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Abstract: Recent evidence indicates that the pathogenesis of neurodegenerative diseases, including
Alzheimer’s disease, is associated with metabolic disorders such as diabetes and obesity. Various
circular RNAs (circRNAs) have been found in brain tissues and recent studies have suggested that
circRNAs are related to neuropathological mechanisms in the brain. However, there is a lack of
interest in the involvement of circRNAs in metabolic imbalance-related neuropathological problems
until now. Herein we profiled and analyzed diverse circRNAs in mouse brain cell lines (Neuro-2A
neurons, BV-2 microglia, and C8-D1a astrocytes) exposed to obesity-related in vitro conditions (high
glucose, high insulin, and high levels of tumor necrosis factor-alpha, interleukin 6, palmitic acid,
linoleic acid, and cholesterol). We observed that various circRNAs were differentially expressed
according to cell types with many of these circRNAs conserved in humans. After suppressing the
expression of these circRNAs using siRNAs, we observed that these circRNAs regulate genes related
to inflammatory responses, formation of synaptic vesicles, synaptic density, and fatty acid oxidation
in neurons; scavenger receptors in microglia; and fatty acid signaling, inflammatory signaling cyto
that may play important roles in metabolic disorders associated with neurodegenerative diseases.

Keywords: circular RNAs (circRNAs); obesity; neurons; microglia; astrocytes

1. Introduction

Neurodegenerative diseases, including Alzheimer’s disease (AD), have been exten-
sively studied and have a variety of risk factors associated with their initiation and progres-
sion [1,2]. For decades, the major hypothesis was that the production and accumulation
of amyloid-beta peptides and tau hyperphosphorylation were early factors in AD [3,4].
However, targeting those factors did not completely prevent disease progression. Therefore,
several studies have attempted to elucidate the wide range of causes of AD [5]. Recent
studies have suggested an association between AD progression and metabolic disorders,
such as obesity and type 2 diabetes mellitus (T2DM), based on the common major phys-
iopathology of both diseases, such as insulin resistance and inflammation [6–8]. Several
studies have shown that the serum from the blood of AD mouse models and AD patients
commonly have glucose, insulin, and cholesterol (Chol) imbalances and abnormal secretion
of inflammatory cytokines, chemokines, and free fatty acids [9–11].

Moreover, it has been reported that patients with obesity and T2DM suffer from im-
paired memory consolidation and cognitive decline, eventually leading to the development
of AD [12,13]. In the central nervous system (CNS), neurons and glia play reciprocal reg-
ulatory roles in glucose metabolism, insulin signaling, and lipid metabolism to maintain
brain metabolic homeostasis [14]. Neuronal and glial dysfunction damage the maintenance
of brain metabolic homeostasis, resulting in cognitive impairment through poor synaptic
plasticity [14–16]. In the brains of obese patients, pro-inflammatory cytokines, including
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tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), induce neuronal apoptosis, ab-
normal microglial autophagy pathway, and astrocytic mitochondrial dysfunction, resulting
in neurite shrinkage and memory impairment [17–19]. Moreover, fatty acid imbalances, in-
cluding elevated saturated palmitic acid (PA), polyunsaturated linoleic acid (LA) deficiency,
and elevated low-density lipoprotein cholesterol, cause brain insulin resistance, neuronal
apoptosis, microglial inflammatory responses, and impaired astrocytic autophagy, leading
to synaptic disruptions and memory loss in the brains of obese patients [20–24]. These
significant results warrant further investigation into the key factors related to functional
mechanisms in neurons and glia under metabolic imbalances.

Until now, many research groups have focused on the modulation of proteins, mRNAs,
DNA epigenetics, and microRNAs in neurons and glia to understand and prevent the
development of AD [25–27]. However, the functional role of non-coding RNAs (ncRNAs),
including circular RNAs (circRNAs), has not been fully elucidated in neurons and glia.
CircRNAs are a novel class of regulatory RNAs in which the 3′ end of the downstream
exon is covalently bound to the 5′ end of the upstream exon through the back-splicing
process [28]. Since most circRNAs are structurally stable, they are likely to play a regulatory
role in brain tissue that needs to perform immediate functions; however, in some cases,
circRNAs have a fast turnover [29].

Our previous studies have reported the unique expression patterns of specific cir-
cRNAs in the brain cortex of obese mice [30], relating to the regulation of the neuronal
cell cycle and spatial memory [31]. Similarly, many researchers are trying to elucidate the
regulatory functions of circRNAs to understand several diseases, such as cancer and dia-
betes [32–34]. However, studies on the importance of circRNAs in brain metabolic diseases
are scarce. CircRNAs are more distributed in the brain than the rest of the body and play a
critical role in cellular mechanisms such as synapse formation and neural elongation [29].
Interestingly, a human circRNA, antisense to cerebellar degeneration-related protein 1
(CDR1-AS), is reportedly involved in developmental brain disorders through microRNA
(miR)-7 sponging [35]. These studies suggest that elucidating the functions of circRNAs
may be an important step in understanding the progression of diseases such as AD.

In this study, we sought to clarify the circRNAs associated with neuronal and glial
function under obesity-related in vitro conditions such as neuroinflammation, insulin
resistance, and high-saturated fatty acid. Our study provides critical information on various
functional roles of candidate circRNAs related to obesity-related neuropathogenesis. Thus,
we suggest that these circRNAs may be cardinal regulatory factors in the progression of
metabolic-related AD.

2. Results
2.1. Obesity-Related CircRNAs Were Specifically Expressed in Brain Cells

We previously reported a differential expression of circRNAs in the brain cortex of
obese mice compared with wild-type mice [30]. Among these circRNAs, we screened
20 that had a log2 fold change greater than 0.5 or lower than −0.5 and with a statistical
significance (p < 0.05) (Figure 1A). To characterize the distribution of the circRNAs in
brain cells, we checked the expression of each circRNA in the mouse cell lines: Neuro-2A
neuroblastoma cells, BV-2 microglial cells, and C8-D1a astrocytes (Figure 1B).

We confirmed that the 20 circRNAs were expressed in these cells except for circZbtb16;
circKcnq2 was identified as a neuron-dominant circRNA. The identified astrocyte-dominant
circRNAs were circZzz3, circNsd2, circUsp3, circKmt2a, circRabgef1, circSnx12, and cir-
cAftph. The circRNAs expressed at similar levels in neurons and astrocytes were circMyrip,
circStx6, circFaxc, circDennd1b, circAkap6, and circBcl2l13. The circRNAs expressed sim-
ilarly in the three cell types were circTbc1d14, circFut8, circPan3, circEprs, circMap2k4,
and circGnptg. These results show that each obesity-linked circRNA was differentially
distributed in brain cells. However, these circRNAs tended to be mainly expressed in
neurons and astrocytes, indicating that obesity-linked circRNAs might have regulatory
roles in these cells. Through the RNase R treatment and Sanger sequencing analysis, we
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selected 18 circRNAs with confirmed circular structures and moderate expression levels for
further studies (Figures 1C and S1).
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Figure 1. Differential expression and cell-type specificity of obesity-linked circRNAs in the brain. 
(A) A histogram displaying the differential expression of circRNAs in the brain cortices of obese 
mice compared to wild-type mice. The data are expressed as the average Log2 fold change (n = 4). 
(B) Stacked bars showing the cell-type specific expression of obesity-linked circRNAs in three 
mouse-brain cell lines. The total circRNA expression in the three cell lines is set at 100%, and the 
relative distribution of circRNAs in each cell line is expressed as percentages (n = 3). (C) Circular 
structure confirmation of circRNAs. Cropped bands showing the expression of circRNAs and 
Gapdh in untreated (−) and RNase R-treated (+) Neuro-2A mouse neuroblastoma cells. A histogram 

Figure 1. Differential expression and cell-type specificity of obesity-linked circRNAs in the brain.
(A) A histogram displaying the differential expression of circRNAs in the brain cortices of obese
mice compared to wild-type mice. The data are expressed as the average Log2 fold change (n = 4).
(B) Stacked bars showing the cell-type specific expression of obesity-linked circRNAs in three mouse-
brain cell lines. The total circRNA expression in the three cell lines is set at 100%, and the relative
distribution of circRNAs in each cell line is expressed as percentages (n = 3). (C) Circular structure
confirmation of circRNAs. Cropped bands showing the expression of circRNAs and Gapdh in
untreated (−) and RNase R-treated (+) Neuro-2A mouse neuroblastoma cells. A histogram displaying
changes in expression of circRNAs and Gapdh in RNase R-treated [RNase R (+)] Neuro-2A cells
compared to untreated control cells [RNase R (−)]. CircRNAs’ structure confirmation results from a
comparative analysis of the expression value of Gapdh mRNA (linear) and the expression value of
circRNAs (circular) in the RNase R (+) group. The data are expressed as a relative value of the RNase
R-treated group when the untreated control value is 1. Neuro-2A: mouse neuroblastoma cells, BV-2:
mouse microglial cells, C8-D1a: mouse astrocytes.
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2.2. Obesity-Related In Vitro Conditions Regulated the Expression of CircRNAs in Brain Cells

To determine how the expressions of the circRNAs were changed by obesity in the
brain, we chose seven obesity-related blood serum factors, glucose, insulin, TNF-α, IL-6,
PA, LA, and Chol, that mimic obesity in the brain. Various studies have previously studied
these factors to examine how obesity impairs brain functions [21]. We introduced each
factor to Neuro-2A, BV-2, and C8-D1a cells and established the obesity-like condition
models.

We observed that the expressions of various circRNAs were markedly changed in our
obesity-like condition models (Figures 2 and S2–S8). We also observed that the expressions
of circRNAs matched the unique expression pattern of circRNAs in the obesity-like condi-
tion models (Figure 2) [30]. High glucose and insulin concentrations (HG/HI) significantly
regulated the expression of circSnx12 in neurons, circUsp3 in microglia, and circSnx12 in
astrocytes (Figures 2 and S3). TNF-α markedly regulated the expression of circGnptg in
neurons and circKmt2a, circGnptg, circFaxc, and circZzz3 in astrocytes (Figures 2 and S4),
indicating that TNF-α has a significant effect on circRNA expression in astrocytes. Further-
more, we observed that IL-6 significantly regulated circTbc1d14 expression in microglia
only, suggesting that IL-6 plays a minimal role in regulating the expression of circRNAs in
this assay (Figures 2 and S5). BSA-conjugated PA significantly regulated the expression
of circKcnq2 in neurons and circGnptg in astrocytes (Figures 2 and S6). BSA-conjugated
LA significantly regulated the expression of circDennd1b, circRabgef1, circFaxc, and cir-
cUsp3 in neurons; circGnptg, circEprs, and circStx6 in microglia; and circStx6 in astrocytes
(Figures 2 and S7), indicating that contrary to PA, LA has a significant effect on circRNA
expression in neurons. Chol significantly regulated the expression of circDennd1b, circPan3,
circEprs, circFaxc, and circFut8 in neurons; circPan3, circGnptg, and circKcnq2 in microglia;
and circAftph and circUsp3 in astrocytes (Figures 2 and S8), indicating that Chol has a
significant effect on circRNA expression in brain cells.

We further confirmed that the obesity-like conditions did not significantly affect the
expression of most host genes that corresponded to each of their circRNAs (Supplementary
Figure S9), indicating that obesity-like conditions regulate circRNA expression without
affecting the transcription of host genes. These results comprehensively suggest that the
expressions of circRNAs are significantly changed in our obesity-like condition models.
These results also indicate that the unique expression patterns of circRNAs in the brains
of obese mice were because of the obesity-related serum factors used in our obesity-like
condition models. Moreover, these results ascertain that our obesity-like condition models
are proper for the functional analysis of obesity-linked circRNAs.
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Figure 2. The heatmap displaying the differential expression of obesity-linked circRNAs in three
mouse-brain cell lines under obesity-like conditions compared to normal controls. The data for
in vivo RNA-seq were obtained and rearranged from our previous report about the transcriptomic
analysis of the obese mouse-brain cortex (A reference is referred to in the manuscript). The data are
expressed as the average Log2 fold change (in vivo RNA-seq: n = 4, three cell lines: n = 3). The data
value and cropped bands corresponding to the heatmap are provided in Supplementary Figures
S3–S9. HG/HI: high glucose and insulin concentration, TNF-α: tumor-necrosis factor-alpha, IL-6:
interleukin-6, PA: BSA-conjugated palmitic acid, LA: BSA-conjugated linoleic acid, Chol: cholesterol,
Neuro-2A: mouse neuroblastoma cells, BV-2: mouse microglial cells, C8-D1a: mouse astrocytes.

2.3. Obesity-Related In Vitro Conditions Affected the Cell Type-Specific Functions of Brain Cells

We then used a semi-quantitative PCR analysis to examine the change in the expression
of marker genes in our obesity-like condition models. First, we identified gene sets related to
the function of each obesity-related serum factor: HG/HI (Insr, Irs1, Rps6kb1, Slc2a4, Slc2a5,
Slc2a1), TNF-α (Tnfrsf1a, Tradd, Traf2, Fadd), IL-6 (Il6ra, Il6st, Jak1), and fatty acids (PA, LA,
Chol; Ffar1, Ffar4, Ppara, Pdk4, Pgc1a). We also identified gene sets related to the function of
each brain cell type: neurons (Map2, Stx1a, Syp, Il1ra1, Il1rap, Rest, Bcl2, Bcl2l1, Il6ra, Tnfrsf1a),
microglia (Tnf, Il1b, Il6, Ptgs2, Nos2, Msr1, Cd36, B2m, H2-Ea), and astrocytes (Pcx, Pdk4,
Gls, Slc1a3, Vamp2, Vamp3, Tnf, Il1b, Il6). We then listed a cluster of unique genes that were
significantly upregulated or downregulated in our obesity-like condition models (Figure 3).
We observed that the obesity-like conditions regulated the expression of genes associated
with insulin receptor signaling (Irs1, Rps6kb1, Slc2a4), synaptic function (Map2, Stx1a, Syp),
inflammatory responses (Il1rap, Rest, Bcl2, Bcl2l1), and fatty acid oxidation (Pdk4) in neurons;
insulin receptor signaling (Rps6kb1, Slc2a5), fatty acid oxidation (Ppara, Pgc1a), inflammatory
cytokines (Tnf, Il1b, Il6), and scavenger receptors (Msr1, Cd36) in microglia; and fatty acid
oxidation (Ppara, Pgc1a), inflammatory cytokines (Tnf, Il1b, Il6), gluconeogenesis (Pcx, Pdk4),
glutamate transporters (Gls, Slc1a3), and gliotransmission (Vamp2, Vamp3) in astrocytes
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(Figures 4, 5 and S10). These comprehensive results indicate that the obesity-related serum
factors affected the overall function of the brain by regulating the functional genes of neurons,
microglia, and astrocytes. Moreover, it suggests that obesity-linked circRNAs might control
brain functions by regulating altered genes.
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Figure 3. The heatmap displays upregulated and downregulated genes associated with functions
by cell type and obesity-related serum factor in three mouse-brain cell lines under obesity-like
conditions compared to normal controls. The blue letters and boxes represent clusters of genes that
function similarly. The data are expressed as “increased” when the gene expression was significantly
increased in cells under obesity-like conditions compared to controls (Red). “Not changed” indicates
no significant changes in gene expression in cells under obesity-like conditions compared to normal
controls (Silver). “Decreased” indicates the gene expression was significantly decreased in cells under
obesity-like conditions compared to normal controls (Green). The data values used in the heatmap
are expressed as a histogram in Supplementary Figure S11A–F. HG/HI: high glucose and insulin
concentration, TNF-α: tumor-necrosis factor-alpha, IL-6: interleukin-6, PA: BSA-conjugated palmitic
acid, LA: BSA-conjugated linoleic acid, Chol: cholesterol, Neuro-2A: mouse neuroblastoma cells,
BV-2: mouse microglial cells, C8-D1a: mouse astrocytes.
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Figure 4. Histograms displaying the differential expression of functional genes after depletion
of circRNAs in neuronal cell lines under obesity-like conditions. (A) Expression changes of genes
associated with neuronal responses by high glucose and insulin concentration (HG/HI) after circSnx12
depletion in mouse neuroblastoma cells (Neuro-2A). (B) Expression changes of genes associated with
neuronal responses by BSA-conjugated linoleic acid (LA) after circRabgef1 depletion in Neuro-2A
cells. (C) Expression changes of genes associated with neuronal responses by LA after circDennd1b
depletion in Neuro-2A cells. (D) Expression changes of genes associated with neuronal responses by
cholesterol (Chol) after circDennd1b depletion in Neuro-2A cells. In (A–D), the data are presented as
the mean ± standard error of the mean (SEM) (n = 3), and statistical significance was determined
using an unpaired two-tailed t-test with Welch’s correction; * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 5. Histograms displaying the differential expression of functional genes after depletion of
circRNAs in an astrocyte cell line under obesity-like conditions. (A) Expression changes of genes
associated with astrocytic responses by TNF-α after circZzz3 depletion in C8-D1a cells. (B) Expression
changes of genes associated with astrocytic responses by LA after circStx6 depletion in C8-D1a cells.
(C) Expression changes of genes associated with astrocytic responses by PA after circStx6 depletion
in C8-D1a cells. (D) Expression changes of genes associated with astrocytic responses by Chol after
circAftph depletion in C8-D1a cells. (E) Expression changes of genes associated with astrocytic
responses by Chol after circUsp3 depletion in C8-D1a cells. The cropped band used for analysis is in
Supplementary Figure S13. In (Figure S13A–I), the data are presented as the mean ± standard error
of the mean (SEM) (n = 3), and statistical significance was determined using an unpaired two-tailed
t-test with Welch’s correction; * p < 0.05, ** p < 0.01, *** p < 0.001.

2.4. Obesity-Related CircRNAs Work as Important Factors for Brain Cell Function

To examine the role of obesity-linked circRNAs in brain cells, we first assessed cir-
cRNAs that are well conserved in humans by analyzing the publicly available Gene Ex-
pression Omnibus (GEO) dataset and the expression measurement from human SH-SY5Y
neuroblastoma cells. We then sorted circRNAs showing unique expression patterns in
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both obesity-like condition models and obese mouse brains (Figure 2). We found that
five circRNAs (circStx6, circDennd1b, circUsp3, circAftph, circZzz3) are well conserved
in the human brain cortex (Supplementary Figure S11). Furthermore, we confirmed two
additional circRNAs (circSnx12 and circRabgef1) that were not listed in the GEO dataset but
stably expressed in human SH-SY5Y cells (Supplementary Figure S11). Thus, we selected
these eleven circRNAs for functional analyses in our obesity-like condition models.

We designed two independent siRNAs that bind to the back-splicing junction of
each circRNA for the specific depletion of circRNAs without affecting their host mRNA
(Supplementary Figure S12). We confirmed that the siRNAs sufficiently depleted the ex-
pression of each obesity-linked circRNA (Figures 4 and 5; 60–90% expression depletion).
We then observed that obesity-linked circRNAs regulated various functions in brain cells
under obesity-like conditions (Figures 4 and 5). CircSnx12 depletion significantly decreased
the expression of Bcl2l1 in HG/HI-induced neurons, indicating that circSnx12 has a role in
the inflammatory response pathway in this model (Figures 4A and S13A). Downregulation
of circRabgef1 significantly decreased the expression of Stx1a in LA-treated neurons, sug-
gesting that circRabgef1 is involved in the cascade of synaptic vesicles and synaptic density
in this model (Figures 4B and S13B). CircDennd1b depletion significantly decreased the ex-
pression of its host gene in LA-treated neurons without affecting functional genes (Figures
4C and S13C). However, circDennd1b knockdown significantly decreased the expression of
Stx1a and Syp in Chol-treated neurons without affecting its host gene expression (Figures
4D and S13D), indicating that circDennd1b has a distinct role depending on obesity-related
serum factors and is involved in the formation of synaptic vesicles and density in Chol-
treated neurons. CircZzz3 downregulation significantly regulated the expression of Il1b, Il6,
and Pcx in TNF-α-treated astrocytes, indicating that circZzz3 is involved in inflammatory
cytokine production and gluconeogenesis in this model (Figures 5A and S13E). CircStx6
downregulation significantly regulated the expression of Ffar4 in LA-treated astrocytes,
indicating that circStx6 is involved in fatty acid receptor signaling in this model (Figures 5B
and S13F). However, circStx6 depletion did not show gene expression changes in PA-treated
astrocytes (Figures 5C and S13G), indicating that there might be other roles we did not ex-
amine in this assay and that circStx6 may also have distinct roles depending on obesity-like
conditions. The downregulation of circAftph significantly increased the expression of Il6
in Chol-treated astrocytes, indicating that these circRNAs involve inflammatory cytokine
production in this model (Figures 5D and S13H). CircUsp3 knockdown significantly in-
creased the expression of Msr1 and Cd36 in HG/HI-induced microglia, indicating that
circUsp3 plays a role in scavenger-receptor signaling in this model (Figures 5E and S13I).
CircUsp3 depletion significantly regulated the expression of Tnf and Il6 in Chol-treated
astrocytes, indicating that circUsp3 is involved in inflammatory cytokine secretion in this
model (Figures 5E and S13I).

Interestingly, we frequently observed that many circRNAs were involved in regulating
Il6 expression in astrocytes exposed to TNF-α and Chol, indicating that obesity-linked
circRNAs may be key factors that regulate the IL-6 cytokine production in astrocytes. To-
gether with the results that our selected circRNAs might involve the neuronal inflammatory
response, neuronal synapse formation, neuronal fatty acid oxidation, and microglial scav-
engers, our results suggest that obesity-linked circRNAs have pivotal and multifunctional
roles in the obese brain. Our obesity-linked circRNA profiling in brain cells might help to
unveil obesity-related brain dysfunction and neurodegenerative diseases.

2.5. Analysis of the Protein Interaction for Obesity-Related CircRNAs

Some circRNAs have been reported to encode proteins and peptides [36,37]. We
analyzed the protein-coding potential of candidate circRNAs to confirm the possibility
of protein translation (Figure 6A). The protein-coding potential of seven circRNAs was
confirmed using two prediction tools: CPC 2.0 and CPAT [38,39]. It was confirmed that
some circRNAs, except circSnx12 and circUsp3, are highly likely to code proteins. To
identify the transcriptional regulatory mechanism of circRNA candidates, we first identified
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transcription factors that regulate differentially expressed genes in previously reported
RNA-seq data [30]. Using the prediction tool ChEA3, we selected the top ten transcription
factors involved in the transcriptional control of 459 genes whose p-values were ≤0.05
in the Cuffnorm results (Figure 6B) [40]. We confirmed the interaction between each
circRNA and transcription factor using the RNA-protein interaction prediction tool RPIseq
(Figure 6C–I) [41]. Among various factors, neuronal PAS domain protein 4 (NPAS4), SRY-
box transcription factor 8 (SOX8), and retinoid X receptor gamma (RXRG) were shown to
be highly likely to interact with circSnx12 and circUsp3, which have low protein-coding
potential (Figure 6G,I). NPAS4 is known to play an important role in contextual memory
formation in the CA3 region of the hippocampus as a transcriptional factor [42]. SOX8 has
been reported to enhance the astrogenesis of neural stem and precursor cells by targeting
Nfia [43]. RXRG deficiency is known to impair spatial memory in mice and reduce mGluR-
mediated synaptic plasticity [44,45]. Based on these results, the cellular mechanisms behind
the interactions between obesity-related circRNAs and transcriptional factors in neurons
and glia in the condition of obesity may be elucidated.Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 19 
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Figure 6. Characterization of circRNAs (A) The protein-coding potential of circRNAs was analyzed
by CPC 2.0 (expressed as coding or non-coding) and CPAT (expressed as yes or no) tools. (B) The
prediction of protein factors using ChEA3 that may regulate transcription of genes affected by HFD
in the RNA-seq data. The color bar expresses the top ten ranking of the integrated score for ChEA3.
(C) The interaction probability between circStx6 and transcription factors was predicted using RPIseq.
(D) The interaction probability between circRagbef1 and transcription factors was predicted using
RPIseq. (E) The interaction probability between circDeen1b and transcription factors was predicted
using RPIseq. (F) The interaction probability between circZzz3 and transcription factors was predicted
using RPIseq. (G) The interaction probability between circSnx12 and transcription factors was
predicted using RPIseq. (H) The interaction probability between circAftph and transcription factors
was predicted using RPIseq. (I) The interaction probability between circUsp3 and transcription
factors was predicted using RPIseq. In (C–I), the color bar indicates the interaction probability score
(0–1) between circRNAs and transcription factors. RF: random forest, SVM: support vector forest.
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3. Discussion

Herein we comprehensively analyzed specifically or similarly expressed circRNAs in
brain cells, such as neurons, microglia, and astrocytes, exposed to diverse obesity-related
in vitro conditions. This study is based on our previous report of distinct expression
patterns of circRNAs in the brain cortices of obese mice [30]. We profiled significant
obesity-related circRNAs that may have regulatory roles in neuropathological mecha-
nisms in neurodegenerative diseases such as AD. From our analysis, we speculate that
obesity-related circRNAs are mainly distributed in neurons and astrocytes, suggesting that
circRNAs distributed in these cells play regulatory roles in obesity-related brain dysfunc-
tion. Moreover, we profiled unique obesity-related circRNAs in our obesity-like in vitro
models. Among these circRNAs, we selected those expressed in patterns similar to those
of the transcriptomic analysis data from obese mouse brains for further functional analy-
sis [30]. We consider that each cell type in the brain has different intrinsic functions and
that circRNAs are likely to have different cell-specific expressions and functions [46].

We selected 11 human-conserved circRNAs that may have pivotal roles in obesity-
induced brain dysfunction. Among these circRNAs, the functions in human diseases of
four, including circRabgef1, circUsp3, circZzz3, and circAftph, have not yet been identified.
Moreover, for circRNAs whose roles have been previously reported, including circSnx12,
circDennd1b, and circStx6, their specific functions have not yet been completely understood
in the brain. For example, circDennd1b is involved in atherosclerosis by regulating Chol
efflux through a miRNA-17-5p sponge [47], but its role in the brain is largely unknown.

We established obesity-like condition models using brain cell lines to mimic the envi-
ronment of the brains of obese individuals. These models were based on reports on the
characteristics of blood serum profiling in high-fat-fed mice, rats, monkeys, and humans
with obesity models [48–53]. Blood serum factors in obesity are important mediators in
the onset of neurodegenerative diseases since the blood-brain barrier (BBB) is disrupted
or loosened in obesity conditions, and consequently, blood serum factors can be delivered
into brain tissue resulting in memory loss [54–56]. Other studies also showed that the
blood serum in obese contains higher pro-inflammatory cytokine levels, such as TNF-α
and IL-6, leading to neuroinflammation and spatial memory loss [57,58]. Moreover, a
high Chol level in obesity damages the metabolic crosstalk between neurons and glia and
aggravates synaptic formation [59,60]. Furthermore, an increased level of PA, a saturated
fatty acid, impairs autophagy and insulin signaling in neurons in obesity [61]. An ele-
vated PA level accelerates apoptosis and inflammatory responses in obesity by activating
glia [62]. Furthermore, the high glucose level in obesity is accompanied by insulin re-
sistance and, subsequently, increased neuronal cell loss and BBB permeability, leading
to memory loss [63,64]. Another study showed that excessive linoleic polyunsaturated
fatty acid is related to hypothalamic inflammation, thus boosting weight gain [65] and
affecting insulin resistance [66]. In obesity, fatty acid composition is an important factor for
predicting the progression of lipid dysregulation and inflammation in obesity. Some studies
presented that these characteristics of blood serum in obesity are considerably associated
with neurodegenerative diseases such as AD [67–70]. Thus, we selected obesity-related
in vitro conditions, including glucose, insulin, TNF-α, IL-6, PA, LA, and Chol, to mimic
obesity status.

In the present study, each obesity-related in vitro condition led to alterations in genes
related to synaptic function, inflammatory responses, insulin receptor signaling, fatty acid
oxidation, scavenger receptor signaling, gluconeogenesis, gliotransmission, and gluta-
mate transporters in neurons and glia. These obesity-related in vitro condition-induced
expression changes indicate that metabolic imbalances influence insulin receptor signaling,
synaptic function, and inflammatory responses in neurons and inflammatory cytokine
secretion, scavenger ability, and glutamate transporters in glia. Several studies mentioned
that chronic metabolic disorders, such as obesity and T2DM, modulate the inflammatory
response, synaptic dysfunction, fatty acid oxidation, and microglial scavenger function
in the brain [71,72]. Obesity impairs brain function and synapse formation by impair-
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ing insulin signaling [73]. In neurons, insulin receptor signaling-related genes, such as
Irs1 and Slc2a4, could affect the secretion of excitatory glutamate neurotransmitters [74],
neuroinflammation [75], and memory formation [76]. Moreover, in neurons, synaptic
formation-related genes, such as Map2 and Syp, are related to memory consolidation and
synaptic plasticity [77].

Inflammatory-related genes, such as Bcl2, are linked to neuronal Ca2+ signaling [78],
neurogenesis, and apoptosis [79]. A recent study suggested that obesity triggers neuroin-
flammation and fatty acid oxidation in the brain [61]. In microglia, scavenger receptor-
related genes, such as macrophage scavenger receptor 1 (Msr1) and CD36, are related
to low-density Chol uptake [72], amyloid beta phagocytosis [80], and lipid metabolism
homeostasis [81]. In microglia and astrocytes, fatty acid oxidation-related genes, such
as Ppara and Pgc1a, are associated with autophagy, neuronal proliferation, memory for-
mation [82,83], microglia polarization [84], and apoptosis [85]. In astrocytes, glutamate
transporter-related genes, such as Gls, are related to excitatory neurotransmitter secretion
and synapse transmission [86]. A recent study mentioned that obesity is involved in neuro-
plasticity and cognitive decline through astroglial dysfunction, such as gluconeogenesis,
glutamate signaling, and gliotransmission [87].

Therefore, we assume that our obesity-like in vitro conditions triggered neuronal
dysfunction related to insulin signaling and synaptic formation and glial dysfunction
related to phagocytosis and Chol uptake, leading to cognitive impairment.

In Figures 4 and 5, we observed changes in the expression of several genes in neurons
and glial cells after silencing specific circRNAs using siRNAs. In our data, circDennd1b de-
pletion using siRNA significantly regulated genes related to synaptic vesicles and synaptic
formation, such as Stx1a and Syp, in neurons [88] under Chol exposure. This result suggests
that the role of circDennd1b may be related to synaptic plasticity in neurons under Chol-
enriched obesity conditions. In particular, we found a significantly abnormal expression
of IL-6 in astrocytes after obesity-related circRNA depletion under obesity-related in vitro
conditions. Considering that astrocyte-specific IL-6 knockout mice showed increased body
weight, and cerebral IL-6 overexpressing mice resisted diet-induced obesity, IL-6 might
be a key cytokine associated with astrocyte function by regulating several circRNAs in
obesity [89,90]. This result suggests that the modulation of obesity-related circRNAs might
affect the expression of IL-6 in astrocytes to regulate neuronal and glial function in the
brain of obese individuals.

Even though the effects of our candidate circRNAs on brain function have not been
studied until now, their functions in metabolic disorders in neuronal and glial cells have
yet to be identified.

In this study, we investigated circRNAs expressed in CNS cells exposed to an obesity-
like environment. We profiled candidate circRNAs that show expression changes in the
brain cortex of obese mice. In addition, we selected circRNAs that show expression
changes under obesity similar to in vitro conditions and are expressed in patterns similar
to transcriptomic data from obese mouse brains. Judging from our findings in this study,
we hypothesize that each circRNA expressed in CNS cells exhibits cell-specific expression
changes and contributes to brain function in the obese brain.

Since a large part of our data was produced based on immortalized or tumoral cell lines
derived from the brain cells, it may less reflect the physiology of the actual nervous system.
Therefore, further studies are necessary to verify the expression and functions of each
circRNA in in vitro obesity cells obtained by isolating primary cortical and hippocampal
neurons, microglia and astrocytes from mice. Moreover, an in vivo study is necessary
to determine whether the regulation of circRNAs expression in the mouse brain affects
cognitive function in animal models.

Even though there are several limitations, our data show the potential of candidate
cirRNAs related to neuropathological issues in the brain with obesity. Thus, we suggest that
functional studies on circRNAs in CNS cells of obese brain are necessary for an appropriate
therapeutic approach to the neuropathological problems of obesity brain.
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4. Materials and Methods
4.1. Drug Treatment

D-glucose (Gibco, Waltham, MA, USA), insulin (Sigma Aldrich, Saint Louis, MI, USA),
recombinant TNF-α (Abcam, Cambridge, UK), recombinant IL-6 (Abcam, Cambridge, UK),
PA (Sigma Aldrich, Saint Louis, MI, USA), LA (Sigma Aldrich, Saint Louis, MI, USA), and
Chol (Sigma Aldrich, Saint Louis, MI, USA) were used to establish the obesity-like models.
D-glucose, TNF-α, and IL-6 were diluted using sterilized 1X phosphate-buffered saline
(PBS). Insulin was diluted using sterilized acidic distilled water, and the pH was adjusted
to be between 2.0 and 3.0 with diluted HCl. Chol was diluted using absolute ethanol
(Thermo Fisher Scientific, Waltham, MA, USA). PA and LA were conjugated with bovine
serum albumin (BSA; GenDEPOT, Barker, TX, USA). For BSA conjugation, PA and LA were
diluted using absolute ethanol, then boiled at 40 ◦C for at least two hours while vortexing.
The solution was filtrated using a syringe filter (0.2 µm; Millipore, Saint Louis, MI, USA)
and mixed with a 10% BSA solution at a 1:100 ratio. The cells were treated with D-glucose
(4.5 g/L [91]), insulin (100 nM [91]), TNF-α (25 ng/mL [92]), IL-6 (25 ng/mL [93]), BSA-
conjugated PA (50 µM [94]), BSA-conjugated LA (50 µM [95]), and Chol (50 µM [96]) for
48 h.

4.2. Cell line and Culture Conditions

Mouse Neuro-2A neuroblastoma cells, mouse BV-2 microglial cells, mouse C8-D1a
astrocytes, and human SH-SY5Y neuroblastoma cells were purchased from the American
Type Culture Collection (ATCC, Manassas, VA, USA). Neuro-2A and SH-SY5Y cells were
cultured in Dulbecco′s Modified Eagle′s Medium (DMEM, WELGENE, Gyeongsan Re-
public of Korea) supplemented with 10% fetal bovine serum (FBS, Millipore, USA), 1 mM
sodium pyruvate (Thermo Fisher Scientific, Waltham, MA, USA), and 100 U/mL penicillin–
streptomycin (Thermo Fisher Scientific, Waltham, MA, USA). BV-2 cells were cultured
in DMEM containing 5% FBS and 100 U/mL penicillin–streptomycin. C8-D1a cells were
cultured in DMEM supplemented with 10% FBS and 100 U/mL penicillin–streptomycin.
Cells were cultured at 37 ◦C in the presence of 5% CO2. The medium was replaced once
every two days. The cells were subcultured into multi-well plates using prewarmed 1X
PBS (GENEALL, Seoul, Republic of Korea) and 0.25% trypsin (Thermo Fisher Scientific,
Waltham, MA, USA).

4.3. siRNA Design and Transfection

The siRNAs to suppress circRNA expression were designed as previously reported [97].
siDESIGN Center (https://horizondiscovery.com/en/products/tools/siDESIGN-Center/ ac-
cessed on 4 May 2022) and i-Score Designer (https://www.med.nagoya-u.ac.jp/neurogenetics/
i_Score/i_score.html/ accessed on 4 May 2022) were used to identify the siRNAs that targeted
the back-splicing junction of circRNAs. These siRNAs and the AccuTarget negative control
siRNA were synthesized by Bioneer (Republic of Korea). The sequences of the siRNAs used
are listed in Supplementary Table S1.

The siRNAs were transfected using Lipofectamine 3000 (Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer′s instructions. siRNAs with a final con-
centration of 30 nM were transfected into brain cells. The transfected cells were incubated
for six hours. The medium was replaced with a growth medium containing the reagent for
obesity-like conditions and incubated for 48 h.

4.4. RNA Isolation and Semi-Quantitative Polymerase Chain Reaction

RNA was extracted using TRIzol reagent (Thermo Fisher Scientific, Waltham, MA,
USA) according to the manufacturer’s instructions. The RNA quantification was performed
using a NanoPhotometer (IMPLEN, München, Germany), and reverse transcription of RNA
to complementary DNA (cDNA) was performed using random hexamers and RevertAid
reverse transcriptase (Thermo Fisher Scientific, Waltham, MA, USA). A semi-quantitative
polymerase chain reaction (PCR) was conducted using nTaq DNA polymerase (Enzynomics,

https://horizondiscovery.com/en/products/tools/siDESIGN-Center/
https://www.med.nagoya-u.ac.jp/neurogenetics/i_Score/i_score.html/
https://www.med.nagoya-u.ac.jp/neurogenetics/i_Score/i_score.html/
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Daejeon, Republic of Korea) in Master cycler Nexus X2 (Eppendorf, Hamburg, Germany).
The results of the semi-quantitative PCR were evaluated by electrophoresis using a 2%
agarose gel. The gel was analyzed using Image J (V1.53c) provided by the National Institutes
of Health (NIH) [98]. The expression of circRNAs and mRNA was normalized against the
expression of Gapdh. The primer sequences are listed in Supplementary Table S1.

4.5. Confirmation of the Circular Structure of the CircRNAs

To verify the circular structure of the circRNAs, total RNA was treated with RNase
R (Biosearch Technologies, Hoddesdon, UK), which only degrades linear RNAs. The
total RNA and RNase R mixture was incubated at 37 ◦C for 5 min. Then RNase R was
inactivated by incubating the mixture at 95 ◦C for 3 min. The RNA was reverse-transcribed
into cDNA using random hexamers and RevertAid reverse transcriptase. Finally, a semi-
quantitative PCR was performed to amplify the circRNAs of interest. The PCR product
was electrophoresed on a 2% agarose gel. The sequences of the PCR product were verified
using Sanger sequencing (Solgent, Daejeon, Republic of Korea).

4.6. Analysis of CircRNA Function

We used the coding potential calculator 2 (CPC 2.0, http://cpc2.gao-lab.org/ accessed
on 25 January 2023) and the coding potential assessment tool (CPAT, http://lilab.research.
bcm.edu/ accessed on 25 January 2023) for the prediction of coding potential for the
selected circRNAs [38,39]. To predict circRNA-interacting proteins, we performed the
analysis as previously described [31]. Using the ChEA3 tools [40], we selected the top ten
transcription factors that regulate the 459 differentially expressed genes with p-values less
than 0.05 analyzed from the cortex of mice fed with a high-fat diet [30]. For each of these
transcription factors, we predicted the probability of their interactions with each circRNA
using the RPIseq tool [41].

4.7. Statistical Analyses

Data are represented as the mean ± standard error of the mean (SEM). The group
sample size was typically set to three for our experiments to optimize the efficiency and
power of the statistical tests. The normal distribution and similar variance within each
comparison group of data were checked before the statistical tests. An unpaired two-tailed
t-test with Welch’s correction was used to analyze the comparisons between the control
and experimental samples. Statistical significance was established when the p-value was
less than 0.5.
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