in Patients With Failed Back Surgery Syndrome
(Epiduroscopy), a study completed in 2012 in Sao Paulo, examined the efficacy and safety
of ozone therapy administered into the epidural space through epiduroscopy in 40 par-
ticipants suffering from failed back surgery syndrome. The presented results revealed a
44.0% improvement in the Oswestry Disability Index with a reduction in lumbar and leg
pain by 43.7% and 60.9%, respectively, with better results in patients with predominant
nonneuropathic pain [139].

A prospective, open-label clinical study by Rania et al. evaluated the effectiveness and
safety of intramuscular paravertebral injections of an oxygen–ozone (O2-O3) mixture for
cervicobrachial pain in 540 patients. The results showed a significant reduction in pain
over time, with all patients becoming pain-free after 1 year of treatment, and no adverse



Int. J. Mol. Sci. 2023, 24, 5279 13 of 25

events were observed. The study concludes that the injection of an O2-O3 mixture is a safe
and effective treatment option for patients with cervicobrachial pain [140].

6. Ozone Therapy in Oncology

Ozone therapy (OT) remains mainly as an element of a multidisciplinary approach in
oncology treatment. Its primary role is to alleviate radiotherapy (RT) and chemotherapy
(CT) side effects and enhance the effectiveness of conventional treatment with the purpose
of obtaining high quality of patients’ life, although several studies pinpoint the possibility
of a cancericidal effect on the tumor cells [141,142].

6.1. Ozone in Oncology-Action Mechanism

The role of tumor ischemia and hypoxia in cancer progression and development of
metastases is well examined. These factors limit the response to CT and RT as well [140].

The high oxygenation potential of ozone determines its possible role in cancer treatment.
Similarly, as in arteriopathic patients, ozonated autohemotherapy can increase oxygenation
in hypoxic tissues, leading to normoxia [143]. Ozone increases 2,3-biphosphoglycerate in
RBS and modifies the hemoglobin dissociation curve by shifting it towards the right side,
which is equal to enhancing oxygen saturation. This results in increased oxygen delivery to
ischemic tissues. Peroxidation of the erythrocyte membrane improves its flexibility and
diminishes blood viscosity. Furthermore, ozone has a vasodilatory effect expressed as
inducing the production of vasodilators such as nitric oxide [144].

A pilot study using the technique of polarographic probes has demonstrated changes
in tumor oxygenation occurring during ozone therapy. The study included a total of
18 subjects. In all patients, a significant and inverse nonlinear correlation between the
increase in oxygenation and the initial tumor pO2 values was revealed [145]. A similar
method applied in other studies has demonstrated the negative impact of tumor hypoxia
on the survival rate of patients with various types of cancer (sarcoma, tumors in the uterine
cervix, and head and neck tumors) [140,146,147].

6.2. Animal and Cell Line Models of Ozone Therapy in Cancer Therapy

The direct impact of OT on tumors’ ability to metastasize was examined by
Menedez et al. in 2008. Mice had Ehrlich Ascitic Tumor and Sarcoma 37 implanted by
the ocular plexus and were treated with ozone by rectal application, which resulted in
significant reduction in the metastases in their lungs [148].

The role of ozone in reduction of CT adverse effect was presented in studies on rats.
Ozone adjuvant therapy was proved to have protective and antioxidant effects against
methotrexate-induced nephrotoxicity, which has oxidative background [149].

Moreover, ozone-oxidative preconditioning may have cardioprotective effect dur-
ing treatment with doxorubicin. OT contributed to left ventricle morphology preserva-
tion, which was accompanied by a decrease in serum indicator of heart failure, pro-BNP
level [150].

Furthermore, ozonated water was investigated for direct antitumoral effects, which
brought promising outcomes. A study conducted on tumor-bearing mouse models and
normal controls showed that ozone affects selectively tumor tissues while remaining
harmless to normal tissues. Additionally, OT induces necrosis rather than apoptosis in a
possible mechanism of ROS exertion, which is significant to tumor immunity [151].

In combination with cannabidiol (CBD), ozone has demonstrated an antitumor effect
on pancreatic ductal adenocarcinoma (PDAC) cell lines. Activation of cannabinoid receptors
was found to induce pancreatic cancer cell apoptosis without any effect on the properly
functioning pancreas cells which supports CBD usage. The viability of neoplastic cells was
remarkably reduced after the addition of oxygen–ozone combination in comparison to CBD
alone. Moreover, both ingredients of the mentioned combination were able to significantly
affect the expression profile of genes involved in PDAC [152].
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In Mendes et al.’s study, the intraperitoneal route of OT administration was used
in mice before Lewis’ lung carcinoma inoculation, leading to diminished tumor volume
increase [153].

Veterinary studies present OT effectiveness in different types of tumors. Four canine
patients with various carcinomas (lymphosarcoma, chondrosarcoma, adenocarcinoma, and
osteosarcoma) had ozone therapy applied in treatment cycles rectally, by autohemotherapy
and by local infiltration along with CT. The survival rate increased and the quality of life
improved in all cases [154].

6.3. Clinical Evidence of Ozone Therapy in Cancer Therapy

Ozone therapy in oncology is mostly documented in alleviating various side effects de-
veloped in the course of the oncological treatment. Most studies documented inflammatory
adverse effects in the course of chemo- or radiotherapy, such as aphthous ulcers, mucositis,
proctitis, and enteritis. In the reported cases, ozone treatment leads to the major reduction
or complete disappearance of the pain symptoms and attenuates mentioned pathology,
possibly by influencing blood flow and oxygenation in hypoxic tissues [148,155–158]. More-
over, in Yu et al.’s study, in a group of 62 patients with chemotherapeutic enteritis, ozone
autotransfusion was found to reduce the blood hypercoagulability [159]. Menéndez et al.’s
study involving 70 patients with prostate cancer revealed that the inclusion of ozone in
treatment may alleviate RT adverse effects and cause a decrease in prostate-specific antigen
(PSA) figures [153].

The usage of medical ozone was also found effective in avascular osteonecrosis of
the jaw (ONJ), most commonly caused by bisphosphonates [159–161]. In a clinical trial
involving 12 patients presenting ONJ symptoms, all patients were relieved of pain, se-
cretions, and halitosis after administration of ozone therapy with complete resolution of
ONJ in 8 patients and improvement of the lesions’ persistence in 4 patients, similarly in
Agrillo’s study, among 33 patients 18 were completely healed and 10 showed a significant
reduction in symptoms and lesions [162,163]. Similar effects were obtained in the case of
ONJ co-occurring with mandibular metastasis and local RT [164]. Among the different
application of ozone belongs the management of postsurgical ailments, which was found
efficient in patients with uterine myoma and endometrial cancer, who received an intra-
venous infusion of ozonated saline water and experienced alleviation of the side effects of
antineoplastic therapy and decreased inflammatory response due to the regulated level
of CD16+ lymphocytes [165]. The higher efficacy of wound healing in ozone treatment
accelerates the postoperative recovery process, leading to avoiding potential delays in RT
and CT [141].

Ozone is also suspected as a potential anticancer agent with several studies establishing
it as novel adjuvant therapy. In Clavo et al.’s study on the advanced head and neck cancer
patients treated with radiotherapy, patients receiving ozone as adjuvant treatment achieved
2 months advantage in the survival rate in comparison to the adjuvant CT group (6 months)
despite worse clinical status—older age and more advanced lymph node involvement than
the CT group. The same study indicates RT efficacy, enhancing the potential of ozone due
to its capacity of increasing oxygenation [166]. Gaspary reports a case of a 53-year-old male
with CT-resistant metastasized stage IV rectal adenocarcinoma presenting the capacity
to contain tumor growth observed in examinations after 30 days of ozone with pulsed
electromagnetic fields (PEMFs) administration and complete pain alleviation posttreatment
despite several adverse effects of the previous CT [26].

Tirelli et al. have also shown, in their 2018 study, strong ozone potential in fatigue
management as a supportive care in oncological patients, where, in a group of 50 patients
representing various types of neoplasms, 70% of patients reported a significant reduction
in fatigue symptoms during therapy or after its termination. Moreover, no adverse effects
have been found [167].
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7. Ozone Therapy in Cancer Pain

Cancer pain, if not treated, may severely disrupt the quality of life, cause functional
decline, and increase psychological stress [168]. The mechanisms underlying cancer pain
have not been precisely identified yet, but they are different from those responsible for
inflammatory and neuropathic pain. Currently, the most likely hypothesis is that cancers
generate and secrete mediators that sensitize and activate primary afferent nociceptors in
the cancer microenvironment and additionally induce neurochemical reorganization of
the spinal cord which leads to spontaneous activity and increased responsiveness [169].
Until recently, conventional science dismissed hypotheses that ozone therapy could be used
during anticancer treatment to not only suppress tumor growth but also control symptoms
such as severe pain for years due to several flawed experimental designs and very small
study samples. Fortunately, now there is some evidence suggesting that ozone therapy
(with or without other standard treatments) has various therapeutic effects, including pain
management in cancer [15,26]. If the three-stage approach to pain management established
by the WHO fails, interventional treatment planning for pain may be a good solution.
Interventional pain management can be applied to, among other things, medical ozone
injections. Injecting medical ozone into a painful spot is proven to be the most effective
way to obtain an analgesic effect using ozone [170]. Ozone therapy may be used in pain
palliation in oncology patients because of its ability to increase oxygenation of the tissues of
the body and decrease inflammation with antibacterial, antifungal, and antiviral effects [15].
It has also been reported that medical ozone therapy has an antiedema effect on swollen
tissue [170].

7.1. Ozone Therapy in CIPN

Ozone may have a potentially valuable effect on CIPN because of its ability to modulate
oxidative stress, inflammation, and ischemia or hypoxia [171].

7.1.1. Potential Mechanisms

Nrf2 and NF-κB individually affect many signaling cascades to maintain redox home-
ostasis. Additionally, they interact with each other to further modulate levels of key redox
modulators in health and disease [172]. Activation of nuclear transcriptional factor kappa
B (NF-κB) results in an inflammatory response and tissue injury via the production of
COX2, PGE2, and cytokines. However, moderate oxidative stress activates another nuclear
transcriptional factor, nuclear factor-erythroid 2-related factor 2 (Nrf2). Nrf2 then induces
the transcription of antioxidant response elements. Several studies have proven the Nrf2
and NF-kB pathways to participate in neuropathic pain mechanisms, and targeting them
may have potentially significant therapeutic effects [172–175]. Ozone has been proven
to have an impact on the restoration of the NF-kB/Nrf2 balance [176–178]. Exposure of
explanted adipose tissue to low ozone concentrations slowed its degradation and induced
a concomitant increase in the protein abundance of Nrf2. A study performed on rats
with adenine-induced CKD found that ozone therapy reduced tubulointerstitial injury,
probably via mediating Nrf2 and NF-kB [179]. In Siniscalco et al.’s study on rats, this
time with streptozotocin-induced pancreatic damage, systemic oxygen/ozone administra-
tion increased endogenous Nrf2 in pancreatic tissue [180]. The controlled clinical trial in
healthy volunteers revealed an immediate increase in levels of Nrf2 after ozone/oxygen
exposure [181]. The study of Delgado-Roche et al., aiming to address the role of ozone
therapy on the cellular redox state in multiple sclerosis patients, showed an increase in
Nrf2 phosphorylation and activation after rectal insufflation with ozone [182]. Based on
those studies, it may be speculated that the antioxidant and anti-inflammatory properties
of ozone are connected to the activation of Nrf2, which may be crucial for ozone’s role in
CIPN management.

TGF-1 is a key regulator of diverse biological processes in many tissues and cell types.
Rodent studies revealed that neuropathic pain may be associated with a decrease in TGF-1
expression. The studies in mice revealed that the lack of TGF-1 results in a widespread
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increase in degenerating neurons and strongly reduces the survival of primary neurons. The
deficiency of TGF-1 results in increased neuronal susceptibility to excitotoxic injury, whereas
astroglial overexpression of TGF-1 protects adult mice against neurodegeneration in acute,
excitotoxic, and chronic injury paradigms [183]. TGF-1 was also reported to alleviate
nerve-injury-induced neuropathic pain in rats [184]. Modulation of TGF-1 may be another
mechanism underlying ozone’s analgesic properties in CIPN-related pain since ozone is
proven to be able to stimulate the synthesis of growth factors, including TGF-1 [185].

7.1.2. Existing Results and Current Trials

A study on rats with streptozotocin-induced diabetic neuropathy showed that rats
treated additionally with ozone performed at higher amplitudes of conduction velocity and
compound action potential and had higher total antioxidant status, lower total oxidative
status, and a lower OS index. This outcome confirmed that ozone partially inhibited the
development of drug-induced neuropathy. It also suggests that the preventive properties
of ozone are mediated through redox mechanisms [186].

The experimental trial on rats, designed to investigate whether IVF ozone has an
analgesic effect on animal models of neuropathic and inflammatory pain, was performed
at the Institute for Biomedical Sciences of Pain. The neuropathic pain in rats was produced
via separated nerve injury. In this study, IVF injection of ozone at L4-5 proved to be
effective in suppression of mechanical allodynia in rats with neuropathic pain. Moreover,
the analgesic effects of IVF ozone lasted much longer (>14 days) than other selective
molecular target drugs (<48 h), inhibiting or antagonizing at Nav1.8 (A-803467), CXCR4
(AMD3100), mTOR (rapamycin), and histone deacetylase (MGCD0103). Combined use of
systemic gabapentin and IVF ozone produced a synergistic analgesic effect in groups with
neuropathic pain [187].

In a study on rodents, Ogut et al., aiming to examine the effects of mild-level ozone
therapy on sciatic nerve regeneration, revealed an increase in SOD, CAT, GPx, and an-
tioxidant enzymes in plasma and a decrease in MDA levels in groups treated with ozone.
Although the study does not directly address CIPN, the regenerating effect of ozone on
nerve fibers is worth noting [188].

Studies on ozone therapy in a group of six cancer patients without evidence of tumor
relapse but with refractory chronic pelvic pain secondary to cancer treatment (radiother-
apy, chemotherapy, surgery, or a combination of them) showed satisfactory preliminary
results (Table 2). Following the failure of conventional therapeutic methods, such as anti-
inflammatory, co-adjuvants, or opioid drugs, ozone therapy was implemented, and all
cases, with the exception of one, demonstrated clinically significant pain reduction. The
standard treatment resulted in a visual analog scale score of 7.8 ± 2.1 before O3T, 4.3 ± 3.4
(p = 0.049) after 1 month, 3.3 ± 3.7 (p = 0.024) after 2 months, and 2.8 ±3.8 (p = 0.020) after
3 months [27,28].

The other study conducted on seven patients (two males and five females between 36
and 73 years old) with chronic and painful grade II or III level of CIPN revealed significant
improvement in all patients except for one after adjuvant treatment with rectal ozone
therapy. The median pain score according to the VAS was 7 (range: 5–8) before ozone
treatment, 4 (range: 2–6) at the end of ozone treatment (p = 0.004), 5.5 (range: 1.8–6.3)
3 months later (p = 0.008), and 6 (range: 2.6–6.6) 6 months later (p = 0.008) [29].

Several clinical trials are currently underway to assess the efficacy and additional costs
of ozone therapy (Tables 1 and 2).

A randomized, triple-blind trial will be conducted on 42 patients with any type of
cancer and any type of chemotherapy who have CIPN of grade II or higher for more than
3 months. Patients will receive standard care along with 40 rectal insufflation sessions of
O3/O2 over the course of 16 weeks: ozone arm (n = 21): concentration of O3/O2 increasing
from 10 to 30 g/mL and control–placebo arm (n = 21): concentration of O3/O2 = 0 g/mL.
The following main variables will be analyzed at the end of the treatment: “average
pain” secondary to CIPN using the Brief Pain Inventory-Short Form (BPI-SF), health-
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related quality of life (HRQOL) and utilities using the EQ-5D-5L and SF-36 quality-of-life
questionnaires, and direct costs. Secondary trial variables include biochemical parameters
of oxidative stress and inflammation, the Hamilton scale for anxiety and depression,
hyperspectral images, and patient acceptance of a shared decision-making (SDM) tool. The
trial with assessments and follow-up is expected to last 36 months in total [128].

Another trial, with 105 patients, aims to assess the clinical effect of adding ozone
to standard treatment on HRQOL. The EQ-5D-5L questionnaire will be used to assess
HRQOL. Secondary variables include anxiety and depression as measured by the hospital
anxiety/depression (HAD) questionnaire, pain as measured by the visual analog scale
(VAS), cancer patients’ grade of toxicity as measured by the CTCAE v5.0 scale, the number
of invasive procedures required for symptom management, a self-reported percentage of
symptom improvement, and biochemical parameters of oxidative stress and inflammation
The study is of observational character and is estimated to last 49 months [129].

8. Discussion

Chemotherapy-induced peripheral neuropathy belongs to the common side effects
of the various antineoplastic agents used in cancer treatment [5,189]. Due to CIPN’s
complex character consisting of hyperalgesia, allodynia, hypersensitivity, paresthesia,
dysesthesia, pain, and cramping of the extremities, it severely influences patients’ quality
of life and can be the reason for the decrease in dosage or treatment termination [31,189].
Simultaneously due to the complex pathomechanism, CIPN tends to remain persistent
even after termination of the treatment, sometimes presenting as late offset after treatment
completion [189].

A major limitation in CIPN management is the low effectiveness and response rate of
the available therapeutic options with little to no preventive compounds available due to
their contradictory mechanism to the chemotherapeutic agents [10,55–57].

The potential significant role of oxidative stress and redox imbalance in the pathogene-
sis of CIPN along with the influence of the inflammatory response and dorsal root ganglion
damage indicates the strong potential of ozone treatment in CIPN [37,38,41].

Considering numerous reports on the ozone restoration properties on the cellular redox
balance and influence on the inflammatory response by decreasing levels of pain signaling
agents, such as IL-1β, IL-6 and TNF-α, GluR6, phosphorylated NR1, phosphorylated
NR2B, and PKCγ, ozone targets multiple CIPN-induction pathways [85,86]. Moreover,
ozone has been found to decrease macrophage inflammatory response by influencing
NF-κB/p65, induce a rapid increase in nuclear factor-erythroid 2-related factor 2 (Nrf2)
responsible for redox homeostasis maintenance, modulate deficiency of TGF-1 linked
with neurodegeneration, and diminish hypersensitization caused by extracellular-signal-
regulated kinase (ERK) [85,86,174–176,181].

Several reports describe the successful usage of ozone therapy in neuropathic pain
syndromes, such as fibromyalgia, postviral neuralgia, and regional pain syndrome as well
as various cancer-related pain ailments, with high response rates enabling a decrease in
pain medication dosage and high safety profile [15,19–23,116,126,164].

The effectiveness of anticancer ozone treatment in animal models and positive results
of adjuvant ozone treatment in people strongly suggest ozone therapy as highly beneficial
besides pain relief factor [148,151,153–158].

The partial similarity between pathomechanisms of CIPN and other neuropathic pain
syndromes indicates high possibility of the successful usage of ozone in CIPN, which is
already prevalent in several studies conducted on the action of ozone in CIPN [128,129].

9. Conclusions

The scientific evidence proves that ozone, by virtue of its antioxidant, immunomodu-
latory, and oxygenation properties, can be a valuable complementary therapeutic measure
in CIPN treatment. However, its direct effects are not yet well examined and further
investigation is warranted in this field.
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