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Abstract: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with
clinical features of high metastatic potential, susceptibility to relapse, and poor prognosis. TNBC lacks
the expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth
factor receptor 2 (HER2). It is characterized by genomic and transcriptional heterogeneity and a tumor
microenvironment (TME) with the presence of high levels of stromal tumor-infiltrating lymphocytes
(TILs), immunogenicity, and an important immunosuppressive landscape. Recent evidence suggests
that metabolic changes in the TME play a key role in molding tumor development by impacting the
stromal and immune cell fractions, TME composition, and activation. Hence, a complex inter-talk
between metabolic and TME signaling in TNBC exists, highlighting the possibility of uncovering and
investigating novel therapeutic targets. A better understanding of the interaction between the TME
and tumor cells, and the underlying molecular mechanisms of cell–cell communication signaling,
may uncover additional targets for better therapeutic strategies in TNBC treatment. In this review, we
aim to discuss the mechanisms in tumor metabolic reprogramming, linking these changes to potential
targetable molecular mechanisms to generate new, physical science-inspired clinical translational
insights for the cure of TNBC.

Keywords: triple-negative breast cancer; cancer metabolism; reprogramming; signaling pathway;
tumor microenvironment; therapeutic signaling

1. Introduction

The incidence of breast cancer is increasing globally and is a leading cause of cancer-
related deaths among women worldwide [1]. Triple-negative breast cancer (TNBC), which
accounts for approximately 15–20% of all breast cancer cases, is characterized by the absence
of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER2) expression. TNBC is considered to be an aggressive subtype of breast
cancer, with a poor prognosis due to limited treatment options and a high rate of relapse [2].

Despite recent advances in breast cancer therapy, the overall survival rates for pa-
tients with TNBC remain low [3], highlighting the need for a deeper understanding of
the underlying biology of this subtype. The conceptualization of the cancer hallmarks
(sustaining proliferative signaling, evading growth suppressors, resisting cell death, en-
abling replicative immortality, inducing angiogenesis, activating invasion and metastasis,
reprogramming energy metabolism, evading immune destruction, deregulating cellular
energetics and genome instability and mutation) offers an opportunity to find an effective
point of attack against this aggressive type [4]. Among these, a growing body of evidence
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suggests that dysregulated metabolism is a key characteristic of TNBC, contributing to its
metastatic behavior and resistance to therapies [5–7].

Understanding the metabolic dysregulations in TNBC and developing therapies that
target these pathways may provide new avenues for improving outcomes for patients
with this aggressive subtype of breast cancer. This manuscript will provide an overview
of the current state of knowledge in this area, including recent references and emerging
therapeutic approaches.

2. Cells and Interactions in the Tumor Microenvironment

The tumor and the surrounding cells act as a dynamic functional network in the tumor
microenvironment (TME). Levels of oxygen, nutrients, and the intermediate products of
metabolism, which are essential for the tumor’s survival, growth, and proliferation, are
also in continuous transformation [8,9]. Among the connective tissue elements that make
up the largest part of the stroma are cancer-associated fibroblasts (CAF), cancer-associated
adipocytes (CAA), and tumor-associated monocytes/macrophages (TAMs). These cells
play an important role in the maintenance, survival, and metastasis of tumors and tumor
cells [10]. The TME contains several non-immune cells such as fibroblasts, adipocytes,
vascular smooth muscle and endothelial cells, and immune cells such as T-lymphocytes,
macrophages, and natural killer cells [11].

2.1. Cancer-Associated Fibroblasts (CAFs)

Most of the tumor stroma is composed of cancer-associated fibroblasts (CAFs), which
play an important role in cancer progression through their molecular cooperation with
cancer cells. Tumor cells produce chemokines (CXCL2-CXC motif chemokine ligand 2), cy-
tokines (IL-6–interleukin 6), growth factors (TGF-transforming growth factor), and platelet-
derived growth factor (PDGF), thereby stimulating the transformation of normal fibroblasts
into activated CAFs [12,13]. CAFs regulate tumor growth, metastasis, and angiogenesis by
the secretion of transforming growth factor-β (TGF-β), IL-6, CXCL12, and chitinase-3-like-1
(CHI3L1) [14,15]. CAFs induce radio resistance in breast cancer via different paracrine
signaling pathways [16]. CAF reprogramming also causes a decrease in the expression of
mitochondrial transcription factor A (TFAM), which induces the loss of caveolin 1 (CAV-1)
and a decrease in oxidative phosphorylation while glycolysis increases [17] (Figure 1). In
glycolytic CAFs, the increased levels of monocarboxylate transporter 4 (MCT4) allow the
export of lactate, followed by lactate influx into tumor cells via MCT1, which enters the
TCA (tricarboxylic acid) cycle and promotes oxidative metabolism [18]. To maintain the
metabolic needs due to tumor proliferation, CAFs also produce different amino acids (such
as glutamine and alanine) as other carbon sources, which support the growth of tumor
cells [19] (Figure 1).

2.2. Adipose Tissue (AT)

The association between increased adipose tissue (AT) and worse prognosis in can-
cer patients has been known for a long time [20]. Indeed, most adipose tissues contain
adipocytes, which can promote the proliferation of cancer cells, angiogenesis and metas-
tasis through different secreted molecules [21] (Figure 2). Signaling pathways related
to carcinogenesis can be regulated by adipokines secreted by neighboring fat cells and
recognized by specific receptors on the surface of tumor cells [22]. For example, PI3K/AKT
(phosphoinositide 3-kinase/protein kinase B), MAPK/ERK (mitogen-activated protein
kinase/extracellular signal-regulated kinase) and STAT3 (signal transducer and activa-
tor of transcription proteins 3) signaling pathways can be selectively activated by leptin,
hepatocyte growth factor (HGF), insulin-like growth factor 1 (IGF-1), and resistin, which
promote cell survival and proliferation [23,24]. Leptin, HGF, and VEGF-A (vascular en-
dothelial growth factor A) cells produced by adipocytes also play a role in blood vessel
formation [25]. Leptin is proven to have a pro-proliferative effect on cancer cells, while
adiponectin acts as a pro-apoptotic factor. Remodeling of the extracellular matrix of the
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surrounding adjacent tumor area may also be associated with adipocytes, as the release
of collagen VI and matrix metalloproteinase 11 (MMP11) promotes cancer invasion [26]
(Figure 2). It has been described that adipocytes also promote invasion and drug resistance
by inducing CAFs in bone marrow metastases [27].
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Figure 1. The effect of tumor cells on fibroblast reprogramming. The substances secreted by tumor 
cells convert normal fibroblasts in the environment into cancer-associated fibroblasts (CAF), which 
support tumor cell growth, metastasis, and angiogenesis. In CAF cells with increased glycolysis, 
uptaken glucose is converted to lactate, which is driven by increased efflux to tumor cells through 
higher MCT4 (monocarboxylate transporter 4) levels. In turn, higher MCT1 levels in tumor cells 
allow for increased lactate uptake, which is then utilized in the mitochondria via the TCA (tricar-
boxylic acid) cycle. The amino acids produced by CAF cells offer tumor cells another opportunity 
for energy utilization. NF: normal fibroblast. 
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Figure 1. The effect of tumor cells on fibroblast reprogramming. The substances secreted by tumor
cells convert normal fibroblasts in the environment into cancer-associated fibroblasts (CAF), which
support tumor cell growth, metastasis, and angiogenesis. In CAF cells with increased glycolysis,
uptaken glucose is converted to lactate, which is driven by increased efflux to tumor cells through
higher MCT4 (monocarboxylate transporter 4) levels. In turn, higher MCT1 levels in tumor cells allow
for increased lactate uptake, which is then utilized in the mitochondria via the TCA (tricarboxylic
acid) cycle. The amino acids produced by CAF cells offer tumor cells another opportunity for energy
utilization. NF: normal fibroblast.

2.3. Tumor-Associated Macrophages (TAMs)

Macrophages constitute an important component of the immune system during
tumorigenesis in the early stages and in the adaptive immune response. In the early
stage of cancer, the disease is marked by immune rearrangement and inflammation.
Tumor cells secrete a cytokine mixture containing TGFβ1, which acts as a strong im-
munosuppressant by blocking the maturation of monocytes through its CSF-1 (colony-
stimulating factor 1) content [28]. In this malignant tumor-oriented microenvironment,
tumor-associated macrophages (TAMs) are generated from circulating blood monocytes.
After exosmosis, they differentiate into macrophages and become key components of the
TME [29].

There are two main different subtypes of TAMs. M1-type macrophages, which are
associated with an inflammatory response by releasing proinflammatory cytokines inducing
a Th1 (T helper type 1) immune response; and M2-type macrophages, which are usually
associated with tumor progression through their secretion of interleukin-10 (IL-10) and TGF-
β, inhibiting Th1 immune responses, and by promoting tumor invasion and metastasis [30].
They also secrete different angiogenic factors (e.g., VEGF), through which they may promote
tumor angiogenesis and provide nutritional and metastasis signaling for tumor growth.
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Figure 2. Compounds secreted by adipocytes support tumor growth, angiogenesis and metastasis. 
Adipocyte-secreted adiponectin, resistin, IGF-1 (insulin-like growth factor 1), and HGF (hepatocyte 
growth factor) induce tumor growth via activation of the PI3K/Akt (phosphoinositide 3-kinase/pro-
tein kinase B) and STAT3 (signal transducer and activator of transcription protein 3) pathway. IGF-
1 and HGF also activate the MAPK/ERK (mitogen-activated protein kinase/extracellular signal-reg-
ulated kinase) pathway, together with leptin. HGF, Leptin and VEGF-A (vascular endothelial 
growth factor A) are involved in angiogenesis, while secreted collagen VI and MMP11 (matrix met-
alloproteinase 11) play a role in tumor metastasis. 
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generate mutations. Some cytokines related to mutagenic events such as TNF-α and mac-
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Figure 2. Compounds secreted by adipocytes support tumor growth, angiogenesis and metasta-
sis. Adipocyte-secreted adiponectin, resistin, IGF-1 (insulin-like growth factor 1), and HGF (hep-
atocyte growth factor) induce tumor growth via activation of the PI3K/Akt (phosphoinositide
3-kinase/protein kinase B) and STAT3 (signal transducer and activator of transcription protein 3) path-
way. IGF-1 and HGF also activate the MAPK/ERK (mitogen-activated protein kinase/extracellular
signal-regulated kinase) pathway, together with leptin. HGF, Leptin and VEGF-A (vascular endothe-
lial growth factor A) are involved in angiogenesis, while secreted collagen VI and MMP11 (matrix
metalloproteinase 11) play a role in tumor metastasis.

TAMs can suppress the intervention of other immune cells through IL-10 [31] and
arginase I release [32]. The inflammatory environment is caused also by the secretion of
reactive oxygen species (ROS) and nitrogen radicals (NOS) [33], which can potentially
generate mutations. Some cytokines related to mutagenic events such as TNF-α and
macrophage migration inhibitory factor (MIF) can also be released [34]. Paracrine interac-
tion between monocytes/macrophages and cancer cells induces metastasis after the initial
processes. One such mechanism involves the release of CSF-1 from tumor cells attracting
monocytes to the tumor environment, and the activation of EGF signaling promoting the
migration of tumor cells [35]. TAM-derived tumor necrosis factor alpha (TNF-α) is another
enhancer of metastatic behavior through the induction of MIF and extracellular matrix
metalloproteinase inducer (EMMPRIN). In this milieu, cancer cell-derived IL-4, CXCL12,
FGF (fibroblast growth factor), PDGF, and TAM-derived TGF-β [36], MMPs, urokinase-type
plasminogen activator (uPA), and IL-6 affect ECM proteolysis, thus promoting the migra-
tion of tumor cells and the eventual release of important mediators of tumor spread [37].
CCL18 (chemokine ligand 18) secreted by TAMs are responsible for the development of a
chemoresistance-inducing phenotype in breast cancer [38].

2.4. Tumor-Infiltrating Lymphocytes (TILs)

The TNBC microenvironment is infiltrated by large amounts of tumor-infiltrating
lymphocytes (TILs), including CD3+ T and CD20+ B cells and CD38+/CD138+ plasma
cells. CD3+ T lymphocytes have an important role in the establishment of the immune
response. This population can be divided into at least three subgroups, as follows: CD8+
T lymphocytes, CD4+ helper T lymphocytes and CD4+ regulatory T cells (Tregs) [11].
CD8+ T lymphocytes are the main driving force of the anti-tumor immune response. After
activation by the major histocompatibility complex (MHC), CD8+ cells release interferon-γ
(IFN-γ) and become a killer of tumor cells. CD4+ helper T lymphocytes support tumor
cell death mediated by CD8+ T lymphocytes, thus participating in the development of the
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antitumor immune response. CD4+ T cells have two subtypes (Th1 and Th2) according to
the secreted cytokines, and both strengthen the immune response. Tregs make up 10% of
all CD4+ T lymphocytes in the peripheral blood of healthy people, rising up to 30–50% in
the presence of tumor lesions, inhibiting the activation of CD8+ T and CD4+ T lymphocytes
and hence, playing an essential role in immunosuppression and angiogenesis [39,40].

2.5. Tumor-Associated Neutrophils (TANs)

Neutrophils are the first line of defense on the site of inflammation. These cells
interact with several other immune cells, secreting chemokines and peroxidases. Tumor-
associated neutrophils (TANs) are very important immunosuppressor components of
the TME-inducing antitumor effects, either through cytotoxicity or lysis of the tumor cells
directly [41]. N2-type TANs support tumor growth and convert TANs to antitumor N1-type
neutrophils by blocking TNF-α or boosting IFN. TANs and TAMs are in close relationship
in the TME due to their similar effect on TGF-β [42].

2.6. Natural Killer (NK) Cells

In the absence of specific immunity, natural killer (NK) cells are capable of causing
tumor cell death. NK cells are produced mainly in the bone marrow, and when they are in
touch with tumor cells, they secrete cytokines like cytolytic TNF-α and IFN-γ. In a study,
patients with higher NK cell infiltration had a better pathological reaction and disease-free
survival in primary HER2 positive breast cancer [43].

3. Tumor Microenvironment in TNBC

Cells in the surrounding area of the tumor affect tumor growth, proliferation and
migration to varying degrees in different types of breast cancer. TNBC has been shown
to have a unique immunogenic TME, characterized by an important immunosuppressive
landscape.

3.1. Cancer-Associated Fibroblasts (CAFs) in TNBC

CAFs have a prominent role in reducing antitumor immunity, enhancing tumor cell
proliferation and invasion, promoting tumor cell neoangiogenesis, remodeling the extra-
cellular matrix (EMC), and contributing to the development of an immunosuppressive
microenvironment [11]. Studies with the TNBC cell lines MDA-MB-231 and BT-549 cells
proved increased in vitro migration by CAFs autophagy [44]. CAFs have been demon-
strated to promote TNBC development by TGF-β activation [45], and by inducing a high
interleukin expression level in co-culture experiments [46]. More myeloid cells and fibrob-
lasts are recruited by myeloid-cells-activated CAFs in TNBC [47]. If the enrichment of
CAF-S1 is higher than CAF-S4 among the four CAF subtypes, the infiltration of CD8+ T
cells is lower and TNBC is more aggressive [48].

3.2. Tumor-Infiltrating Lymphocytes (TILs) in TNBC

Infiltration of TILs, particularly in the stroma of the TNBC, has been demonstrated to
be higher when compared to other subtypes of breast cancer [49,50]. The increased level
of TIL is associated with an improved clinical outcome in TNBC patients. Accordingly, a
recent meta-analysis demonstrated that high TIL levels are associated with a better survival
outcome in TNBC, and are considered to be a good prognostic factor for this cancer sub-
type [51]. CD8+ T lymphocyte infiltration is associated with an improved clinical outcome
and increased survival in TNBC patients [52]. Overall, hormone receptor-negative breast
cancer has shown a higher activity of CD8+ T lymphocytes [53]. In TNBC, immunosup-
pressive Tregs constrain the activation of CD8+ and CD4+ T lymphocytes, preventing the
patient’s immune response [54]. Increased Treg concentration and a higher infiltration
of FOXP3+ (forkhead box P3) were described in the TNBC microenvironment, causing a
reduction in the autoantigen immune response and predicting poor prognosis [55,56].
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3.3. Tumor-Associated Macrophages (TAMs) in TNBC

M2-type TAMs are upregulated in TNBC compared to other subtypes of breast cancer.
It has been shown that TNBC cells secrete more granulocyte colony-stimulating factor
(G-CSF), which promote the conversion of M1-type macrophages to M2-type, thereby
helping tumor development [57,58]. Importantly, TAMs also regulate the expression of pro-
grammed death ligands (PD-1/PD-L1) in the TNBC tumor environment initialization [58],
which suggests that the expression of TAMs is closely associated with poor prognosis in
cancer patients. It is worth nothing that TAMs secrete cytokines such as TGF-β and IL-13,
which inhibit the proliferation and differentiation of lymphocytes, including lymphocytes
activating killer (LAK) cells, NK cells, and cytotoxic T lymphocytes [11].

3.4. CAAs, TANs and NKs in TNBC

CAAs have a more pronounced effect on tumor growth and invasion in TNBC [59,60].
Additionally, TANs seem to promote tumor proliferation, migration and metastasis and
inhibited anti-tumor immunity in TNBC. In addition, secreted G-CSF by TNBC cells acti-
vates TANs to promote angiogenesis and improve tumor cell infiltration [61]. Surprisingly,
immature NK cells promote progression in TNBC patients through Wnt (Wingless and
Int-1) signaling [62].

Overall, TILs, TAMs, CAFs, and CAA are over-regulated or over-infiltrated in TNBC
stroma, of which only TILs show a positive correlation with prognosis; the others cor-
relate negatively [11]. Identifying compounds specific to the TNBC microenvironment
as biomarkers can be useful in determining personalized therapeutic strategies and/or
predicting the likelihood of tumor recurrence in TNBC.

4. Metabolic Pathways and Signaling Activated in TNBC
4.1. Glycolysis

Glycolysis is more important in TNBC (Figure 3) than in other subtypes of breast cancer,
as it is characterized by increased glucose uptake and lactate secretion [63]. Key glycolytic
enzymes (LDH-lactate dehydrogenase) and transporters (GLUT-glucose transporter; MCT-
monocarboxylate transporter) are also upregulated. GLUT4 knockdown reduces glucose
uptake and lactate release, thus redirecting glycolytic flux to oxidative phosphorylation
(OXPHOS), leading to a decrease in cell proliferation and viability under hypoxia [64].
LDH-A and LDH-B levels are associated with poor clinical outcomes in TNBC patients [65].
MCT1 and MCT4 isoforms play a role in lactate extrusion and acidification of TME, and
are specifically upregulated in TNBC cells [66].

4.2. OXPHOS

Although OXPHOS produces more ATP than glycolysis, glycolysis remains the main
bioenergetic source in most tumors, including TNBC [67]. In the absence of oxygen,
electrons escape from the electron transport chain and maintain higher ROS levels that
cause ROS-mediated DNA damage in tumors [68]. Culturing TNBC cell lines under
hypoxic conditions shifts the metabolic processes towards glycolysis by downregulating
OXPHOS [69]. This process is regulated by an enzyme called fructose-1,6-bisphosphatase
(FBP), which inhibits the activity of hypoxia inducible factor 1 subunit alpha (HIF-1α)
and promotes the transcription of the GLUT1, LDHA, and PDK194 genes involved in
glycolysis. At the same time, MYC overexpressed in TNBC cells promotes OXPHOS
and ROS production, resulting in the production of breast cancer stem cells (BCSCs) and
resistance to chemotherapy [70].
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Figure 3. Glycolysis and its relationship with other metabolic pathways in TNBC. Due to higher
glucose uptake in TNBC, the pyruvate produced from glucose enters the TCA cycle in mitochon-
dria as Ac-CoA (acetyl coenzyme A). The malate that exits or is converted from pyruvate forms
asparagine, whose high expression is associated with poor prognosis in TNBC. The high LDH (lactate
dehydrogenase) expression allows elevated lactate efflux, which acidifies extracellular matrix and
promotes tumor aggressiveness. Upregulated protein glycosylation via the hexosamine biosynthetic
pathway (HBP) and increased NADPH production is described by upregulated pentose phosphate
pathway (PPP) and serine synthesis. Additionally, higher fatty acid synthesis (FAO) characterized in
TNBC also promotes the energy utilization of tumor cells.

In the hypoxic tumor microenvironment, HIF-1α is activated through the mTOR
(mammalian target of rapamycin), NF-κB (nuclear factor kappa B), and JAK (Janus kinase)-
STAT signaling pathways by receptors on the plasma membrane (e.g., TCR-T cell receptor,
GFR-growth factor receptor, IL-6R and TLR-Toll-like receptor) [71]. Upregulated HIF-1α
combines with HIF-1β to form a dimer in the nucleus. The transcription of several genes,
such as VEGF, erythropoietin (EPO), and STAT3, is involved in the adaptation of cells to
hypoxic stress.

Under physiological conditions, HIF-1α and AMP-activated protein kinase (AMPK)
activate the process of glycolysis and OXPHOS (Figure 4) [72]. HIF-1α is degraded by prolyl
hydroxylase domain 2 (PHD2) under the action of alpha-ketoglutarate (α-KG) and cysteine.
In TNBC, α-KG activity is reduced due to decreased transketolase (TKT) activity, and
cysteine levels are reduced due to altered xCT-cystine/glutamate antiporter (also known as
SLC7A11) activity. This contributes to normoxic activation of HIF-1α signaling, which trig-
gers aerobic glycolysis by upregulation of glycolysis-related enzymes and transporters [73].
TNBC cells are assisted by glycolysis to proliferate rapidly but also require OXPHOS,
which produces ATP more efficiently under bioenergetic stress. Mitochondrial biogenesis,
induced by activated AMPK and MYC pathways and enzymes involved in glutaminolysis
and fatty acid oxidation (FAO), play a key role in the choice between glycolysis and OX-
PHOS [74]. Furthermore, AMPK signaling promotes epithelial-mesenchymal transition
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(EMT) by regulating lipid metabolism, and recruits immunosuppressive myeloid-derived
suppressor cells by increasing cytokine secretion.
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porters involved in glycolysis. In addition to glycolysis, the entry of amino acids into the TCA cycle 
also leads to energy gains. In TNBC, the levels of the ASCT2 transporter (responsible for glutamine 
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involved in impairing the immune response and facilitating oncogenic signaling through T cell-
derived IFN-γ (interferon γ). 

4.3. Amino Acid Metabolism 
4.3.1. Glutamine 

Glutamine is a non-essential amino acid in the body; nevertheless, it plays an essen-
tial role in supporting biosynthesis and energy generation in TNBC by entering the TCA 
cycle following transformation [75]. Transporters responsible for importing glutamine to 
the cells include ASCT2 (alanine, serine, cysteine-preferring transporter 2) and LAT1 (L-

Figure 4. HIF-1α-, glutamine-, and tryptophan-dependent metabolic reprogramming in TNBC. Under
physiological conditions, PHD2 (prolyl hydroxylase domain 2) hydroxylates and degrades HIF-1α
(hypoxia inducible factor 1 subunit alpha) in an α-KG (alpha-ketoglutarate) and cysteine-dependent
manner, thereby inhibiting aerobe glycolysis. In TNBC, PHD2 is inhibited by the cystine/glutamate
antiporter xCT and TKT (transketolase), thereby upregulating enzymes and transporters involved
in glycolysis. In addition to glycolysis, the entry of amino acids into the TCA cycle also leads to
energy gains. In TNBC, the levels of the ASCT2 transporter (responsible for glutamine uptake)
and the enzyme GLS, which converts it to glutamate, are upregulated. Meanwhile, catabolism of
tryptophan (Trp) is facilitated by overexpressed IDO1. The resulting kynurenine (Kyn) is involved in
impairing the immune response and facilitating oncogenic signaling through T cell-derived IFN-γ
(interferon γ).

4.3. Amino Acid Metabolism
4.3.1. Glutamine

Glutamine is a non-essential amino acid in the body; nevertheless, it plays an essen-
tial role in supporting biosynthesis and energy generation in TNBC by entering the TCA
cycle following transformation [75]. Transporters responsible for importing glutamine
to the cells include ASCT2 (alanine, serine, cysteine-preferring transporter 2) and LAT1
(L-type amino acid transporter 1) that are overexpressed in TNBC [76] (Figure 4). Glu-
taminase (GLS), which deaminates intracellular glutamine to glutamate in the process of
glutaminolysis, is also overexpressed in TNBC [77]. The elevated level of glutaminolysis
in TNBC [78] provides an opportunity to develop small molecule inhibitors of GLS such
as CB-839, BPTES, and compound 968 [79]. Glutamate can be converted to α-KG in the
mitochondria by transaminase or glutamate dehydrogenase (GLUD) and then enter the
TCA cycle. Overexpression of these transaminases (GPT2-glutamic-pyruvic transaminase 2,
PSAT1-phosphoserine aminotransferase 1, and GOT2-glutamic-oxaloacetic transaminase 2)
supports cell proliferation by increasing aspartate and α-KG production in TNBC. BRCA1
(breast cancer type 1) protein transcriptionally suppresses GOT2 expression, but this mech-
anism is impaired by BRCA1 deficiency often seen in TNBC [80].

The increased glutaminolysis in TNBC, and consequently the high level of glutamate,
indirectly promotes the accumulation of cystine through the action of the xCT antiporter
(Figure 4). Under normal conditions, extracellular cystine enters the cell at the same
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time as intracellular glutamate is pumped out, and supports PHD2 which hydroxylates
HIF-1α for degradation, thus inhibiting HIF-1α signaling. Upregulated xCT is shown
in one-third of TNBC, and is indispensable for GSH synthesis and the maintenance of
cancer stem cells (CSCs) [81]. xCT is stabilized at the cell membrane by the CD44 variant
(CD44v), a marker of CSCs [82]. The transmembrane glycoprotein mucin-1 (MUC1), which
is bound directly to the intracellular domain of CD44v, further promotes the stability of
xCT in TNBC [83]. As increased glutamate secretion decreases cystine uptake into the cell.
TNBC carcinogenesis may be triggered by the HIF-1α pathway via PHD2 deactivation [84].
Metabotropic glutamate receptors (mGluR) on the membrane of TNBC are also induced by
an increased level of secreted glutamate, thus promoting tumor growth, angiogenesis, and
inhibiting inflammation via the mGluR-signaling pathway.

4.3.2. Serine and Glycine

The glycolytic carbon flux is directed from 3-phosphoglycerate towards de novo serine
and glycine biosynthesis via the serine synthetic pathway (Figure 3). The pathway has
several metabolic benefits, such as limiting the production of ATP and serine through the
use of monosaccharide metabolism and the formation of NADPH. Additionally, this path-
way produces α-KG, an intermediary in the TCA cycle, from glutamate. Phosphoglycerate
dehydrogenase (PHGDH), a key enzyme in serine synthesis, is overexpressed in TNBC and
basal-like breast cancer, and leads to oncogenesis through disrupting morphogenesis in
breast epithelial cells and inducing phenotypic changes [85]. Reduced cell proliferation,
serine synthesis, and lower levels of α-KG are caused by the suppression of PHGDH and
PSAT1. In addition, the overexpression of PHGDH and PSAT have been associated with a
poor clinical outcome and more aggressive phenotypic features [86].

4.3.3. Tryptophan

Most tryptophan catabolism via indoleamine 2,3-dioxygenase (IDO), tryptophan
2,3-dioxygenase (TDO) [87], or tryptophan hydroxytryptamine 1 (TPH1) enzymes occurs
through the kynurenine pathway (Figure 4). The end products of catabolism are kynurenine
and 5-hydroxytryptamine (5-HT; also called serotonin), which can significantly modulate
the immune response and oncogenic signaling in TNBC through the aberrant expression
of catalyzing enzymes triggered by T cell-derived interferon gamma (IFN-γ) [88]. Overex-
pression of TDO2 in TNBC cells makes TNBC more resistant to programmed cell death in
a NF-κB-dependent manner, and promotes TNBC proliferation, invasion, and metastatic
ability [89]. Additionally, 5-HT increases the expression of TPH1 and VEGF in TNBC cell
invasion and proliferation via activation of the 5-HT7 receptor.

4.3.4. Arginine

Arginine is important for the growth of TNBC because it produces ornithine and
nitric oxide (NO). Ornithine is synthesized in cancer cells by arginase 2 (ARG2) during
S/G2/M phases only, and by the ornithine aminotransferase (OAT) in normal cells. Cancer
cell growth is markedly reduced when ARG2 expression is knocked down in basal-like
breast cancer [90]. Breast cancer development can be blocked by rosuvastatin by inhibit-
ing arginase enzymatic activity and reducing the level of ornithine and polyamine [91].
Arginine is also used for NO synthesis, a molecule that has multiple functions in the cell.
High activity of inducible nitric oxide synthase (iNOS), which produces NO directly, often
leads to poor survival rates in TNBC patients. This happens because increased production
of NO activates the EGFR pathway, and therefore various oncogenic signaling pathways
including c-MYC, AKT, and β-catenin. EMT, chemoresistance, and invasion ability are
enhanced by NO signaling upregulating the stem cell marker CD44 and other basal-like
breast cancer-specific proteins [92].

The metabolism of asparagine, methionine, and glutamine are essential in regulating
the growth and metastasis of TNBC cancer cells. Dietary restrictions or medications that
impede their synthesis can have tumor-suppressive effects [93–95].
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4.4. Lipid Metabolism

Another efficient way for tumor cells to produce energy comes from fatty acid oxida-
tion (FAO). A higher level of fatty acid oxidation (FAO) and downregulation of fatty acid
synthesis (FAS) were described in TNBC. In FAO, acyl-CoA is first formed by the acylation
of fatty acid, which is then transferred to the mitochondria via the carnitine palmitoyl
transferase (CPT) (Figure 5). Since CPT activity is upregulated in MYC-overexpressing
TNBC, there is an increased bioenergetic requirement for FAO. Higher levels of FAO and
ATP production activate the Src oncoprotein and increase cellular resistance to metabolic
stress induced by hypoxia, glucose deprivation, or mTOR inhibition [96]. In turn, dis-
ruption of CPT1 leads to in vivo tumor growth and reduced metastasis by abolishing
Src activation [97]. TNBC metastasis is further facilitated by upregulated peroxisome
proliferator-activated receptor gamma coactivator 1 alpha (PGC1-α), a key regulator of
mitochondrial biogenesis and respiration, which is upregulated by elevated FAO [98]. This
activates FAO under metabolic stress to maintain energy balance and promote cell viabil-
ity [99]. In contrast, fatty acid synthesis (FAS) and lipogenic enzymes are downregulated in
TNBC compared to other subtypes [75]. Acetyl-CoA is irreversibly catalyzed by acetyl-CoA
carboxylase (ACC) to malonyl-CoA, which inhibits CPT1 and FAO. In TNBC, regulation
of ACC activity decreases malonyl-CoA generation and increases FAO flux. Through
AMPK signaling, ACC1 can be inactivated by TGF-ß or leptin, thereby increasing cellular
acetyl-CoA levels, contributing to the acetylation of Smad2 (SMAD Family Member 2) and
ultimately to the development of EMT programs and metastasis [100] (Figure 5).
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Figure 5. Lipid metabolic reprogramming in TNBC. The key lipogenic enzyme acetyl-CoA carboxy-
lase (ACC) irreversibly catalyzes acetyl-CoA to malonyl-CoA in the mitochondrial membrane, which
is an inhibitor of CPT1 and FAO. FAO flux in TNBC is promoted by downregulated ACC, which
may also be caused by AMPK (AMP-activated protein kinase) signaling. The resulting increase
in cellular acetyl-CoA promotes EMT-inducing Smad2 (SMAD Family Member 2) acetylation and
ultimately, activation of EMT pathways and metastasis. Upregulated AKR1B1 in TNBC activates the
NF-κB (nuclear factor kappa B) signaling through its accumulated metabolite PGF, which leads to the
overexpression of Twist2 and enhances cancer stem cell (CSC) properties in TNBC. Higher asparagine
levels are associated with less metastatic potential in TNBC by activation of Twist1 molecule through
downregulation of the inhibitor asparaginase.

Fatty acid cells supplying bioenergy may be derived also from triglycerides in circu-
lating lipoprotein particles. Upregulation of lipoprotein lipase (LDL), which hydrolyzes
triglyceride into fatty acids and proteins in the fatty acid binding protein (FABP) family, are
associated with a poor clinical outcome in TNBC [101]. Higher uptake and utilization of
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cholesterol by elevated activity of low-density lipoprotein (LDL), caveolin-1, and choles-
terol acyltransferase 1 (ACAT1) were also found in TNBC, leading to elevated cholesterol
biosynthesis in the mevalonate pathway [102]. NF-κB signaling is also activated and sup-
ports EMT programs by the upregulation of aldo–keto reductase 1 member B1 (AKR1B1)
by the positive feedback of Twist2 activation [103] (Figure 5).

5. Epigenetic Changes in TNBC

While genomic changes of TNBC include mutations, copy number variations, and
genetic rearrangements, TNBC is also characterized by epigenetic signatures, including
changes in DNA methylation and histone remodeling [104]. These epigenetic modifications
either silence or activate genes that were previously described in TNBC. In addition, recent
evidence supports epigenetic regulation of extracellular matrix alterations in TNBC. This
reinforces the importance of epigenetic mechanisms, which play a role in the pathogenesis,
maintenance, and resistance to therapy [105]. For example, TNBC metastasis could be
inhibited by Fbxo22 (F-box protein 22) through ubiquitin modification of KDM5A (Ly-
sine Demethylase 5A) and regulation of H3K4me3 demethylation [106]. Genome- and
transcriptome-wide analyses in TNBC show the importance of histone H3 proline 16
hydroxylation (H3P16oh) in the regulation of mammalian gene expression, and DKK1
(Dickkopf-related protein 1), a negative regulator of the Wnt pathway, is repressed via the
EGLN2 (Egl-9 family hypoxia inducible factor 2)-H3P16oh-KDM5A pathway to promote
Wnt/β-catenin signaling [107]. An increased level of the long non-coding RNA LINC01559
in TNBC is associated with tumor growth and lung metastasis in a xenograft model via
increasing the expression of oncogenes [108].

Anti-epigenetic drugs have shown promising results in the pre-clinical and clinical
setting in breast cancer [109]. Natural compounds such as thymoquinone, regorafenib,
Fangji Huangqi Decoction, saikosaponin A, and Trametes robiniophila Murr extracts were
reported in the literature as potential antitumor agents in TNBC [104]. Combination
therapies would probably work better in controlling cancer growth and metastasis; for
example, a study of neoadjuvant paclitaxel and epigenetic drugs led to a suppression of
cancer progression by inhibiting post-treatment regrowth of TNBC cells [110]. The ongoing
advances in epigenetic research will help to expand the armamentarium of treatments for
TNBC [111].

6. Diagnostic and Therapeutic Possibilities Linked to Tumor Metabolism in TNBC

TNBC is the most aggressive and difficult to treat subtype of breast cancer. The overall
biologic heterogeneity that characterizes TNBC can greatly complicate the identification
of effective therapies with lasting efficacy, making TNBC difficult to treat with current
therapies [112]. High metastatic potential and poor prognosis remains an important clin-
ical feature of this breast cancer subtype. Among cancer hallmarks, the presence of an
immunosuppressive TME and a unique metabolic reprogramming characterizing TNBC
could effectively provide opportunities for novel therapeutic strategies.

A higher overall pathological response to neoadjuvant chemotherapy in pretreatment
biopsies and better survival are predicted by higher TIL levels according to recent meta-
analyses [113,114]. In more than 100 patients with TNBC, higher CD8+/FOXP3+ ratios
after neoadjuvant chemotherapy were associated with a better prognosis [115]. These
findings are also supported by a study investigating the relationship between TILs, immune
response regulators, and the glycolytic TME in a large number of TNBC patients [116].
A higher expression of TILs was associated with better survival, although expression
of the immune markers PD-L1, FOXP3, and CD163 was significantly associated with
reduced overall survival. The authors raised the possibility of further subclassifying TNBC
patients according to the expression of these determinants and MCT4 to predict survival.
Expressions of immune checkpoints PD-1 with LAG-3 were revealed to be potentially
determining factors to clinically evaluate early stage TNBC patients [117,118]. Higher TILs
at diagnosis were associated with decreased distant recurrence rates in primary TNBC and
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increased trastuzumab benefit in HER2+ disease in the FinHER trial [119]. Another recent
study has demonstrated a positive prognostic role for increased TIL levels in a study of
247 TNBC patients receiving neoadjuvant treatment containing CMF (cyclophosphamide,
methotrexate and fluorouracil), or a combination with anthracyclines (cyclophosphamide
and doxorubicin) [120]. Ex vivo treatment of TILs with pentoxifylline in a TNBC mouse
model reduced the proportion of Tregs in conventional IL-2-mediated TIL expansion and
improved the anti-tumor immune response by altering the cytokine balance of TILs [121].
These results provide strong evidence that stromal TILs can be used both as a predictive
marker of a response to chemotherapy and as a prognostic marker. TILs are often inhibited
by the presence of immunosuppressive molecules expressed in TNBC, and targeting such
molecules relieving T-cell inhibition could elicit a relevant anti-tumor response.

The important role of CAF cells in tumor stroma formation potentially raises the
possibility of using upregulated genes as biomarkers. Expression of MCT4 in the tumor
stroma, which represents a glycolytic tumor environment, is associated with poor progno-
sis in TNBC patients [116]. Potential CAFs linked targets [122] could be included on the
inhibition of CAF transition from inactive to active form [123]; the utilization of vitamin D
to revert CAFs to an inactive state, as has been shown in colorectal cancer and pancreatic
cancer [124,125]; the reduction of CAFs by CAR-T cell therapy [126], cancer vaccine [127]
or monoclonal antibody therapy [128]; the negation of CAF tumorigenic functions through
inhibition of EMT, stem cell formation, and metastasis [126]; the reduction of the immuno-
suppressive functions of CAFs to increase T cell access to tumor cells and their sensitivity
to therapeutic agents [128]; and the inhibition of CAF-derived substances (chemokines,
cytokines, exosomes, miRNAs, and ECM proteins) [129]. Although to date no specific study
was performed targeting CAFs in TNBC, several of the listed pathways offer promising
opportunities for developing therapeutic agents in TNBC as well.

It has been shown that, mainly through the substances they secrete, adipocytes can
promote tumor progression, enhance immunosuppressive TME and compromise therapeu-
tic efficacy. When a protein trap against CC motif chemokine ligand 2 (CCL2), produced
primarily by CAAs, was delivered into the TME using nanoparticles, enhanced therapeutic
efficacy and significant tumor growth inhibition were observed [130]. In addition, T cell
infiltration was increased and the populations of immunosuppressive M2 macrophages
and myeloid-derived suppressor cells (MDSCs) were reduced. Nanotechnology-based
therapies, which have gained ground recently, represent a promising approach to target
TME and improve treatment outcomes in TNBC patients, which may lead to improved
survival and quality of life [131].

The recruitment of TAMs in the TME was affected by omega-3 docosahexaenoyl
ethanolamide, which in turn affected tumor progression and macrophage recruitment in
TNBC cells by reducing CCL5 secretion [132]. In another study, tinengotinib (TT-00420),
which strongly inhibited Aurora A/B, FGFR1/2/3, VEGFR, JAK1/2, and CSF-1R in bio-
chemical assays, specifically inhibited the proliferation in all subtypes of TNBC in vitro
and in vivo, while leaving luminal breast cancer cells intact. The studies showed that the
potential mechanism of action was primarily through the inhibition of Aurora A or B kinase
activity, and resulted in reduced TAM infiltration. A phase I trial of tinengotinib has been
completed, and showed promise as a combinatorial inhibitory mechanism for the treat-
ment of TNBC [133]. Targeting Notch, IL1β, or CCL2 may reduce TAM recruitment and
resistance to immune checkpoint inhibitors, shedding light on the potential of combination
immunotherapy in TNBC [134].

Metabolic reprogramming is also involved in intracellular energy production pro-
cesses. In TNBC, the major glycolytic transporters and enzymes significantly upregulate
glycolysis and its downstream pathways (Figure 3). NADPH production is enhanced by
serine synthesis and the pentose phosphate pathway (PPP), whereas protein glycosylation
is upregulated by the hexosamine biosynthetic pathway (HBP). Fatty acid oxidation (FAO),
glutaminolysis, oxidative phosphorylation (OXPHOS), and cystine uptake are also overac-
tivated in TNBC due to increased bioenergetic demand. These processes allow cancer cells
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to rapidly produce energy and biosynthetic intermediates to support their rapid growth
and proliferation. There are a number of therapeutic strategies to target the reprogrammed
energy production processes in TNBC. One strategy is the use of glycolysis inhibitors
such as 2-deoxyglucose (2-DG) [135,136] and the use of the combination cisplatin-tegafur-
lonidamine [137], which act by interfering with glycolysis and sensitizing tumor cells to
additional agents. Although glycolytic inhibitors have shown promise in preclinical studies,
they have not yet shown significant efficacy in clinical trials. This is probably due to these
agents’ limited specificity and potential toxicity.

The inhibition of glycolysis in TNBC has dual consequences: it suppresses tumor cell
aggressiveness and the cancer stem cell (CSC) phenotype [138], while shifting metabolic
processes towards OXPHOS, thus shifting energy metabolism from the mitochondria to
the cytoplasm. ROS is known to induce a shift of breast cancer stem cells (BCSC) from a
mesenchymal state (high ALDH levels) to an epithelial state (high CD24-CD44+ expression)
via the AMPK-HIF-1α pathway. The latter exhibits high OXPHOS activity and antioxidant
protection [139], which is also observed in brain or lung metastases of TNBC [140,141].
Following chemotherapy, tumors become highly sensitive to OXPHOS inhibitors [142]. It
has been reported that a specific hybrid phenotype of TNBC exists in which glycolysis and
OXPHOS may be present simultaneously. This results in a higher metabolic flexibility to
metabolic drugs [72], thus leading to a more proliferative and aggressive spread. A dual
attack of these two pathways may be an effective strategy to promote cancer cell death
through the inhibition of bioenergetic processes [139].

Several key signaling pathways are involved in the metabolic reprogramming of TNBC
cells. The PI3K/AKT/mTOR pathway is physiologically involved in cell metabolism,
growth, proliferation, and apoptosis through the activation of tyrosine kinase receptors
(RTK) and G-protein-coupled receptors [143]. AKT is the central mediator of the PI3K
pathway, activating more than one hundred substrates including mTOR, while PTEN
(phosphatase and tensin homolog) is the main negative regulator of PI3K signaling [144].
Changes in the PI3K/AKT/mTOR pathway during cancer development are mainly due to
mutations in PIK3CA and AKT, overexpression of RTKs or loss of PTEN [145]. Combined
activating mutations in PIK3CA and AKT1 occur in 25–30% of advanced TNBC [146].
Mutations and copy number changes in the TP53 and PIK3CA/AKT genes in plasma may
be important markers of TNBC development, progression, metastasis, and in the clinical
follow-up [147]. The PI3K/Akt/mTOR pathway is often dysregulated in TNBC, which
also promotes glycolysis by upregulating glycolytic enzymes while suppressing OXPHOS
by inhibiting mitochondrial biogenesis and function. It has been shown that the AMPK
activator AICAR (5-Aminoimidazole-4-carboxamide ribonucleotide) can be combined with
rapamycin in breast cancer cells [148] and other cancers [149], and has a definite role in
cancer metabolism. Glutamine deprivation generates “synthetic lethality” for cytotoxic
drugs capecitabine, paclitaxel, and rapamycin in cancer cells driven by KRAS (Kirsten rat
sarcoma virus) arresting the cells in S phase [150]. The selective inhibition of glutamine
uptake also seems to be a promising therapeutic strategy in TNBC [151]. Several plant
active compounds have been shown to strongly inhibit pathways involved in CSC in vitro
and in vivo [152–156]. The AKT-inhibiting neoadjuvant ipatasertib sensitized TNBC to
paclitaxel [157]. The combination of doxorubicin, metformin, and oxamate resulted in
effective and rapid tumor growth inhibition in a xenograft model by inhibiting mTOR
phosphorylation and LDH-A gene expression. The mTOR inhibitor everolimus [158] and
the PI3K inhibitor buparlisib [159] have shown promising results in preclinical and early
clinical studies, where they demonstrated antitumor activity and sensitivity to chemother-
apy in TNBC. Synthetic flavonoids targeting aromatase inhibitors in breast cancer [160],
PARP inhibitors [161], and immune checkpoint inhibitors [162], alone or in combination,
seem to be promising in the treatment of TNBC patients. The HIF pathway, which is
activated in response to low oxygen levels, also plays a critical role in the regulation of
glycolysis in TNBC and is a promising target to overcome chemoresistance [163]. Several
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drugs targeting these pathways are currently in development or in clinical trials, including
immunotherapy, chemotherapy and anti-angiogenic therapy (Table S1).

7. Conclusions

Despite the approval of recent drugs in TNBC, many patients still show poor response
to therapies, early relapse and/or drug resistance, making this breast cancer subtype still an
unmet medical challenge. In this review, we described all cells and molecules present in the
TNBC microenvironment that can also influence the metabolic processes inside the tumor
cells, thus accelerating tumor progression. Metabolic reprogramming that characterizes
TNBC involves a switch in energy production from oxidative phosphorylation to glycolysis.
This shift not only provides energy for tumor growth but also leads to the increased
production of lactate, which can create an acidic and hostile tumor microenvironment for
immune cells, promoting tumor progression and metastasis. To date, a number of drugs
and combinations have been tested against these metabolic signaling pathways to inhibit
tumor cell aggressiveness, angiogenesis, and metastasis, but breakthrough results are still
awaited. A comprehensive understanding of metabolic and TME interactions, related
signaling, and mechanism of interactions are needed to identify novel and better treatment
options in TNBC.
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