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Abstract: Alzheimer’s disease (AD) is the most common cause of dementia, and its prevalence
rises with age. Inflammation and altered antioxidant systems play essential roles in the genesis of
neurodegenerative diseases. In this work, we looked at the effects of MemophenolTM, a compound
rich in polyphenols derived from French grape (Vitis vinifera L.) and wild North American blueberry
(Vaccinium angustifolium A.) extracts, in a rat model of AD. Methods: For 60 days, the animals
were administered with AlCl3 (100 mg/kg, orally) and D-galactose (60 mg/kg, intraperitoneally),
while from day 30, MemophenolTM (15 mg/kg) was supplied orally for 30 consecutive days. AlCl3
accumulates mainly in the hippocampus, the main part of the brain involved in memory and learning.
Behavioral tests were performed the day before the sacrifice when brains were collected for analysis.
Results: MemophenolTM decreased behavioral alterations and hippocampus neuronal degeneration.
It also lowered phosphorylated Tau (p-Tau) levels, amyloid precursor protein (APP) overexpression,
and β-amyloid (Aβ) buildup. Furthermore, MemophenolTM reduced the pro-oxidative and pro-
inflammatory hippocampus changes caused by AD. Our finding, relevant to AD pathogenesis and
therapeutics, suggests that MemophenolTM, by modulating oxidative and inflammatory pathways
and by regulating cellular brain stress response mechanisms, protects against the behavioral and
histopathological changes associated with AD.

Keywords: Nrf2; oxidative stress; neuroinflammation; brain damages; MemophenolTM

1. Introduction

Alzheimer’s disease (AD) is among the most common senile dementias that occur in
later life, representing a leading cause of disability and death in the elderly. The lengthening
of life has led to the aging of the world population; therefore, it is estimated that every
20 years, the number of people affected by AD will double from the current number of
26.6 million to 106.8 million by 2050 [1]. From a neuropathological point of view, AD is
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characterized by the deposition of β-amyloid (Aβ) peptides, the formation of neurofibrillary
tangles, cerebral angiopathy, astrocyte and microglia activation, and neuronal loss, leading
to progressive cognitive and memory impairment [2]. According to the most accredited
hypothesis, the key pathogenetic event responsible for the degeneration of neurons and
for morphological, functional, and cognitive modifications is an excessive formation or
accumulation of amyloid-genetic peptides [3].

Furthermore, the Aβ peptide would seem to have a crucial role in biological fluids
and in the cells they contain [4]. Human erythrocytes, for example, show a loss of oxygen-
dependent metabolic modulation following exposure to the Aβ peptide [5,6].

Neuroinflammation and oxidative stress have been shown to be significant contrib-
utors to AD disease progression and chronicity [7–9]. Therefore, the main strategies that
should be used to prevent or treat the disease should be aimed at reducing inflammation,
oxidative imbalance, and the accumulation of Aβ in the brain. AD still remains an incur-
able disease. In fact, despite the considerable progress made in recent years by biomedical
research, there is still no therapeutic intervention that has been shown to be capable of
reversing or stopping the underlying pathological process of this disease, but rather only of
acting on the symptoms [10,11]. Furthermore, considering that many treatments currently
used cause significant side effects, it is not surprising that today much attention is paid to
the positive aspects that foods have, among other things, also on increasingly widespread
neurological diseases in the modern world. Precisely because neurodegenerative diseases
are characterized by a long preclinical phase, it is possible to go and act with nutrition to
prevent the onset or slow down the progression of the disease. In fact, nutrients act as
“nutraceuticals”, that is, as food principles that have beneficial effects on health [12–16].

Epidemiological studies have shown that consuming diets rich in anti-inflammatory
and antioxidant agents, such as those found in fruits and vegetables, can reduce the risk of
developing age-related neurodegenerative diseases [17–20]. Previous studies have revealed
that daily consumption of grape and blueberry juice for a total of 12 weeks improved
memory in elderly volunteers [21,22]. In another study, it was shown that the combined
consumption of a grape and blueberry extract for 8 weeks was able to prevent memory
decline in old mice [23]. The neuroprotective effects of these compounds seem to be linked
to the high content of polyphenols, in particular of monomers and proanthocyanidins of
flavanols, which have also been shown to have a protective effect in a study on cognitive
impairment and cerebral aging induced by D-galactose. Based on the notions learned
from the literature, in our study we evaluated the effect of the integration of a compound
consisting of extracts of French grape and wild North American blueberry known as
MemophenolTM on the molecular and cognitive alterations of AD in the aluminum-induced
rat model.

2. Results

2.1. Effects of MemophenolTM on Behavioral and Histological Alterations

AD is a disease characterized by cognitive alterations which are in turn due to changes
that occur in neurons, especially in the hippocampus. For this reason, we investigated
the effect of MemophenolTM both on the behavior and on the tissue alteration of the CA1
region of the hippocampus in AlCl3-treated rats.

On day four of the Morris Water Maze (MWM) test’s training period, when compared
to day one, the animals in all groups demonstrated a diminishing trend in escape latency
time (Figure 1A). MemophenolTM increased animal persistence in the target quadrant in
the searching experiment, indicating an increase in memory consolidation as compared to
the AD group (Figure 1B). The MemophenolTM-treated rats showed a decrease in the time
of transfer latency in initial acquisition latency (IAL) and retention transfer latency (RTL) in
the Elevated Plus Maze (EPM) test, indicating an improvement in memory retention when
compared to the AD group (Figure 1C). The MemophenolTM treatment significantly en-
hanced the recognition index % (RI) in the novel object recognition (NOR) test, indicating an
improvement in cognitive function as compared to the AD group (Figure 1D). The control
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group’s brain samples revealed normal tissue organization in the CA1 hippocampus region
(Figure 1E,F). Tissues from the AD group, on the other hand, exhibited substantially more
severe neuronal degeneration, with fewer dark basophilic neurons in the CA1 hippocam-
pal pyramidal and polymorphic layers (Figure 1E,F). MemophenolTM treatment greatly
decreased AlCl3-induced CA1 neuronal degeneration (Figure 1E,F). Furthermore, both
behavioral (Figure 1A–D) and histological analysis (Figure 1E,F) revealed no difference
between the Sham and Sham + MemophenolTM groups; hence, a molecular study on the
control animals administered with MemophenolTM was omitted.
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75 µm. For the behavioral and histological investigations, n = 5 rats were used from each group and 
for each analysis. A p-value less than 0.05 was regarded as significant. *** p < 0.001 versus Sham, ### 
p < 0.001 versus AD. 
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cantly reduced after MemophenolTM treatment (Figure 2A). The result was further con-
firmed by an analysis of Aβ levels with an ELISA kit as presented in Figure 2B. Further-
more, we wanted to evaluate whether MemophenolTM was also able to act on two other 
specific markers of AD disease such as APP and p-Tau. APP (Figure 2C,C’) and p-Tau 
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(C) and p-Tau (D) with related densitometric analysis (C’,D’); scale bar 75 µm. For the Western blot 
and ELISA investigations, n = 5 rats from each group and for each analysis were employed. A p-
value of less than 0.05 was considered significant. *** p < 0.001 versus Sham, ## p < 0.01 versus AD, 
### p < 0.001 versus AD. 

2.3. MemophenolTM Treatment Effects on Oxidative Hippocampal Modifications 
It is known that oxidative stress is an important risk factor for this pathology. In this 

regard, we wanted to evaluate the antioxidant activity of MemophenolTM by Western blot 

Figure 1. The administration of MemophenolTM reduced behavioral and hippocampal alterations.
MWM test: training (A); probe trial (B); EPM test (C); NOR test (D); histological analysis: Sham,
Sham + Memophenol, AD, AD + Memophenol (E); quantification of necrotic neurons (F). Scale bar
75 µm. For the behavioral and histological investigations, n = 5 rats were used from each group and
for each analysis. A p-value less than 0.05 was regarded as significant. *** p < 0.001 versus Sham,
### p < 0.001 versus AD.

2.2. Effects of MemophenolTM Treatment on Aβ Deposition and APP and p-Tau Over-Expression

To demonstrate that MemophenolTM had action on amyloidosis typical of AD, we
performed Congo red staining. The staining results showed that more Aβ deposits were
present in the hippocampus of the AD group animals, while these deposits were sig-
nificantly reduced after MemophenolTM treatment (Figure 2A). The result was further
confirmed by an analysis of Aβ levels with an ELISA kit as presented in Figure 2B. Fur-
thermore, we wanted to evaluate whether MemophenolTM was also able to act on two
other specific markers of AD disease such as APP and p-Tau. APP (Figure 2C,C’) and
p-Tau (Figure 2D,D’) expression levels were higher in the hippocampi from the AD group
compared to the Sham group. Administration of MemophenolTM considerably lowered
both levels (Figure 2C,C’,D,D’).
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dosis) in the hippocampus (A); ELISA analysis for β-amyloid levels (B); Western blot analyses for
APP (C) and p-Tau (D) with related densitometric analysis (C’,D’); scale bar 75 µm. For the Western
blot and ELISA investigations, n = 5 rats from each group and for each analysis were employed. A
p-value of less than 0.05 was considered significant. *** p < 0.001 versus Sham, ## p < 0.01 versus AD,
### p < 0.001 versus AD.

2.3. MemophenolTM Treatment Effects on Oxidative Hippocampal Modifications

It is known that oxidative stress is an important risk factor for this pathology. In this
regard, we wanted to evaluate the antioxidant activity of MemophenolTM by Western blot
analysis and biochemical tests on the hippocampus. Increased nuclear factor erythroid
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2–related factor 2 (Nrf2) expression was found in the hippocampi of MemophenolTM-
treated rats as compared to the AD and Sham groups (Figure 3A,A’). The same trend
was also observed for heme oxygenase-1 (HO-1) (Figure 3B,B’). Furthermore, biochemical
analysis revealed that MemophenolTM-treated rats had improved antioxidant defenses.
Superoxide dismutase (SOD) levels (Figure 3C), catalase (CAT) activity (Figure 3D), and
glutathione (GSH) levels (Figure 3E) were all significantly higher in the MemophenolTM

group than in the AD group. In contrast, nitrite (Figure 3F), lipid peroxidation (MDA)
(Figure 3G), and reactive oxygen species (ROS) (Figure 3H) levels in the AD group were
considerably higher than in the Sham group. Treatment with MemophenolTM significantly
reduced nitrite levels, lipid peroxidation, and ROS levels in the hippocampus.
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Figure 3. MemophenolTM administration decreased pro-oxidative modifications in the hippocampus.
Western blot analysis of Nrf2 expression (A) and HO-1 (B) with related densitometric analysis (A’,B’),
and biochemical analysis of SOD levels (C), CAT activity (D), GSH levels (E), nitrite levels (F), MDA
levels (G), and ROS levels (H). For both analyses, n = 5 rats from each group and for each analysis
were employed. A p-value of less than 0.05 was considered significant. ** p < 0.01 versus Sham,
*** p < 0.001 versus Sham, ## p < 0.01 versus AD, ### p < 0.001 versus AD.

2.4. MemophenolTM Treatment Effects on Pro-Inflammatory Markers

Another fact implicated in the progression of AD is neuroinflammation. For this reason,
in addition to the antioxidant action of MemophenolTM, we also wanted to investigate
its anti-inflammatory properties. Western blot investigations on hippocampus tissue for
glial fibrillary acid protein (GFAP) and ionized calcium-binding adaptor molecule 1 (Iba-1)
expression were used to examine astrocyte and microglial cell activity in connection to
AD. The GFAP and Iba-1 expressions were low in the Sham group but significantly higher
in the AD-treated rats. MemophenolTM treatment reduced the elevated expression of
GFAP and Iba-1 under these conditions (Figure 4A,A’ for GFAP and Figure 4B,B’ for Iba-
1). In addition, the Western blot analysis revealed a significant downregulation of the
NF-κB pathway, which was activated by AlCl3 injection. The AD rat samples c α (IkB-
α) expression in the cytoplasm (Figure 4C,C’), and enhanced NF-κB nuclear localization
(Figure 4D,D’). Treatment with MemophenolTM boosted IkB-α expression while restoring
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NF-κB expression to baseline levels. MemophenolTM administration also lowered tumor
necrosis factor-α (TNF-α) (Figure 4E), interleukin-1β (IL-1β) (Figure 4F), and interleukin-6
(IL-6) (Figure 4G) levels, which were elevated in the AD group due to the activity of the
NF-κB pathway.
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each analysis were employed. A p-value of less than 0.05 was considered significant. *** p < 0.001
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3. Discussion

Many chronic diseases, including Alzheimer’s, are determined by both heredity and
environment. The genetic abnormalities of the APP and presenilin genes account for
just 5% of the overall number of AD patients (familial instances), but the majority of AD
patients are most likely due to environmental and other genetic variables affecting Aβ

clearance [3]. Major environmental influences are likely to include an excess or deficit of
dietary ingredients with bioactivity in key pathways that are taken on a regular basis. Our
understanding of how food and drink might potentially impact the development of AD
will aid in the development and implementation of medicines to battle this deadly illness.
MemophenolTM is derived from French grape and wild blueberry extracts and has a specific
mix of essential polyphenols that has been clinically demonstrated to increase learning and
memory functions. These polyphenols appear to have a threefold impact for a synergistic
protective effect on the brain, acting in two ways: by enhancing both neurogenesis and
sympathetic plasticity. In this regard, a clinical study was conducted on 215 elderly people
which demonstrated that chronic integration of MemophenolTM improves both short- and
long-term memory [24]. In addition, a preclinical study showed that supplementation with
a diet rich in polyphenols derived from grape and blueberry extracts prevented spatial
locomotor impairments in middle-aged mice [23]. Another preclinical study was also
conducted which highlighted the ability of polyphenol-rich grape and blueberry extracts to
attenuate cognitive decline and improve neuronal function in aged mice [25]. In this study,
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an increase in the neurogenerative process was observed in elderly mice that assumed
a diet rich in polyphenols extracted from grapes and blueberries compared to mice of
the same age that were not supplemented with the same diet. Furthermore, some of the
polyphenols included in the extract have been found in the brain in their native forms
or as metabolites. This indicates that polyphenols may act directly centrally, while they
may impact mouse survival through a potential systemic effect [25]. Given the observed
effects on memory, it was decided to test this compound in an animal model of AD. In
particular, in this study, we looked at the impact of MemophenolTM supplementation on
reactive oxygen species and the inflammatory processes that define AD. Several studies
have demonstrated the role of oxidative stress in the growth and development of disease.
According to recent research, AD has a latent phase before symptoms appear and a diagno-
sis is obtained. When compared to healthy individuals, the development of AD is preceded
by a moderate cognitive impairment phase with a minor increase in Aβ deposition but with
a considerable oxidative imbalance [26,27]. A significant amount of research has revealed
that excessive ROS generation causes neuronal death and other pathological alterations in
AD [28,29]. Oxidative damage is associated with the abnormal accumulation of Aβ and
the overexpression of APP and p-Tau [8,30]. Elevated APP levels are linked to decreased
hippocampus neurogenesis and, as a result, poorer cognitive function [31,32]. In fact,
some evidence suggests that hippocampal plasticity is connected to memory consolida-
tion, learning, and cognitive function [33,34]. Animal studies have conclusively shown
that AlCl3 neurotoxicity is involved in the development of neurodegenerative illnesses
such as Alzheimer’s. By aggregating Tau proteins, it enhances the development of Aβ

protein plaques in the brain. AlCl3 has also been connected to the neurodegeneration
and modifications associated with aging. AlCl3 toxicity, according to [35], is produced by
increased ROS release, which causes oxidative damage in the hippocampus. Although
aluminum is not a transition metal and cannot catalyze redox reactions, AlCl3 can induce
neurotoxicity by generating free radicals [36,37]. Aluminum ions have a strong affinity for
bio-membranes and can exacerbate the cellular oxidative environment by strengthening
transition metal pro-oxidant properties [38]. It has also been associated with mitochondrial
function impairment in vitro and in vivo, as well as impairment of the antioxidant defense
system, which may lead to the development of oxidative stress [39–41]. AlCl3 treatment
mostly accumulates in the hippocampus, which is known to be particularly vulnerable
to AD and to play an important role in learning and memory processes [42]. For these
reasons, hippocampus tissue was subjected to histological, biochemical, and molecular
studies. MemophenolTM inhibited the course of AD by lowering Tau hyperphosphoryla-
tion, APP levels, and Aβ buildup. From a behavioral standpoint, it significantly decreased
cognitive deficits. Histologically, it decreased the chronic hippocampus neuron loss and
degeneration features of AD. These behavioral and histological effects might be attributed
to the molecular characteristics of MemophenolTM. It boosted cellular defenses against
ROS by boosting the Nrf2/HO-1 pathway. Nrf2 oversees genes that code for endoge-
nous antioxidant enzymes, redox balance factors, and stress response proteins [28,43,44].
It specifically stimulated phase II detoxification enzymes such as CAT, SOD, and GSH.
Furthermore, MemophenolTM lowered nitrite levels, lipid peroxidation, and ROS levels
that were elevated by AD [45]. These anti-oxidative stress effects resulted in a decrease
in the pro-inflammatory macroenvironment. We found that reducing the activity of the
NF-κB pathway has significant anti-inflammatory properties. NF-κB is a key transcription
factor in pro-inflammatory signaling [46,47]. In healthy settings, NF-κB is bound to its
inhibitor IkB-α and is sequestered within the cytoplasm [48]. The inhibitor is destroyed
during inflammation, and NF-kB translocates into the nucleus to encode pro-inflammatory
proteins [49]. Our findings demonstrated restored cytoplasmic levels of IkB-α and de-
creased NF-κB nuclear expression of associated target pro-inflammatory mediators such as
TNF-α, IL-1β, and IL-6. The aggregation of Aβ plaques can also lead to the activation of
astrocytes and microglia, which are not only secondary players in pathological processes,
but seem to contribute to synaptic and neuronal loss and to the accumulation of pathogenic
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proteins even in the early stages of disease [50–52]. Our treatment with MemophenolTM

also demonstrated the ability to reduce AlCl3-induced astrogliosis and microgliosis by
reducing hippocampal GFAP and Iba-1 expression.

4. Materials and Methods

4.1. Tested Product: MemophenolTM

MemophenolTM provided by the company Activ’Inside is a standardized polyphenol-
rich extract from grapes and blueberries; it is abundant in bioavailable flavonoids and
can operate locally on cognitive functioning by bridging the blood–brain barrier. Total
flavonoids (flavan-3-ols, flavonols, and anthocyanins): >43%, flavan-3-ols monomers;
≥20%, oligomers (DP ≤ 4); ≥22%, flavonols (quercetin and glycosylated derivatives);
≥0.15%, anthocyanins: ≥0.10%).

4.2. Animals

Male Wistar rats (Envigo, Milan, Italy) were used (age: six to eight weeks, weight:
250–280 g). The animals were kept in a confined space and fed standard rodent chow
(Envigo, Teklad Rodent Diet T.2018.12) and water. The study was approved by the Uni-
versity of Messina’s Review Board for Animal Care (OPBA). All animal experiments were
conducted in accordance with new Italian legislation (D.Lgs 2014/26), EU legislation (EU
Directive 2010/63), and the ARRIVE guidelines.

4.3. Experimental Protocol

Aluminum (AlCl3) is a popular AD model [53]. For 60 days the rats were treated with
AlCl3 (100 mg/kg, orally) and D-galactose (60 mg/kg, intraperitoneally) [35,54,55].

Experimental Groups

The rats were randomly divided into the following groups (n = 20 for each group):

- Sham group: saline was administered to the rats;
- Sham + MemophenolTM group: saline was administered to the rats, and MemophenolTM

(15 mg/kg) was administered orally for 30 consecutive days;
- AD group: as previously mentioned, the rats were treated with AlCl3 (100 mg/kg,

orally) and D-galactose (60 mg/kg, intraperitoneally) for 60 days;
- AD + MemophenolTM group: as previously documented, the rats were treated with

AlCl3 (100 mg/kg, orally) and D-galactose (60 mg/kg, intraperitoneally) for 60 days,
and MemophenolTM (15 mg/kg) was supplied orally by gavage for 30 consecu-
tive days.

The dose of MemophenolTM was based on previous studies performed in the labora-
tory in which the compound was administered in increasing doses for 3 months. Behavioral
test training was completed prior to the experiment’s conclusion date. The animals were
sacrificed at the end of the trial after behavioral changes were examined. Brain tissues were
collected for further analysis.

4.4. Behavioral Assessment
4.4.1. MWM

To assess spatial learning and memory consolidation, the MWM test was used [18,56].
The percentage of distance walked and the amount of time spent in the target quadrant
were both recorded.

4.4.2. EPM

The EPM exam was used to assess memory-related activities. The behavioral test was
carried out as previously reported [57,58].
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4.4.3. NOR

The NOR test was used to measure cognitive function abnormalities induced by
Alzheimer’s disease. The behavioral test was carried out as previously reported [59]. The
RI was used to record the time spent studying the unfamiliar object. It was calculated
by dividing the amount of time spent examining a novel object (TN) by the amount of
time spent exploring a familiar object (TF), [RI = TN/(TN + TF)]. An RI % larger than 50%
implies more time spent finding the TN, whereas an RI % less than 50% indicates more
time spent investigating the TF [60].

4.5. Histological Analysis and Congo Red Staining

Brain samples were taken and processed, and slices (7 µm) were cut into longitudinal
sections and stained with hematoxylin and eosin (H&E) [61,62]. The necrosis percentages
of necrotic neurons out of total neurons were manually counted along the ipsilateral
hippocampus CA1 region [63]. Furthermore, some sections, after being deparaffinized
and dehydrated by alcohol gradients, were stained with Highman Congo red staining
solution for 5–10 min as described by Xia Zhao et al. [61]. An experienced histopathologist
examined the sections under a Leica DM6 microscope (Leica Microsystems SpA, Milan,
Italy) with a motorized stage and Leica LAS X Navigator 7.31 software (Leica Microsystems
SpA, Milan, Italy).

4.6. Western Blot Analysis

Western blots on the hippocampi were performed as previously described [46,64]. Spe-
cific primary antibodies were used, such as anti-IkB-α (Santa Cruz Biotechnology, sc-1643),
anti-NF-κB p65 (Santa Cruz Biotechnology, sc-8008), anti-Nrf2 (Santa Cruz Biotechnology,
sc-36594), anti-HO-1 (Santa Cruz Biotechnology, sc-136960), anti-p-Tau (Santa Cruz Biotech-
nology, sc-32275), anti-APP (Santa Cruz Biotechnology, sc-32277), anti-GFAP (Cell Signaling
Technology, Danvers, MA, USA), and anti-Iba1 (Santa Cruz Biotechnology, sc-32725), and
they were mixed in a 5% w/v non-fat dried milk solution and were incubated at 4 ◦C
overnight. The blots were then incubated for 1 h at room temperature with a peroxidase-
conjugated bovine anti-mouse IgG secondary antibody or a peroxidase-conjugated goat
anti-rabbit IgG secondary antibody (Jackson Immuno Research, West Grove, PA, USA).
To ensure that the quantities of protein were similar, the membranes were additionally
treated with an antibody against β-actin and Lamin (Santa Cruz Biotechnology, Dallas, TX,
USA). Signals were detected using a Super-Signal West Pico Chemiluminescent Substrate
(Biogenerica, Pedara, Italy) enhanced chemiluminescence detection system reagent [44].
The relative expression of the protein bands was measured using densitometry and was
standardized to β-actin and Lamin levels using Bio-Rad ChemiDoc XRS 2.1.1 software [48].
The blot signal images were input into analysis software (Image Quant TL, v2003, Bio-rad,
Segrate, Italy).

4.7. Biochemical Analysis

Biochemical analyses were conducted on the hippocampi:

4.7.1. Measurement of SOD Activity

After homogenizing the samples in the Tris buffer, they were centrifuged at 13,000 rpm.
The solution was then incubated at 4 ◦C for 10 min before being centrifuged again. The
absorbance of the samples was measured every 60 s for 10 min at 420 nm [57,65].

4.7.2. Measurement of CAT Activity

After homogenizing the samples in the phosphate buffer, hydrogen peroxide was
added. Enzyme levels were expressed as CAT activity in U/mg protein, and the absorbance
(240 nm) was measured for 0–10 min at 240 min [66].
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4.7.3. GSH Levels

A trichloroacetic acid solution was administered after homogenizing the samples with
the phosphate buffer. After centrifuging the solution, 5,5′-dithiobis-(2-nitrobenzoic acid)
was added. Using a microplate reader, the GSH levels were measured at 412 nm [57].

4.7.4. Measurement of Nitrite Levels

After homogenizing the samples in the phosphate buffer, the Griess reagent was
applied. For 30 min, the solution was incubated. At 548 nm, the absorbance was mea-
sured [67].

4.7.5. Measurement of MDA

The evaluation of thiobarbituric acid-reactant substances, a suitable indication of lipid
peroxidation, was performed on the samples. At 532 nm, the absorbance of the supernatant
was measured [68].

4.7.6. Measurement of ROS

After homogenizing the samples in the phosphate buffer, they were exposed to
1 mM dichlorofluorescein diacetate for 10 min at room temperature in the dark (DCFH-DA).
The esterase activity used to convert non-fluorescent DCFH-DA to the highly fluorescent
product 20,70-dichlorofluorescein (DCF) was used to monitor the presence of peroxides
caused by the oxidative burst in the brain [69].

4.7.7. Cytokines and Aβ Measurement

An ELISA kit was used to measure IL-6, TNF-α, IL-1β, and Aβ levels in the hippocam-
pus (Diaclone Research, Biosource Europe, USCN life Sciences; Abcam, Milan, Italy) [35].

4.8. Statistical Evaluation

All values are expressed as mean ± standard error of the mean (SD) of N observations.
N denotes the number of animals utilized in in vivo studies. One-way ANOVA was used
to examine the data, followed by a Bonferroni post hoc test for multiple comparisons. A
p-value less than 0.05 was regarded as significant.

5. Conclusions

In summary, oral treatment with MemophenolTM at a dose of 15 mg/kg, by acting
on oxidative stress and inflammatory processes, was able to manage AD features such as
behavioral changes related to cognitive functions and memory, phosphorylated Tau levels,
and the aberrant overexpression of APP, the accumulation of β-amyloid, and neuronal
degeneration. Certainly, taking MemophenolTM cannot cure Alzheimer’s disease, but it is
a nutritional supplement that may slow the course of the illness and alleviate symptoms
connected with this pathology.
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