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Abstract: Tat is an essential gene for increasing the transcription of all HIV genes, and affects HIV
replication, HIV exit from latency, and AIDS progression. The Tat gene frequently mutates in vivo
and produces variants with diverse activities, contributing to HIV viral heterogeneity as well as
drug-resistant clones. Thus, identifying the transcriptional activities of Tat variants will help to
better understand AIDS pathology and treatment. We recently reported the missense mutation
landscape of all single amino acid Tat variants. In these experiments, a fraction of double missense
alleles exhibited intragenic epistasis. However, it is too time-consuming and costly to determine the
effect of the variants for all double mutant alleles through experiments. Therefore, we propose a
combined GigaAssay/deep learning approach. As a first step to determine activity landscapes for
complex variants, we evaluated a deep learning framework using previously reported GigaAssay
experiments to predict how transcription activity is affected by Tat variants with single missense
substitutions. Our approach achieved a 0.94 Pearson correlation coefficient when comparing the
predicted to experimental activities. This hybrid approach can be extensible to more complex Tat
alleles for a better understanding of the genetic control of HIV genome transcription.
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1. Introduction

Human immunodeficiency virus (HIV) causes acquired immunodeficiency syndrome
(AIDS), characterized by a progressive failure of the immune system. It remains an im-
portant health problem in the United States with 1,189,700 infected people, 18,489 annual
deaths, and an annual medical cost exceeding USD 50 billion [1]. HIV lacks proofreading
of its replicated RNA genome and has a high mutation rate of 1 in 104 bp, with each virion
9 kB genome having about 10 new variants [2]. Furthermore, an active HIV infection in
a single individual is estimated to generate approximately 1011 virions per day [3]. The
combination of high mutation rates with efficient virion generation creates an extremely ge-
netically heterogeneous and diverse viral genome population, which is a key consideration
for important pathogenic processes such as antiretroviral therapy (ARV) resistance, latency,
and strain evolution. After selective pressure from ARV therapy, variant virions with
drug-resistant variants may survive and propagate, limiting therapeutic efficacy. Therefore,
it is important to understand how HIV evolves both within a person, and in worldwide
populations with relevance to AIDS pathogenesis and treatment [4].

Tat is an essential regulatory gene that drastically enhances the efficiency of HIV
genome transcription and replication. The absence of Tat may lead to short and abortive
viral transcripts, and Tat variants widely affect different viral activities. Therefore, a com-
prehensive investigation of various activities of Tat variants can deepen the understanding
of AIDS pathology and assist drug design targeting for a broader range of HIV-1 strains.
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Studies of variant frequencies, HIV evolution, and small-scale mutagenesis studies
have greatly advanced knowledge about ARV drug resistance and how to effectively treat
AIDS. Although viral isolates from an infected patient are experimentally tested, the ability
to link specific genetic changes with the functions of viral proteins is largely limited to
low-throughput experiments, which slowly and incrementally reveal how the vast variant
landscape of a typical infection impacts HIV replication, viral latency, drug resistance, and
AIDS pathogenesis.

Two high-throughput approaches are available to estimate the effects of the variants:
the GigaAssay [5] directly measures a functional readout such as transcription, whereas the
alternative multiplex assays of variant effect (MAVEs) are survival screens [6–8]. Activities
are determined in a GigaAssay by measuring thousands of reads for approximately a
million individually UMI-barcoded variant cDNAs. By comparing populations of cDNAs
for each mutant to the populations for controls, this GigaAssay approach produces an
accurate measurement and classification of Tat transcriptional activity with high confidence.

A previous analysis of Tat with the GigaAssay reported transcriptional activities for
all 1615 Tat single and 3429 double missense variants with a ~95% accuracy [5]. A total of
35% of all possible single amino acid variants in Tat are loss-of-function. However, it is
currently too time-consuming and costly to conduct GigaAssay experiments on millions of
variants to complete the Tat double missense mutant landscape. Our aim is to engineer
efficient computational approaches to accurately estimate Tat’s transcriptional activities of
single variants. These tools will next be used in a future extension to predict the activities
of double-variant Tat alleles. The novelty of our approach lies in the combination of high-
accuracy GigaAssay variant/activity data with deep learning algorithms. The evaluations
herein demonstrate the efficiency of our novel approach in predicting single missense
mutant activities. This clearly suggests that this approach can likely be extended to predict
the effect of more complex variants and possibly for other protein activities.

2. Results
2.1. Overview of the Proposed Deep Learning Framework Called Rep2Mut

We proposed testing a deep learning framework called Rep2Mut to accurately estimate
the transcriptional activity of missense variants. The architecture of the Rep2Mut algorithm
is shown in Figure 1 using the Tat protein (86 amino acids) as an example. The output
of Rep2Mut is the predicted effect upon the transcriptional activity of Tat variants, and
the inputs are the wild type (WT) protein sequence, mutated protein sequences (missense
variants), and mutated amino acid positions.
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There are several steps in the Rep2Mut algorithm to capture the difference between a
WT sequence and its mutated sequences. First, a WT sequence is used as an input of the
evolutionary scale modeling (ESM) protein language model [9] to learn the representation
of the position of interest in the WT sequence. This WT representation, with a vector of
1280 elements, is then an input of fully connected layer 1 (Figure 1) to generate a vector
with 128 elements. Similarly, the corresponding mutated sequence is used as input to the
ESM to generate a representation vector of 1280 elements in the mutated sequence. The
learned representation is then fed into a fully connected layer 2 (Figure 1) to generate the
other vector with 128 elements. The two vectors of 128 elements are combined by applying
element wise multiplication (see Figure 1) followed by concatenation with the position
encoding vector of a mutation position. The position encoding vector has N elements
(N = 86 for the Tat protein); each element is for one position in the protein sequence. All
values are zero except for the mutated position, which is marked by 1. Next, the combined
vector is an input to fully connected layer 3 (Figure 1) with a Sigmoid activation function to
generate the prediction of transcriptional activity. In total, the Rep2Mut network with the
Tat protein has 328,153 trainable weights.

2.2. Evaluation of the Proposed Deep Learning Framework Rep2Mut

We evaluated Rep2Mut on the GigaAssay transcriptional activity data for all 1615 sin-
gle amino acid missense variants in HIV Tat. Layers 1 and 2 of Rep2Mut (in Figure 1) were
pretrained on 115,997 single variants of 37 existing protein datasets with different protein
functional measurements (Figure 1). After adding layer 3, all layers in Rep2Mut were then
optimized and fine-tuned on the experimental GigaAssay data. To avoid overfitting, 10-fold
cross-validation was repeated 10 times and used to calculate the performance of Rep2Mut.

When the variant activities predicted with Rep2Mut were compared to the GigaAssay
results, a Pearson correlation coefficient of 0.94 and a Spearman correlation coefficient of
0.89 were observed. We repeated the analysis with a baseline method and two recently
published methods, ESM [9] and DeepSequence [10], compared to Rep2Mut in Figure 2
and Table 1. The baseline method is a feed forward neural network with simple encoding
of the variant sequences as input (described in the Methods), and its performance was
~0.17 lower than Rep2Mut.

For the ESM prediction methods (called ESM_pred, to be distinguished from ESM
models), we tested all Tat variant activities of the five trained ESM_pred estimations
compared with the experimental activities and calculated the best performance. The
predictions and the performance of the averaged prediction by ESM_pred are shown in
Figure 2a,b and in Table 1. As expected, the averaged estimation of variants from the five
ESM_pred achieved a better performance (0.59 Spearman correlation coefficient) than any
of the individual ESM_pred estimations.

For the DeepSequence method, we generated multiple sequence alignments using
EVision and retrained DeepSequence as suggested by Riesselman et al. [10]. DeepSequence
needs to be retrained for each protein sequence due to the different number of dimensions.
DeepSequence generated a higher Pearson correlation coefficient (0.57), but lower Spearman
correlation coefficient (0.41) when compared to the ESM_pred prediction of the activities
of the Tat variants (Figure 2c and Table 1). Unfortunately, DeepSequence was only able to
generate predictions for 10% of all variant data (see Figure 2c), even after fine-tuning the
retraining process with more sequences in the multiple sequence alignments, demonstrating
a limitation of DeepSequence for this application.

In conclusion, our Rep2Mut algorithm achieved a much better performance when
compared to the state-of-the-art models ESM_pred and DeepSequence (Figure 2d) and
(Table 1). The Pearson correlation coefficient for Rep2Mut was 0.39 higher than ESM_pred,
0.37 higher than DeepSequence, and 0.18 higher than the baseline method. Likewise,
the Spearman correlation coefficient was 0.31 higher than ESM_pred, 0.48 higher than
DeepSequence and 0.17 higher than the baseline method.
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Figure 2. Comparison of activity estimation by Rep2Mut with two state-of-the-art methods.
(a) ESM_pred: the best performance among the 5 ESM_pred estimation. (b) ESM_pred _avg: the
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of the dots in graph.
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Table 1. Pearson and Spearman correlation coefficients comparing the experimental activities to
predictions from Rep2Mut and the state-of-the-art methods.

Prediction Method Pearson Spearman

ESM_pred 0.51 0.56

ESM_pred_avg 0.54 0.59

DeepSequence 0.57 0.41

The baseline method 0.76 0.72

Rep2Mut (wo_p 1) 0.91 0.87

Rep2Mut 0.94 0.89
1 “wo_p”: Rep2Mut without position encoding vector.

2.3. Effect of Amino Acid Position on Activity Prediction

The activities of Tat variants are partially dependent upon the positions in the Tat
protein sequence. Figure 3 shows that the last 20 positions of the Tat protein (C-terminal)
have WT GigaAssay activities with some outliers such as K85E, which demonstrate a higher
tolerance than the N-terminal amino acids [5]. Therefore, we tested the predictions of the
Rep2Mut without a position encoding vector. Compared with Rep2Mut, a modified algo-
rithm without a position vector achieved slightly lower Pearson and Spearman correlation
coefficients (0.03 and 0.02 lower, respectively; Table 1). This result suggests that Rep2Mut
has no significant overfitting with positional information.
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2.4. Rep2Mut Sensitivity Analysis for the Fraction of Training Data

The initial evaluation of Rep2Mut predictions used 90% of the variant activity data
(n = 1457) to train Rep2Mut, and the remaining 10% for testing. However, for scaling, even
with high-throughput wet-lab experiments such as the GigaAssay, acquiring experimental
data is too time consuming and cost prohibitive to assess complex variants. Therefore, we
evaluated Rep2Mut’s performance to identify the minimal amount of training data needed
to maintain near-maximal performance. We trained Rep2Mut with 70, 50, 30, 20, 10, and 7%
of the Tat activity single missense variant dataset, and tested Rep2Mut performance with
the remainder of the data. To reduce errors from random sampling, we split, trained, and
tested those predictions 50 times, calculating an average performance for all tests (Figure 4).
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X%: X% data are used to train Rep2Mut and (100-X)% for testing, and X is 90, 70, 50, 30, 20, 10, and
7 for different testing strategies. “#Training”: the numbers/percentages of training datasets.

As expected, reduced Rep2Mut performance was observed with smaller training
sampling. However, the performance (Spearman correlation coefficient) only showed a
minimal reduction when Rep2Mut was trained with 50% or more of the data. Further
reduction to 20 or 30% of the training data only reduced the performance by 0.03. The
performance further decreased by another ~0.02 when 10% of the data was used for training.
Surprisingly, Rep2Mut achieved more than a 0.80 or 0.82 Spearman correlation coefficient
when only 7% (113 variants) or 10% of the data, respectively, were used for training.
This will make the combination of deep learning with the GigaAssay more scalable for
multivariant alleles because as little as ~20% of the variant data can generate predictions of
variant effect with little compromise in performance.

3. Discussion
3.1. Visualization of Predicted Vectors

To better understand how Rep2Mut predicts variant effects, we used combined vector
after dot product in Figure 1 of all variants to create a global map after dimension reduction
to a 2D space using uniform manifold approximation and projection (UMAP) [11]. We then
investigated the resulting 2D map for correlations with GigaAssay activity, variant position,
and the physiochemical types of amino acids (Figure 5).

Figure 5a,b clearly demonstrate that variants with different experimental activities
had a smooth distribution from the right to the left, with or without position encoding.
Variants with high activities were in the left half, while most variants with low experimental
activities were in the right half for both Figure 5a,b. The positions followed quite a similar
distribution in the 2D space, although there was abnormal deviation in the middle of the
plots of Figure 5c,d. This again suggests that the Rep2Mut model itself learned position
information from the protein sequences without including the position encoding.
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Figure 5. Visualization of the Rep2Mut final vectors after dimensionality reduction with UMAP:
(a,c,e,g,i) with position vector; (b,d,f,h,j) without position vector; (a,b) colored by GigaAssay activi-
ties; (c–j):colored by positions; (e,f) positively charged amino acids (Arg, His, and Lys); (g,h) special
cases of amino acids (Cys, Gly, and Pro); (i,j) polar uncharged amino acid (Ser, Thr, Asn, and Gln). In
(e–j), 0: (blue) positions of variants lower than 45; 1: (green) positions of variants larger than 45, and
this is why (e–j) have different color ranges from (c,d).
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3.2. Association of Amino Acid Types with Tat Activity Predictions

Figure 5e–j show three different groups of WT amino acid types in 2D space, with and
without the position vector. In all subplots, there was a clear distribution of experimental
activities from right to left. Interestingly, there was no such pattern in the 2D space with
different groups of mutated amino acids, suggesting non-randomness of the WT amino
acids at each position.

3.3. Outliers in Rep2Mut Prediction

To better understand incorrect predictions, we analyzed the activity prediction outliers.
In Figure 2d and Table 2, we annotated those variants whose predicted activities were
0.3 larger or smaller than the experimentally-determined activities (n = 20). We split
them into two groups: overestimation if the predicted activities were 0.3 larger than the
experimental activities, or underestimation if predicted activities were 0.3 smaller than
experimental activities. We chose the 0.2 to 0.3 range because this is the approximate error
rate for activities determined for UMI barcodes in the GigaAssay [5]. In Table 2, we also
listed the mean, maximum, and minimum of the predicted and GigaAssay activities for the
positions of the outlier predictions.

In all outlier predictions, the average predicted activities of each mutated position
were very similar to the averaged experimental activities for that position. The majority
of the outlier overestimations had very low experimental activities among the 19 variants
for each position, while all of the underestimated outliers had the highest experimental
activities. In particular, K12P and K85E, which were overestimated by Rep2Mut, had
significantly lower experimental values when compared to other variants at the same
positions (K85E: 0.16 vs. >0.72 for other K85 variants; K12P: 0.12 vs. >0.5 for other K12
variants). Several other variants such as P3R, P6K, K12P, and R7P all involved a proline
substitution, suggesting that the unique nature of proline might not be captured by the
deep learning algorithm.

Curiously, all overestimated and underestimated outliers were in the Cyclin T1 inter-
action site defined in a structure of the Tat:Cyclin T1 complex [12]. Visualization of this
structure (PDB: 4OR5) with PyMOL identified M39K and F32H in two α-helices (27–32
and 34–42) of the Tat protein, and the majority of these mutated positions interacted with
Cyclin T1 (Figure 6). According to the accessible surface area calculated by RDBePISA,
many of the mutated positions had a buried accessible surface area >40 Å2 when the Tat
protein binds with Cyclin T1. The structure analysis also demonstrates that the outliers
Q35R, Q17V, and E2A have hydrogen bonds with Cyclin T1.

One potential explanation of the observation of the erroneous predictions for substitu-
tions at the Cyclin T1 interface is that Cyclin T1 accessibility or interactions may differ in the
cell lines used in the GigaAssay (the cells used for the GigaAssay express Cyclin T1 [13]).
An alternative explanation could be that our predictions do not have data that considers the
structural complexity of the protein–protein interaction in this region. Another possibility
is that these amino acids are important for a presently unknown interaction.
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Table 2. Overestimated and underestimated outliers predicted by Rep2Mut.

GigaAssay Predicted

Var GA Pred #ID Avg Min Max Avg Min Max

Overestimation

E2A 0.19 0.57 E2 0.44 P = 0.16; A = 0.19;
C = 0.24

D = 0.77; T = 0.72;
Q = 0.72 0.47 P = 0.28; I = 0.36;

R = 0.36
S = 0.58; T = 0.57;

Q = 0.57

P3R 0.21 0.56 P3 0.56 R = 0.20; K = 0.22;
G = 0.34

L = 0.77; V = 0.75;
I = 0.75 0.56 K = 0.41; D = 0.43;

Y = 0.48
V = 0.64; S = 0.62;

L = 0.62

P6K 0.16 0.55 P6 0.62 K = 0.16; R = 0.36;
L = 0.45

W = 0.85; Y =
0.79; F = 0.77 0.61 R = 0.48; D = 0.51;

E = 0.54
S = 0.67; H = 0.66;

A = 0.66

R7P 0.25 0.64 R7 0.78 P = 0.24; K = 0.7;
I = 0.75

E = 0.86; D = 0.85;
S = 0.83 0.75 P = 0.63;

W = 0.66; T = 0.69
E = 0.83; Q = 0.8;

Y = 0.8

K12P 0.12 0.56 K12 0.70 P = 0.12; G = 0.50;
T = 0.62

L = 0.83; Q = 0.82;
N = 0.82 0.69 F = 0.55; P = 0.55;

W = 0.59
Q = 0.8; A = 0.79;

T = 0.78

Q17V 0.32 0.62 Q17 0.51 P = 0.11;
W = 0.24; I = 0.24

K = 0.8; R = 0.78;
A = 0.77 0.51 P = 0.32; F = 0.33;

Y = 0.41
V = 0.62;

M = 0.61; C = 0.59

F32H 0.16 0.47 F32 0.24 D = 0.09; K = 0.1;
N = 0.1

Y = 0.84;
W = 0.76; L = 0.55 0.27 G = 0.07; P = 0.11;

E = 0.13
Y = 0.53; H = 0.47;

M = 0.42

Q35R 0.11 0.44 Q35 0.42 K = 0.08; D = 0.1;
R = 0.11

H = 0.79;
M = 0.74; Y = 0.71 0.43 P = 0.26; G = 0.33;

E = 0.33
H = 0.55;

A = 0.55; M = 0.51

M39K 0.11 0.45 M39 0.45 W = 0.1; K = 0.1;
R = 0.1

L = 0.84; I = 0.78;
V = 0.78 0.45 P = 0.22; R = 0.28;

D = 0.28
V = 0.77; I = 0.61;

S = 0.6

K85E 0.17 0.76 K85 0.76 E = 0.16; W = 0.72;
F = 0.75

V = 0.83; D = 0.81;
Q = 0.81 0.78 P = 0.65; M = 0.73;

W = 0.73
S = 0.87; T = 0.83;

H = 0.82

Underestimation

D5E 0.64 0.32 D5 0.28 F = 0.15; I = 0.16;
R = 0.17

E = 0.64; S = 0.51;
C = 0.4 0.32 I = 0.18; L = 0.19;

M = 0.22
N = 0.46; S = 0.46;

H = 0.41

E9P 0.84 0.37 E9 0.45 W = 0.13; F = 0.15;
Y = 0.17

P = 0.84; A = 0.81;
D = 0.76 0.45 F = 0.25; W = 0.32;

R = 0.32
D = 0.66; A = 0.61;

Q = 0.58

P10N 0.77 0.46 P10 0.43 W = 0.12; F = 0.14;
M = 0.17

N = 0.76; A = 0.74;
S = 0.74 0.43 W = 0.29;

D = 0.32; Y = 0.33
A = 0.62; S = 0.57;

C = 0.53

G15T 0.59 0.21 G15 0.21 E = 0.09; F = 0.11;
I = 0.11

S = 0.73; T = 0.59;
P = 0.35 0.23 Y = 0.11; I = 0.14;

F = 0.16
Q = 0.36;

M = 0.33; V = 0.33

G15S 0.74 0.28 G15 0.21 E = 0.09; F = 0.11;
I = 0.11

S = 0.73; T = 0.59;
P = 0.35 0.23 Y = 0.11; I = 0.14;

F = 0.16
Q = 0.36;

M = 0.33; V = 0.33

Q17K 0.81 0.50 Q17 0.51 P = 0.11; W =
0.24; I = 0.24

K = 0.8; R = 0.78;
A = 0.77 0.51 P = 0.32; F = 0.33;

Y = 0.41
V = 0.62;

M = 0.61; C = 0.59

C31A 0.76 0.36 C31 0.24 P = 0.09; Y = 0.1;
E = 0.1

A = 0.76; S = 0.73;
V = 0.42 0.25 R = 0.11; K = 0.14;

D = 0.14
S = 0.53;

V = 0.51; T = 0.49

F32Y 0.85 0.53 F32 0.24 D = 0.09; K = 0.1;
N = 0.1

Y = 0.84;
W = 0.76; L = 0.55 0.27 G = 0.07; P = 0.11;

E = 0.13
Y = 0.53; H = 0.47;

M = 0.42

F32W 0.76 0.29 F32 0.24 D = 0.09; K = 0.1;
N = 0.1

Y = 0.84; W = 0.76;
L = 0.55 0.27 G = 0.07; P = 0.11;

E = 0.13
Y = 0.53; H = 0.47;

M = 0.42

F38W 0.52 0.19 F38 0.15 D = 0.08; Q = 0.09;
R = 0.09

W = 0.51; Y = 0.39;
L = 0.15 0.14 R = 0.06; K = 0.07;

S = 0.07
I = 0.22; V = 0.22;

W = 0.19

Var: the variants, GA: GigaAssay, Pred: predicted activities, #ID: WT amino acids with variant positions, Min: the
3 minimum GigaAssay or predicted values for that variant, Max: the 3 maximum GigaAssay or predicted values
for that variant. “X = Y”: X is the mutated amino acid type, and Y is the activities.
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Figure 6. The structure (PDB ID: 4OR5) of the Tat: Cyclin T1 complex. Tat (purple cartoon) binds to
Cyclin T1 (surface view). (a) Underestimated variants are colored green. (b) Overestimated variants
are colored red.

4. Materials and Methods
4.1. Dataset

The dataset used for testing was made up of single variants of HIV Tat proteins,
generated by GigaAssay [5]. This Tat protein is composed of 86 amino acids, and each
position except the first amino acid is mutated individually to 19 other amino acids besides
the WT amino acid. In total, there are 1615 single missense variants of the Tat protein. Each
missense variant was sequenced with more than five barcodes, and the transcriptional
activity of each variant was calculated by the GigaAssay. The effect of a single variant was
estimated with a value ranging from 0 to 1, where the larger the value, the less effect of the
single variant on the transcriptional activities of the Tat protein.

4.2. Rep2Mut Framework to Estimate Tat Variants’ Effect on Transcriptional Activities

Rep2Mut is a sequence-based prediction of the effect of variants on transcriptional
activities measured by GigaAssay. As shown in Figure 1, the input of Rep2Mut includes
three types of sequence information. One is the WT sequence, and the other is the mutated
sequence with a substitution of an amino acid at a position of interest. For either the
WT or mutated sequence, we used evolutionary scale modeling (ESM) [9] to learn the
representation of the mutated position.

ESM [9,14] is a self-supervised learning framework that was trained on millions of
protein sequences to learn multiple levels of protein knowledge from biochemical properties
to evolutionary information. It is composed of multiple transformer layers and trained
using the masked language modeling objective [15]. Usually, the learned representation at
the 33rd layer is used to predict the diverse functions of proteins. ESM-1v [9] is a 34-layer
transformer trained on a UniRef90 dataset [16] with five released pretrained models. We
used the first pretrained model, and fed WT or mutated sequences into it. We used the
learned vector of the position of interest at the 33rd layer to represent WT or variant
information. This learned vector has 1280 elements.

Each of the learned representation vectors from ESM-1v was used as the input of a
fully connected neural network layer with a vector of 128 elements as the output (as shown
in Figure 1). The PReLU activation function [17] was applied to the layers with a dropout
rate of 0.2 to avoid overfitting [18]. The two 128-deminsion vectors were then merged with
an elementwise dot product. The element-wise product (or the Hadamard product) is a
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binary operation that takes two matrices of the same dimensions as the input and produces
another matrix of the same dimension as the operands. In other words, given two matrices
Am,n and Bm,n, of the same dimension m × n, the elementwise product A� B = (A)ij(B)ij,
where 0 < i ≤ m and 0 < j ≤ n.

The third type of input to Rep2Mut was a mutated position. A position was encoded
into a binary vector of N elements each of which corresponds to a position in the protein
sequence of interest. This encoding vector only has one value of 1 at the mutated positions
for variants and 0 for all the other positions. This position encoding vector is then concate-
nated with the dot-product vector and used as the input of another fully connected neural
network to predict the transcriptional activity. The prediction is normalized with a Sigmoid
activation function so that the output value ranges from 0 to 1.

4.3. Training and Testing Rep2Mut

There are two steps to train Rep2Mut. First, we pretrained layers 1 and 2 (as shown in
Figure 1) on another 37 protein datasets with various measurements of protein functions.
The pretraining was used to optimize weights in the two neural networks. Afterward, we
added layer 3 in Figure 1, and fine-tuned Rep2Mut to predict the GigaAssay activities. In
both the pretraining and fine-tuning processes, we used the Adam optimizer [19] and MSE
loss function in back-propagation. MSE is defined in Equation (1) where n is the number of
data points, Yi is the observed activities, and Ŷ is the predicted activities.

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (1)

During the fine-tuning process, we used a batch size of 8, and a learning rate of
1 × 10−3 for layer 3. Since layers 1 and 2 were optimized during the pretraining step, we
used a smaller rate, and the learning rate for layers 1 and 2 was 1 × 10−5.

To compare Rep2Mut with the other methods, we used 10-fold cross validation. We
randomly split the GigaAssay data into 10 groups, each of which had 10% of the ex-
perimental data. Each time, a group was used for testing and the remaining data for
training. We repeated this process ten times and obtained the mean of the performance to
evaluate Rep2Mut.

To test the performance of Rep2Mut with different sizes of training data, the variants
in the dataset were shuffled and then split into two sets called the training (90%) and test
(10%) set. Rep2Mut was learned on training data and evaluated on test data using the
Pearson and Spearman’s correlation coefficients defined below. To avoid random splits, the
process above was repeated 50 times, and the averaged performance was calculated for a
final evaluation.

4.4. Evaluation Measurements

We used the Pearson and Spearman’s correlation coefficients to measure the perfor-
mance of each tested method. We used the python package scipy to calculate both the
Pearson and Spearman’s correlations for the prediction activities of a method. In detail,
let X be the GigaAssay activities of a list of variants, and Y be the predicted activities
of the same list, and then the Pearson correlation coefficients (PCC) are calculated using
Equation (2), where p is the Pearson correlation coefficient, xi is the ith observed values in
X, x is the mean of X, yi is the ith predicted values in Y, and ȳ is the mean of Y.

p =
∑(xi − x)(yi − y)√

∑(xi − x)2 ∑(yi − y)2
(2)

Likewise, the Spearman’s rank correlation coefficients (sPCC) were estimated with
Equation (3) where sp is the Spearman’s rank correlation coefficient; R(∗) is the ranking of
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items in ∗; cov(R(X), R(Y)) is the covariance of X and Y; σR(X) is the standard deviation
of X; σR(Y) is the standard deviation of Y.

sp =
cov(R(X), R(Y))

σR(X)σR(Y)
(3)

4.5. How to Use ESM to Predict Tat Variants’ Activities

ESM [9] has a diverse capability to estimate proteins’ activities and functions. Here, we
used ESM (called ESM_pred so that it is different to the ESM released models) to estimate
the GigaAssay activities that were not previously conducted. To determine the effect of
the variants, the probability of each amino acid type at a position of interest is predicted
in ESM_pred, and the variant effect is calculated based on the logarithmic ratio of the
probability between the mutated amino acid and the WT amino acid in Equation (4), where
T is the set of mutated positions; x\T is the masked input sequence; p

(
xt = xmt

t

∣∣∣x\T) is

the probability assigned to the mutated amino acid xmt
t ; p

(
xt = xwt

t

∣∣∣x\T) is the probability
assigned to the wildtype.

∑
t∈T

logp
(

xt = xmt
t

∣∣∣x\T)− logp
(

xt = xwt
t

∣∣∣x\T) (4)

As recommended by ESM [9], five released ESM models (ESM-2 Public Release v1.0.3:
esm1v_t33_650M_UR90S_1, esm1v_t33_650M_UR90S_2, esm1v_t33_650M_UR90S_3,
esm1v_t33_650M_UR90S_4, and esm1v_t33_650M_UR90S_5) were used individually to
predict the transcriptional effect after Tat variants. sPCC was then calculated for each
model. In addition, the average prediction for the transcriptional effect of each Tat variant
was determined by combining the predictions of five models, and estimated using sPCC.

4.6. How to Test DeepSequence on Tat Variants

DeepSequence [10] is a generative, unsupervised latent variable model to estimate
the effects of the variants on biological sequences across a variety of datasets with deep
mutational scanning. The model was learned in an unsupervised manner solely from
sequence information, and grounded with biologically motivated priors, revealing a latent
organization of sequence families. There are three steps to run DeepSequence. First, a
protein sequence of interest was used as input of multiple sequence alignment (MSA)
tools to generate multiple sequence alignments. We used the recommended tools by
DeepSequence, EVcoupling from the website v2.evcouplings.org. DeepSequence [10]
suggests the use of a bit score of 0.5 bits/residue as a threshold to generate MSA results.
However, MSA results of the Tat protein with this score generated only 1.7 Seqs/L with
123 sequences, which was not enough to train DeepSequence. We thus tested two bit scores:
0.3 bits/residue with 1645 effective sequences and 23.8 Seqs/L as well as 0.25 bits/residue
with 7871 effective sequences and 110.9 Seqs/L. Second, DeepSequence was trained with
the sequences from MSA. Although DeepSequence is a generative model, each protein
sequence requires a different model. We used MSA sequences with each bit score to retrain
DeepSequence to generate separate models. Finally, the retrained models were used to
predict the effect of the variants. However, both models predicted only ~10% (114) of the
single variants, although 0.3 bits/residue produced better results.

4.7. The Framework of a Baseline Method

A simple baseline method was also designed and compared with Rep2Mut. This
method uses the one-hot encoding of amino acids at each position as the input, and has
three fully connected layers of feed forward networks: the input is a vector of 1720 elements,
the first hidden layer generates a vector of 860 elements, and the second generates a vector
of 256 elements. The output is the predicted activity for a variant. This method was trained
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with a batch size of 16 as well as a learning rate of 5 × 10−4, and tested with a similar
strategy to Rep2Mut.

5. Conclusions

We designed a deep learning-based method that only used protein sequences to
accurately predict the transcriptional activities of experimentally-determined Tat variants.
With the representation learning from protein sequence models, our approach achieved a
0.94 Pearson correlation coefficient. This demonstrates that our deep learning-based method
can precisely estimate the transcriptional activities of proteins with various variants and
has great potential to be extended to complex mutations and other protein sequences.
Although we used supervised learning while state-of-the-art methods such as ESM and
DeepSequence models use unsupervised training, the superior performance makes our
approach more promising for new applications. In particular, our method, trained on
as little as 20 or 30% of data, was able to achieve a much better performance than the
state-of-the-art methods, demonstrating its potential application on other proteins with
limited training data. We plan to extend our methods to complex variant alleles and to
other proteins for human disease studies.

Author Contributions: Conceptualization, Q.L. and M.R.S.; methodology, Q.L., H.D. and G.C.;
software, H.D. and Q.L.; validation, H.D., Q.L. and G.C.; formal analysis, H.D. and Q.L.; investigation,
H.D. and Q.L.; resources, Q.L.; data curation, C.J.G., R.B., H.D. and Q.L.; writing—original draft
preparation, H.D., Q.L. and M.R.S.; writing—review and editing, H.D., Q.L. and M.R.S.; visualization,
H.D. and Q.L.; supervision, Q.L.; project administration, Q.L.; funding acquisition, M.R.S. and Q.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Institute of General Medical Sciences grant num-
ber P20GM121325.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and the scripts for data analysis are publicly available at
https://github.com/qgenlab/Rep2Mut.

Conflicts of Interest: Martin R. Schiller and CJ Giacoletto are associated with Heligenics, a company
pursuing commercial interests for the GigaAssay.

References
1. Basic Statistics|HIV Basics|HIV/AIDS|CDC. Available online: https://www.cdc.gov/hiv/basics/statistics.html (accessed on 6

May 2022).
2. Preston, B.D.; Poiesz, B.J.; Loeb, L.A. Fidelity of HIV-1 Reverse Transcriptase. Science 1988, 242, 1168–1171. [CrossRef] [PubMed]
3. Palmer, S.; Kearney, M.; Maldarelli, F.; Halvas, E.K.; Bixby, C.J.; Bazmi, H.; Rock, D.; Falloon, J.; Davey, R.T., Jr.; Dewar, R.L.; et al.

Multiple, Linked Human Immunodeficiency Virus Type 1 Drug Resistance Mutations in Treatment-Experienced Patients Are
Missed by Standard Genotype Analysis. J. Clin. Microbiol. 2005, 43, 406–413. [CrossRef] [PubMed]

4. Woodman, Z.; Williamson, C. HIV Molecular Epidemiology: Transmission and Adaptation to Human Populations. Curr. Opin.
HIV AIDS 2009, 4, 247–252. [CrossRef] [PubMed]

5. Benjamin, R.; Giacoletto, C.J.; FitzHugh, Z.T.; Eames, D.; Buczek, L.; Wu, X.; Newsome, J.; Han, M.V.; Pearson, T.; Wei, Z.; et al.
GigaAssay—An Adaptable High-Throughput Saturation Mutagenesis Assay Platform. Genomics 2022, 45, 110439. [CrossRef]
[PubMed]

6. Weile, J.; Roth, F.P. Multiplexed Assays of Variant Effects Contribute to a Growing Genotype–Phenotype Atlas. Hum. Genet. 2018,
137, 665–678. [CrossRef] [PubMed]

7. Kuang, D.; Truty, R.; Weile, J.; Johnson, B.; Nykamp, K.; Araya, C.; Nussbaum, R.L.; Roth, F.P. Prioritizing Genes for Systematic
Variant Effect Mapping. Bioinformatics 2021, 36, 5448–5455. [CrossRef] [PubMed]

8. Starita, L.M.; Ahituv, N.; Dunham, M.J.; Kitzman, J.O.; Roth, F.P.; Seelig, G.; Shendure, J.; Fowler, D.M. Variant Interpretation:
Functional Assays to the Rescue. Am. J. Hum. Genet. 2017, 101, 315–325. [CrossRef] [PubMed]

9. Meier, J.; Rao, R.; Verkuil, R.; Liu, J.; Sercu, T.; Rives, A. Language Models Enable Zero-Shot Prediction of the Effects of Mutations
on Protein Function. Adv. Neural Inf. Process. Syst. 2021, 34, 29287–29303.

10. Riesselman, A.J.; Ingraham, J.B.; Marks, D.S. Deep Generative Models of Genetic Variation Capture the Effects of Mutations. Nat.
Methods 2018, 15, 816–822. [CrossRef] [PubMed]

https://github.com/qgenlab/Rep2Mut
https://www.cdc.gov/hiv/basics/statistics.html
http://doi.org/10.1126/science.2460924
http://www.ncbi.nlm.nih.gov/pubmed/2460924
http://doi.org/10.1128/JCM.43.1.406-413.2005
http://www.ncbi.nlm.nih.gov/pubmed/15635002
http://doi.org/10.1097/COH.0b013e32832c0672
http://www.ncbi.nlm.nih.gov/pubmed/19532060
http://doi.org/10.1016/j.ygeno.2022.110439
http://www.ncbi.nlm.nih.gov/pubmed/35905834
http://doi.org/10.1007/s00439-018-1916-x
http://www.ncbi.nlm.nih.gov/pubmed/30073413
http://doi.org/10.1093/bioinformatics/btaa1008
http://www.ncbi.nlm.nih.gov/pubmed/33300982
http://doi.org/10.1016/j.ajhg.2017.07.014
http://www.ncbi.nlm.nih.gov/pubmed/28886340
http://doi.org/10.1038/s41592-018-0138-4
http://www.ncbi.nlm.nih.gov/pubmed/30250057


Int. J. Mol. Sci. 2023, 24, 6138 14 of 14

11. McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2020,
arXiv:1802.03426.

12. Gu, J.; Babayeva, N.D.; Suwa, Y.; Baranovskiy, A.G.; Price, D.H.; Tahirov, T.H. Crystal Structure of HIV-1 Tat Complexed with
Human P-TEFb and AFF4. Cell Cycle 2014, 13, 1788–1797. [CrossRef] [PubMed]

13. Wang, R.; Cao, X.-J.; Kulej, K.; Liu, W.; Ma, T.; MacDonald, M.; Chiang, C.-M.; Garcia, B.A.; You, J. Uncovering BRD4 Hyper-
phosphorylation Associated with Cellular Transformation in NUT Midline Carcinoma. Proc. Natl. Acad. Sci. USA 2017, 114,
E5352–E5361. [CrossRef] [PubMed]

14. Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Smetanin, N.; Verkuil, R.; Kabeli, O.; Shmueli, Y.; et al. Evolutionary-Scale
Prediction of Atomic-Level Protein Structure with a Language Model. Science 2023, 379, 1123–1130. [CrossRef] [PubMed]

15. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-Training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the NAACL-HLT, Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186.

16. Suzek, B.E.; Huang, H.; McGarvey, P.; Mazumder, R.; Wu, C.H. UniRef: Comprehensive and Non-Redundant UniProt Reference
Clusters. Bioinformatics 2007, 23, 1282–1288. [CrossRef] [PubMed]

17. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015;
IEEE: Washington, DC, USA, 2015; pp. 1026–1034.

18. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

19. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.4161/cc.28756
http://www.ncbi.nlm.nih.gov/pubmed/24727379
http://doi.org/10.1073/pnas.1703071114
http://www.ncbi.nlm.nih.gov/pubmed/28630312
http://doi.org/10.1126/science.ade2574
http://www.ncbi.nlm.nih.gov/pubmed/36927031
http://doi.org/10.1093/bioinformatics/btm098
http://www.ncbi.nlm.nih.gov/pubmed/17379688

	Introduction 
	Results 
	Overview of the Proposed Deep Learning Framework Called Rep2Mut 
	Evaluation of the Proposed Deep Learning Framework Rep2Mut 
	Effect of Amino Acid Position on Activity Prediction 
	Rep2Mut Sensitivity Analysis for the Fraction of Training Data 

	Discussion 
	Visualization of Predicted Vectors 
	Association of Amino Acid Types with Tat Activity Predictions 
	Outliers in Rep2Mut Prediction 

	Materials and Methods 
	Dataset 
	Rep2Mut Framework to Estimate Tat Variants’ Effect on Transcriptional Activities 
	Training and Testing Rep2Mut 
	Evaluation Measurements 
	How to Use ESM to Predict Tat Variants’ Activities 
	How to Test DeepSequence on Tat Variants 
	The Framework of a Baseline Method 

	Conclusions 
	References

