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Abstract: Breast cancer (BC) is the first worldwide most frequent cancer in both sexes and the most
commonly diagnosed in females. Although BC mortality has been thoroughly declining over the
past decades, there are still considerable differences between women diagnosed with early BC and
when metastatic BC is diagnosed. BC treatment choice is widely dependent on precise histological
and molecular characterization. However, recurrence or distant metastasis still occurs even with the
most recent efficient therapies. Thus, a better understanding of the different factors underlying tumor
escape is mainly mandatory. Among the leading candidates is the continuous interplay between
tumor cells and their microenvironment, where extracellular vesicles play a significant role. Among
extracellular vesicles, smaller ones, also called exosomes, can carry biomolecules, such as lipids,
proteins, and nucleic acids, and generate signal transmission through an intercellular transfer of
their content. This mechanism allows tumor cells to recruit and modify the adjacent and systemic
microenvironment to support further invasion and dissemination. By reciprocity, stromal cells can
also use exosomes to profoundly modify tumor cell behavior. This review intends to cover the
most recent literature on the role of extracellular vesicle production in normal and cancerous breast
tissues. Specific attention is paid to the use of extracellular vesicles for early BC diagnosis, follow-up,
and prognosis because exosomes are actually under the spotlight of researchers as a high-potential
source of liquid biopsies. Extracellular vesicles in BC treatment as new targets for therapy or efficient
nanovectors to drive drug delivery are also summarized.

Keywords: extracellular vesicles; exosomes; breast cancer; diagnostic; prognosis; therapy;
targeting; vector

1. Introduction

Breast cancer (BC) is the first worldwide most commonly diagnosed cancer for
both combined sexes and accounts for 11.7% of total cancer incidence and 6.9% of
cancer-related deaths. In 2020, more than 2.3 million new BC cases were reported
worldwide, with almost 685,000 related deaths, according to WHO. The death rate
was considerably higher in developing versus developed countries (15.0 vs. 12.8 per
100,000) [1]. In Europe and the USA, approximately 523,000 and 276,500 new BC cases are
diagnosed annually [2], while 138,000 and 42,000 die of BC-related diseases. Although
BC mortality has been thoroughly declining over the last decades, there are still large
differences between women diagnosed with early BC (considered curable with ∼96%
5-year survival probability in Europe) or when metastatic BC is diagnosed (mostly
not curable with ∼38% 5-year survival rate) [3]. The two significant supports of BC
management are locoregional treatment and systemic therapy, and both histological and
molecular characteristics of BC broadly impact treatment choices.

Nevertheless, even with the development of new efficient therapies (immunotherapy
with PDL1 inhibitors), BC recurrence and metastasis are still the leading causes of death [4],
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mainly because of the emergence of therapy-resistant cancer cells [5,6]. Thus, answering
essential questions involving the factors or mechanisms determining the distant metastasis
or the acquisition of therapy resistance is strongly mandatory to develop novel effective
therapeutic strategies against BC [7]. Recent studies have shown the importance of tumor
evolution in the continuous interplay between tumor cells and their microenvironment
(cancer cells’ interaction with themselves, bidirectional interaction of cancer cells with stro-
mal cells, etc.) [8,9]. Such communication strategies require specific mechanisms, including
direct cell-to-cell contacts but also autocrine, juxtacrine, paracrine, and even endocrine
secretion of specific factors (growth factors, matrixins, cytokines, and chemokines) [10].
Among such secreted means are figure exosomes [11], a generic consensus term used to
describe any small lipid bilayer-delimited particles that are unable to replicate and are
extracellularly released by every cell (including prokaryotic ones) [12,13]. Exosome sur-
face receptors allow their targeting and capture by a broad range of recipient cells that
will incorporate either proteic, lipidic, or genetic messages resulting in modifications of
their physiological behavior. These exosomes have recently been proven to be efficient
means of communication in human diseases [14], especially in cancer [15,16]. As the field
of exosomes is highly active [17–19], we aimed to review the respective roles of cancer
cell-derived exosomes as well as stromal-derived exosomes in BC to better understand the
cellular and molecular mechanisms underlying their generation and development. We also
emphasize exosomes as powerful tools to efficiently diagnose, better stage and improve BC
prognosis, and better design, in a personalized approach, treatment strategies.

2. Extracellular Vesicle Nature, Structure, and Properties

Various amounts of 40–1000 nm membrane-derived extracellular vesicles, continu-
ously released from the plasma membrane (plasma membrane) into the local environment
by either eukaryotic or prokaryotic cells, can be detected in almost all biological fluids.
The 2018 MISEV consensus rule recommends differentiating label bilayered membrane
vesicles such as SEVs (smaller than 200 nm, small extracellular vesicles or exosomes) and
MLEVs (larger than 200 nm, medium large EVs or ectosomes) shed by live cells [20,21]
from apoptotic bodies or necrotic blebs of a plasma membrane that are the consequences of
dying cells disassembly [22].

2.1. Extracellular Vesicle Biogenesis

While MLEVs are heterogeneous membranous vesicles generally deriving from out-
ward plasma membrane budding (ectosome release) [23], SEVs originate from the endoso-
mal compartment [24].

2.1.1. SEVs Biogenesis

SEVs production follows complicated sorting routes and requires several complex
protein systems [25–27]. SEVs biogenesis starts with the inward budding of small portions
of the plasma membrane containing an outer membrane exposed material. These small
intracellular vesicles form the early endosome, which subsequently matures and transforms
into a late endosome. Inward budding of the limiting membrane of the late endosome then
occurs, resulting in the progressive assemblage of intraluminal bilayered vesicles (ILVs)
within so-called large multivesicular endosomes or multivesicular bodies (MVBs) (Figure 1).
At this step, it seems that the endocytosed cargo is first delivered to the trans-Golgi network
(cargo-in) and then back transferred to MVB (cargo-out) [28]. This route seems to follow the
MVB-driven Golgi protein quality control pathway that will further degrade miss-folded
proteins in endolysosomes [29]. During this process, cytosolic proteins, as well as nucleic
acids, can be trapped into ILVs through the action of the ESCRT (endosomal sorting complex
required for transport) machinery [30,31] or by following a ceramide ESCRT-independent
pathway, suggesting a critical role for lipid raft microdomains in MVBs formation [32].
ESCRT is a family of proteins that associate in successive complexes (ESCRT-0, -I, -II, and
-III) at MVBs membrane to sort ubiquitinated cargos into late endosomes [33].
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The fate of MVBs varies according to the proteins that are expressed on their surface
that will be specifically recognized on the target membrane [34]. Acidification along
the endocytic pathway also seems to be required for the degradation and recycling of
internalized components [35]. Intracellular calcium [36] and local hypoxia [37] also seem to
be major determinants for MVBs degradation versus secretion. Most MVBs are directed for
cargo degradation into lysosomes by fusing with them [38,39]). It was demonstrated that the
autophagosome may fuse with MVB in a pre-lysosomal step, resulting in a hybrid organelle
called amphisome [40], suggesting that both the autophagy degradation process and the
exosomal release are closely linked [41]. As MVBs also contain intraluminal proteins and
lipids, which are not intended for lysosome degradation, ILVs can release their content into
the cytoplasm by direct back-fusion with the endosome-limiting membrane [42]. However,
a subset of them fuse to the plasma membrane and release their content externally in the
form of SEVs, a secretion process called exosome biogenesis [43,44].
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Figure 1. SEVs biogenesis and release. SEVs may have multiple origins. They can originate from 
plasma membrane budding, which leads to heterogeneous membranous medium-large vesicles 

Figure 1. SEVs biogenesis and release. SEVs may have multiple origins. They can originate from
plasma membrane budding, which leads to heterogeneous membranous medium-large vesicles
(MLEVs) shedding. Small EVs (SEVs, exosomes) originate from the internal budding of plasma mem-
branes giving rise to early endosomes. By complex maturating interactions with the Golgi apparatus
(cargo-in/cargo-out), early endosomes become late ones. The membranes of late endosomes form
intraluminal vesicles (ILVs), small cargos containing proteins from the plasma membrane, and Golgi
as well as nucleic acids. Endosomal cargo sorting was performed through either ESCRT-dependent
or -independent routes; the ESCRT complex being the key machinery of protein sorting into SEVs.
ILVs are contained in multivesicular bodies (MVBs) that fuse with either plasma membrane (after
Rab-driven docking), releasing SEVs in the extracellular space (through Snare complex assembly) or
with lysosomes for further internal degradation.

MVBs that are fated for exocytosis are transported to the plasma membrane along
cytoskeletal structures such as actin or microtubules and their associated molecular motors
kinesins and dyneins [45,46]. MVBs docking to the plasma membrane is strongly regulated
by the Rab family of small GTPases proteins [47], especially Rab27a which mediates the
docking, tethering, and fusion of MVBs with the plasma membrane [48,49]. Once docked,
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secretory MVBs couple to the SNARE (soluble N-ethylmaleimide-sensitive component
attachment protein receptor) membrane fusion machinery [50]. SNARE complex formation
and membrane fusion are tightly controlled by multiple regulatory mechanisms [51], which
include the phosphorylation profile of SNARE proteins, which influence either SNARE
complex localization or interaction with SNARE partners [52]. SNARE assembly and
disassembly mediate the fusion of MVBs with the cell membrane, thus releasing outside
the cell the MVBs particles [53] that become exosomes.

2.1.2. MLEVs Biogenesis

Interestingly, in contrast with the importance of MVBs in the SEV formation pathway,
MLEV release is totally MVB-independent and does not require exocytosis [54,55]. MLEV
are assembled by the regulated outward budding of plasma membrane domains [56], a
mechanism depending either on caveolae [57] or clathrin-coated vesicles [58], explaining
why ectosomes are surrounded by phospholipid membranes containing lipid rafts and
caveolae [59].

However, despite the distinct mechanism for biogenesis and membrane origin, both
endosome-origin SEVs and MLEVs can work similarly, and the crucial difference between
them has not yet been elucidated [23].

2.2. Extracellular Vesicle Composition

MLEVs, which bud directly from the plasma membrane of healthy cells, contain
cytoskeleton and endoplasmic reticulum elements [60,61]. It is considered that MLEVs’
composition mainly reflects the surface proteins of parental cells [23]. As phosphatidylser-
ine repositioning within the cell plasma membrane is a critical factor in MLEVs evagina-
tion [62], MLEVs display high levels of phosphatidylserine. In contrast, SEVs have lower
ones exposed to the outer membrane leaflet [63].

Because of their endosomal origin, and since they derived from the ILVs in MVBs,
SEVs biogenesis heavily depends on the mechanisms that regulate MVBs maturation
and trafficking. Along the different sorting mechanisms needed for SEVs production,
specific molecules (proteins, lipids, amino acids, metabolites, nucleic acids such as nuclear
or mitochondrial DNA or several RNA species, etc.) [64,65] are incorporated into SEVs
generating cargo diversity [66–68].

SEVs mostly contain proteins originating from the cytosol, the endosomal compart-
ment, and the plasma membrane [12]. Cytosolic protein engulfment involves proteins
close to the MVB outer membrane during its inward budding. Proteins such as Heat
shock proteins (Hsp90, Hsc70, Hsp60, Hsp20, Hsp27, etc.), growth factors and cytokines
(TNF-α, TGF-β, TRAIL, etc.), and enzymes (belonging to central metabolisms such as
glycolysis, citric acid cycle, etc.) can be found in exosome lumen [69]. As the budding
and release of SEVs require inner plasma membrane actin polymerization, and then the
actomyosin cytoskeleton contraction, cytoskeleton proteins such as actin, actinin, dynamin,
myosins, and tubulin are also generally found in SEVs [45]. It holds the same for essential
regulators of extracellular vesicles trafficking: ESCRT complex proteins and important
ESCRT partners molecules implicated in ESCRT assembly or nucleation such as ALIX [70],
members of the Rab family [71], and SNARE membrane fusion machinery, required ex-
plicitly for MVBs docking and fusion with plasma membrane [72], are also found in SEVs
(Figure 2). Tetraspanins (mainly CD9, CD63, CD37, CD81, CD82, and CD53), which are
highly conserved integral membrane proteins displaying a high affinity for cholesterol
and sphingolipids such as ceramides, are involved in ESCRT-independent exosome re-
lease [73] and greatly influence exosome biogenesis and composition [74,75]. They play
essential roles in plasma membrane protein scaffolding and anchoring in cellular mem-
branes by creating specific plasma membrane tetraspanin-enriched microdomains [76]),
thus facilitating their sorting into SEVs [77,78]. Thus, antigen-presenting molecules (Major
Histocompatibility complex MHC class 1 and MHC class 2), glycoproteins (O-linked and
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N-linked glycans), adhesion molecules (integrins, selectins, etc.), and signaling receptors
(TNF receptor, Transferrin receptor, etc.) are frequently found on SEVs membrane [79].

SEVs can also comprise nucleic acid molecules [80]. Various RNA species (mRNAs,
rRNA, tRNA, snRNA, snoRNA, piRNA, Y-RNA, scRNA, SRP-RNA, 7SK-RNA, miRNAs
(miRs), lncRNAs, circRNAs, etc.) can be evidenced in SEVs [81,82]. Numerous reports have
shown the ability of SEVs RNAs to profoundly impact the functional properties of cells that
incorporate them [81]. Nuclear and mitochondrial DNA molecules can also be conveyed by
SEVs [83,84]. In plasma, cell-free DNA (CFDNA) circulates in both free form and enclosed
in SEVs [83]. While large intact DNA is generally associated with MLEVs [85] and is mainly
attached to the outer surface of extracellular vesicles [86], shorter double-strand 150 to 6000
bp fragments resulting from DNA fragmentation by DNAses are usually found in SEVs [87].
As CFDNA sometimes harbors mutations, it may reflect the mutational status of parental
DNA [88] and serve as a relevant tumor biological marker in liquid biopsies [89,90]. Aside
from this complex protein and nucleic acid repertoire in SEVs, metabolomic studies reveal
that SEVs contain different classes of low-molecular-weight compounds.

Organic acids, nucleotides, sugars, their derivatives, carnitines, vitamins, related
metabolites, and amines are frequently evidenced in SEVs [91]. Lipids (phosphatidylserine,
cholesterol, sphingomyelins, and ceramide) participating in intercellular signaling and also
ensuring structural stability are present [92]. These metabolites may originate from specific
sorting but are more probably synthesized in situ in SEVs as complete, but more often,
partial metabolic routes can be evidenced [93].
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Figure 2. Exosome membrane molecules and their cargo content. Small extracellular vesicles
(SEVs) are nano-sized membrane vesicles released by a variety of cell types and are thought
to play important roles in intercellular communications. SEVs contain many kinds of proteins,
either cytosolic or plasma membrane ones. Transporters, receptors, and signaling proteins, but
also enzymes, can be evidenced. Metabolites are also present as well as nucleic acids. Genomic
and mitochondrial DNAs and multiple RNAs (mRNAs, miRNA, lncRNA, circRNA, etc.) can be
detected. Through the horizontal transfer of these bioactive molecules, SEVS are emerging as local
and systemic cell-to-cell mediators of oncogenic information.
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Extracellular vesicles, released in body fluids, vastly differ in size, content, morphology,
and biological mechanisms [94,95]. A single cell line can continuously generate morpholog-
ically diverse vesicles [96]. However, little is known about the essential mechanisms that
may account for the combinatorial repertoires of SEV cargo and the heterogeneity in cargo
compositions across different extracellular vesicle populations and subtypes [97]. Many
reports using either proteomics, transcriptomics, or metabolomics have shown how the
vesicular protein cargo is distinct from its original sample [98–100]. Increasing evidence
has pointed to the selectivity in cargo loading during SEV biogenesis rather than a generic
regulation of cargo sorting into SEVs [101]. Under hypoxic conditions, tumor cells show
changes in morphology, distribution, and accumulation cargo of MVBs. These modifica-
tions are associated with significant differences in the number, morphology, and cargo of
SEVs [34]. It was also reported that polymorphonuclear neutrophil cells could produce a
broad spectrum of SEVs, depending on the environmental conditions prevailing during
SEV genesis [102]. Consequently, SEV composition does not simply represent parental cell
protein composition, but more notably, SEVs cargo multifaceted variety reflects a specific
signature of these source cells at a definite time [103,104].

SEV biogenesis threshold will vary significantly between cell types according to their
physiological/pathological status. The high rate of SEVs secretion found in transformed
cells suggests that the balance between MVB degradation and secretion is disrupted in
cancer toward SEVs cargo release [105]. Such modification is not specific to cancer cells
but may also occur in non-transformed ones. In antigen-presenting cells, large amounts of
SEVs are found to be released upon stimulation [106].

2.3. Extracellular Vesicle Fate

Once released, SEVs circulate locoregionally or distantly to deliver their cargo content
to recipient cells. The encapsulated cargo of SEVs is protected from degradation [79].
Circulating labeled SEVs’ half-life has been evaluated in mice to be about 2 minutes, but
detecting SEVs in the bloodstream remains possible several hours after injection [107].
SEVs then use their lipid membranes to enter recipient cells to release cargo. Although a
non-specific uptake is shared by every cell type [108], specific targeting to recipient cells is
generally required to deliver exosome cargo and exert its function [109]. When reaching
the target cell, SEVs can either trigger signaling by directly interacting with extracellular
receptors or be uptaken by direct fusion with the plasma membrane or get internalized.
Most reports indicate that endocytosis generally internalizes SEVs into the endosomal com-
partment [110], while the exact mechanisms underlying SEV endocytosis processes remain
unclear [111]. Various other mechanisms have also been proposed, including clathrin-
mediated endocytosis, caveolin-dependent endocytosis, lipid raft-dependent endocytosis,
micropinocytosis, and phagocytosis [112]. After internalization, SEVs can interact within
the recipient cell, inducing intracellular signaling and changes to molecular processes that
may affect various functions such as apoptosis, autophagy, growth, cell cycle, migration,
invasion, and differentiation [113,114].

3. Extracellular Vesicle’s Role in Normal Breast Tissue
3.1. Extracellular Vesicles Production in Normal Mammary Tissue

The mammary gland is one of the very few organs in which substantial development
occurs only after birth, undergoing cycles of growth, differentiation, milk secretion, apop-
tosis, regression, and remodeling during the lifetime of the organism [115]. It develops
predominantly during the postnatal period from several invading cells derived from the
ectoderm [116]. These cells undergo a morphogenetic program that leads to the develop-
ment of a series of branching ducts that terminate in sac-like lobules embedded in stromal
tissue. Both secretory acini and ducts are lined by an epithelium [117] that later expands
to generate a complicated network to deliver milk to newborn progeny. This continuous
epithelium consists of an outer basal layer of contractile myoepithelial cells and an inner
layer of luminal cells surrounding the lumen. The epithelium includes a subset of stem
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cells closely interacting with the environment to drive their fate and the ultimate mam-
mary gland phenotype [118,119]. The surrounding microenvironment comprises many
different cell types that play specific roles in this complex functional network. The microen-
vironment accounts for nearly 80% of the breast volume and comprises an extracellular
matrix and stromal cells including inflammatory cells, adipocytes, endothelial cells, and
fibroblasts [120]. In the non-pregnant state, the mammary gland looks like a network of ep-
ithelial ducts that empty into the main lactiferous ducts. Epithelial cells’ secretory granules
exocytosis releases several antimicrobial peptides inhibiting bacterial growth in the duct
system [121]. With pregnancy, and because it must prepare for lactation, the epithelium
markedly proliferates and differentiates. It expands to fill the gland, replacing the fat pad
with milk-producing lobuloalveolar structures. When milk secretion stops, the mammary
gland undergoes apoptosis of the lobuloalveolar cells generated during pregnancy and
returns to its original ductal state. Milk SEVs containing MFG-E8 (milk fat globule-EGF
(epidermal growth factor)-8) play an essential role in the recognition and engulfment of
apoptotic epithelial cells by the neighboring phagocytic cells in the involuting gland [122].
As the epithelial cells are lost, the gland repopulates with adipocytes.

Stromal ECM, which mainly contains type I collagen, fibronectin, laminins, and
glycoproteins, is a structural scaffold that maintains breast tissue integrity [123]. Fibroblasts
regulate ECM deposition and differentiation of the neighboring epithelium [117,124]. Cell-
matrix and cell-cell interactions play critical roles in developing the normal mammary
gland, where SEVs can participate [122,125,126]. In the normal gland, SEVs regulate
epithelial cell polarity as mammary epithelial cells are highly polarized [127,128]. Several
studies have shown that epithelial SEVs that shed apically or basolaterally differ in cargo
composition or concentration [129,130]. Distinct loading mechanisms for apical versus
basolateral cargo have been suggested [131]. Therefore, polarized secretion of SEVs allows
targeted delivery of specific SEV populations to stromal recipient cells due to the organized
tissue architecture [128].

3.2. Exosome Role in the Maintenance of the Mammary Stem Cell

During female mammals’ sexually active life, the mammary gland continuously un-
dergoes tissue remodeling [132]. During each cyclic pattern of ovarian activity, breast cells
proliferate and form alveolar buds at the tertiary side branches, then regress in an ordered
fashion [133]. Under pregnancy stimuli, lobuloalveolar differentiation takes place with
breast epithelial expansion, which generates complex milk-secreting alveolar units, whose
cells undergo terminal differentiation into specialized secretory cells in late pregnancy.
Such a dynamic structure with high regenerative capabilities has suggested the existence
within the breast of the renewable stem cell population [134]. Mammary stem cells (MaSCs)
have been isolated and shown to be able to individually regenerate an entire mammary
gland within six weeks in vivo while simultaneously executing up to ten symmetrical
self-renewal divisions [135,136]. Localization of dormant MaSCs to the fat pad’s proximal
region may indicate a specific microenvironment that resembles the MaSC niche [137].
Stromal fibroblasts appear to be a significant determinant of development in the mammary
gland. Several fibroblast-derived factors have been implicated in transmitting signals to the
epithelium, including morphogen ligands such as hedgehog or Wnt molecules [138,139].
Mutations within these key-signaling pathways can deregulate MaSCs from controlling
regulatory signals, allowing them to develop precursor lesions [140]. Stromal SEVs can
also participate in that regulation. Generally, mammary luminal cells do not have stem
cell properties and cannot generate mammary glands when implanted into fat pads. SEVs
derived from stem-like mammary basal cells can transfer mammary gland-forming abilities
to luminal mammary epithelial cells [126]. Such SEVs release is regulated mainly by the
presence of SEVs in the extracellular environment [105]. It has been shown to impose
quiescence on residual hematopoietic stem cells in the leukemic niche [141].
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3.3. Milk Is an Essential Source of Extracellular Vesicles

Breast milk, the most important nutritional source for infants, has many beneficial
effects. It is rich in various nutrients and ingredients, including proteins, fats, carbohy-
drates, minerals, and vitamins, which can provide the energy necessary for growth and
development in infancy [142]. It also contains many extracellular vesicles whose bilayered
structure allows them to remain stable in the baby’s stomach until further absorption by in-
testinal cells [143]. Once absorbed, maternal EVs can enter the bloodstream and then infant
tissues [144], where they will play different vital roles (for review [145]). They will have
positive effects on the developing immune system [146,147] and play a role in metabolic
regulation [148] and neural development of the newborn [149].

It is well known that pregnancy increases BC risk for all women for at least five years
after parturition [150]. In such a context, breast milk extracellular vesicles may be necessary
for BC as they may influence BC risk [151]. By promoting epithelial-mesenchymal transition
(EMT), milk extracellular vesicles can increase the aggressiveness of both benign and
malignant breast epithelial cells when the breast is remodeling, and the surrounding
microenvironment is likely to be tumor-promotional [152]. Milk from healthy lactating
women contains high levels of TGFβ2 in SEVs that have been evidenced to promote EMT,
modifying both MCF7 breast cancer and MC10A breast benign cell lines morphology by
disrupting cell-cell junctions and increasing filopodia formation [151].

4. Extracellular Vesicles Deregulation in Breast Cancer
4.1. Extracellular Vesicle and Cancer Stem Cells

Tumor initiation, therapeutic resistance, recurrence, as well as metastasis have also
been associated with the concept of stemness and plasticity in BC [6,153,154]. A relatively
rare self-renewal sub-population may drive epithelial cancers, multipotent cells, cancer
stem cells (CSCs), or tumor-initiating cells (TICs). Unlike normal adult stem cells that
remain constant in number, such cells can increase as tumors grow and give rise to progeny
that can be either locally invasive or colonize distant metastatic sites.

As for any other adult stem cells, the properties of mammary stem cells (MaSCs) make
them probable candidates for breast cancer initiation [155]. Self-renewal and asymmetric
division are stem cells’ cardinal properties that are tightly regulated within the MaSC
niche [156] and confer to MaSCs both preserved replicative capacity and resistance to
differentiation. Indeed, MaSCs stemness acquisition occurs through the initiation of an
epithelial-mesenchymal transition program that activates primary ciliogenesis, which
then enables Hh signaling [157]. Mutations in such complex regulatory systems may
induce the development of mammary TICS (MaTICs) [158,159] and the MaSCs neoplastic
counterpart [160]. MaTICs that have already undergone epithelial–mesenchymal transition
possess motility characteristics and can spread in foreign tissues to form a metastatic mass.
Thus, MaSCs can harbor mutations over a prolonged life span [140], allowing them to be
the true site of breast cancer initiation [161].

MaTICs represent a potential source of tumor heterogeneity. Their high plasticity
associated with the random nature of mutations confers variable properties contributing
to the considerable cellular heterogeneity observed in human breast cancers [162]. Either
MaSCs or MaTICs share the capability to cross-communicate with their environment to
maintain homeostasis. It allows the generation of mature breast functional cells throughout
life without depleting the pool of stem cells [135,163,164]. The overabundance of microen-
vironmental stimuli received by the stem cell niche can support the observed phenotype
MaTIC variability [165]. Aside from the numerous factors that can modulate the persis-
tence of quiescent/slow-cycling cells in the niche, SEVs transfer figures [166]. Every tiny
variation or modulation in SEVs delivery during the continuous crosstalk between CSCs
and their surrounding microenvironment is critical and could induce significant deregula-
tion and further tumor progression [167]. For example, PGE2/EP4 signaling controls the
homeostasis of MaSCs through SEVs release regulation. MaSCs reprogramming can result
from EP4-mediated stem cell property SEVs transfer between mammary basal and luminal
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epithelial cells [168]. MiR-130a-3p inhibits migration and invasion of MaSCs by regulating
Rab5B [169]. Chemotherapy-induced BC cells secrete multiple SEVs miRNAs, including
miR-9-5p, -195-5p, and -203a-3p, simultaneously targeting the transcription factor One Cut
Homeobox 2 (ONECUT2), which induce CSC traits to BC cells, which has been associated
with tumor refractoriness and progression [170]. In addition, BC cells prime mesenchy-
mal stromal cells to release SEVs containing miRNAs such as miR-222/223, promoting
dormancy in a subset of BC cells and conferring drug resistance [171]. Understanding the
importance of SEVs transfer in that context is a crucial feature for future BC therapy [172].

4.2. Bidirectional Contributions of Extracellular Vesicles from Breast Tumor and
Microenvironmental Cells to Breast Cancer Changes

The tumor microenvironment (TME) is a complex and dynamic network including
cancer and stromal cells. Stress conditions such as hypoxia, starvation, and acidosis increase
tumor cells’ SEVs release, leading to TME changes and expansion. Such specific behavior is
the consequence of a complex combinatory of bioactive molecules present in SEVs [173].
Not only proteins (cytokines, etc.) or lipids but also different RNA forms could account
for these critical changes. In breast tissue, miRNAs regulate the expression of cytokines
and growth factors that can affect extracellular matrix composition and pave the way for
pathogenesis [174].

4.2.1. Breast Cancer Cells-Derived Exosomes Transfer to Local Microenvironment

SEVs derived from BC cells can transform non-tumor breast ones. SEVs derived from
MDA-MB-231 BC cells induced epithelial-mesenchymal transition (EMT) [175] while those
derived from triple-negative breast cancers (TNBC) HCC1806 cell line induced proliferation
and drug resistance in MCF-10 breast epithelial cells [176].

SEVs could transfer miR-370-3p from BC cells to normal fibroblasts, facilitating their
activation through CYLD down-regulation and further NF-ζB signaling pathway [177],
leading to cancer-associated fibroblasts (CAFs) with protumorigenic and proangiogenic
properties [178] (Figure 3). miR-9 was also found to convert normal fibroblasts into CAFs,
and its overexpression also identified a signature of different genes related to cell motility
and extracellular matrix organization [179]. BC cell SEVs encapsulated miR-105 can mediate
metabolic reprogramming of CAFs through Myc signaling [180].

TNBCs are highly infiltrated by tumor-associated macrophages (TAMs). TNBCs re-
lease SEVs and soluble molecules that promote, via TLR2 and TLR3 Toll-like receptors,
monocyte differentiation toward TAM fates to phenocopy the tumor and rewire the mi-
croenvironment [181]. SEVs, combining either surface CSF-1 promoting survival or cargoes
promoting cGAS/STING pathway, specifically promoted macrophage differentiation into
proinflammatory TAMs bearing an interferon response signature [182]. Delivery of BC
cell-derived SEVs containing miR-138-5p downregulates KDM6B expression inhibiting M1
and stimulating M2 polarization [183]. Likewise, lncRNA BCRT1 secretion mediated by
BC exosomes promoted M2 polarization, further accelerating BC progression [184]. This
SEVs-induced pro-survival macrophage differentiation is driven through IL-6 receptor
beta/glycoprotein 130/STAT3 signaling pathway [185].

Additionally, surrounding endothelial cells (EC) can be activated by BC cell-secreted
SEVs. Exosomal Annexin II (AnxA2) transfer from BC cells has been shown to promote EC
angiogenesis [186].

Lastly, BC cells can also interact with adipose tissue [187] through exosome trans-
fer. Normal adipocytes are driven into cancer-associated adipocytes by tumor cells [188]
through SEVs transfer of oncomiRs [189]. BC cells-derived EVs can also convert adipose
tissue-derived MSCs to myofibroblasts [190].
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Figure 3. Bidirectional communication between tumor cells and their surrounding environment. The
tumor microenvironment (TME) is a complex and dynamic network that includes normal breast
(NBC), tumor (TC), cancer-associated fibroblasts (CAFs), mesenchymal stromal (MSC), immune
(tumor-associated macrophages TAM), and endothelial cells (EC). TC can bidirectionally signal to
each other through SEVs production. TC can produce SEVs that will regulate MSCs’, CAFs’, and
TAMs’ differentiation and activity. MSCs as well as TCs can regulate ECs’ activity, especially in
hypoxic situations. TAMs, CAFs, and ECs can cooperate to promote angiogenesis. An antitumor
immune response is largely modulated by BC cells through either extracellular signaling molecules
(cytokines, etc.) secretion or SEVs production and release. BC cells SEVs contain inhibiting or
activating molecules that favor target cells expansion, mobilization, and recruitment (CD4+ T cells
(LT4), Tregs, and MSCs), polarization and activation (tumor-associated macrophages TAMs M2), and
block others (CD8+ T cells (LT8), dendritic cells (DC), and natural killer NK cells).

4.2.2. The Microenvironment Produces Exosomes That Could Transform Breast
Cancer Cells

In response to BC cells, TME modifications induce SEVs-driven stromal cell response,
resulting in tumor changes by further modifying BC cells [191]. This continuous dual
SEVs-driven interplay between stromal cells and BC cells is central in tumor behavior as
it may drive either tumor cell proliferation or migration. Among TME, CAFs, ECs, and
infiltrating TAMs are likely to be the major cell types interacting with BC cells or within the
TME through SEVs signaling.

CAFs are well known to play a pivotal role in controlling cancer cell invasion and
metastasis, immune evasion, angiogenesis, and chemotherapy resistance [192]. CAF-
derived exosomes carrying miR-181d-5p can promote proliferation, invasion, migration,
and EMT and inhibit BC cell’s apoptosis by downregulating CDX2 and its downstream
target HOXA5 [193]. BC cells’ endocytosis of CAFs SEVs miRs -21, -378e, and -143
increased their capacity to form spheres, stem cell and EMT markers expression, and
anchorage-independent cell growth [194]. Transfer of CAFs p85α-deficient SEVs carrying
the Wnt10b protein into BC cells induced EMT [195]. CAFs SEVs could also reprogram BC
cell metabolism by modulating pyruvate kinase PKM2 expression through the enrichment
of exosomal noncoding RNA [196]. Once metabolically reprogrammed, miR-105 trans-
formed CAFs promote glutamine and glucose metabolism to feed adjacent BC cells [180].



Int. J. Mol. Sci. 2023, 24, 7208 11 of 51

Lastly, SEVs transfer results in CAFs activation through miR-146a/TXNIP axis to activate
the Wnt pathway, which in turn enhances the invasion and metastasis of BC cells [197].

SEVs’ transfer from EC drives a cadherin switch in BC cells that favors further intimate
contacts between EC and BC cells [198]. Blocking IL-3R-alpha suppresses EC SEV-induced
angiogenesis stimulation by targeting the Wnt/β-Catenin pathway [199].

Once transformed, TAMs can also transfer SEVs to BC cells [200]. A recent report
shows that TAMs SEVs-driven noncoding RNA molecules transfer will boost BC cell
proliferation and direct their phenotype and metabolic changes to progression and metasta-
sis [201].

Adipocytes are, by mass, the preponderant non-malignant cell type in BC TME.
Adipocyte tissue (AT)-derived SEVs can also enhance growth, motility, and invasion,
induce stem cell-like properties, and specific EMT features in estrogen receptor (ER)-
positive and TNBC cells [202]. Among the AT SEVs activated signaling pathways in BC
cells are Hippo [203], HIF-1α [202], ERK [204], Wnt/β-catenin [205], JAK/STAT3 [206],
PI3K/AKT, and TGFbeta/Smad [207] (For review, [208]).

4.2.3. Local Inflammation at the Tumor Site and Extracellular Vesicles

Chronic inflammation is likely to be an essential driver in triggering tumor progression
and metastasis [209]. In such process installation, SEVs are likely to play an important
role [210]. Triple-negative TNBC cells release SEVs and soluble molecules promoting spe-
cific monocyte differentiation toward proinflammatory macrophages bearing an interferon
response signature [182]. BC tumor-derived SEVs can induce an M1 proinflammatory
response in macrophages through the activation of NFκB, which stimulates the production
of inflammatory cytokines including GCSF, IL-6, IL-8, IL-1β, CCL2, and TNF-α [211]. NF-
κB is a significant regulator of inflammation, and constitutive activation of NFκB is often
observed in BC cells and associated with an aggressive phenotype. This M1 activation
of NFκB, but also p38 MAPK and STAT3 pathways, seems to be triggered by high-level
annexin A2 containing SEVs [186].

4.3. Promotion of Tumor Expansion

Accumulated genetic and epigenetic changes often activate the expression of onco-
genes while silencing tumor suppressors during carcinogenesis [212]. BC genomic instabil-
ity leads to several protooncogene mutations affecting multiple signaling pathways [213].
Cell cycle pathways (gain of function mutations of cyclin E, cyclin D, and CDK2/4/6) are
transformed in about 50% of all BC types [214]. MAPK signaling is greatly amplified in 80%
ERBB2-positive BC [215]. PI3K pathway is altered in more than 60% of luminal A BC [214]
while 90% TBNCs undergo p53 inactivation [216]. SEVs released by CXCR4-positive BC
cells increase the oncogenic potential of tumor cells in mice [217]. Hypoxic BC cells pro-
duce a high amount of SEVs containing long non-coding lncRNAs SNHG1, which, when
upregulated, acts as an oncogene [218]. Their transfer, targeting the miR-216b-5p/JAK2
axis, promotes growth in vivo by upregulation of the JAK2/STAT3 pathway [219]. BC
gain of function p53-containing small SEVs convert surrounding tumor microenvironment
fibroblasts to cancer-associated ones [220]. Interestingly, many oncogenes, especially MYC
and AURKB, can regulate either SEVs’ biogenesis or release in BC cells [221].

4.4. Cancer Metabolism Reprogramming

Throughout the natural history of cancer, tumor cells should unveil high metabolic
plasticity to adapt to continual changes within the tumor and surrounding environ-
ment [222]. Tumor cell proliferation must continuously adjust their metabolism to meet the
highest nutrient capacity to fulfill enhanced biosynthetic and bioenergetics demands. In
normal cells, glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) cooperate
to produce energy. In BC, as mitochondrial ATP production is generally impaired, tumor
cells enhance glycolytic glucose consumption to get sufficient ATP, thus generating a high
lactate content even in aerobic conditions (“Warburg effect”) [223,224]. While increasing
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evidence associates metabolic reprogramming to OXPHOS and subsequently enhanced glu-
taminolysis with the induction and maintenance of the epithelial–mesenchymal transition
program [225], the use of mitochondrial metabolism in BC cells migration and invasion is
still controversial [226]. Mammary tumor-initiating cells (MaTICs) seem more dependent
on OXPHOS, producing less lactate [227]. Triple-negative TNBCs mostly rely on glycoly-
sis [228], while reprogramming to OXPHOS is associated with a higher risk of recurrence
and death [229]. High lactate production and secretion induce tumor microenvironment
acidification promoting immune surveillance escape and metastasis [230].

Recently, it has been evidenced that BC tumor microenvironment metabolism can
largely modulate cancer cell progression [231]. Cancer-associated fibroblasts (CAFs) can
provide metabolites that will facilitate tumor cells’ ATP production. Lactate, exported
through CAFs MCT4 lactate shuttle then uptaken through cancer cells MCT1 lactate trans-
porter, could be used to fuel surrounding cancer cells, a process called “reverse Warburg
effect” [232,233]. Adipocytes’ free fatty acid (FA) secretion followed by free FA CD36 uptake
promotes BC cells progression [234]. Either FA synthesis and FA oxidation or glutamine
and serine metabolisms all increase in tumor cells as lipids, amino acids, and nucleotides
are strongly required for their multiplication [235,236]. BC cells and surrounding tumor
microenvironment cells can shed SEVs that will modulate cancer cell metabolism and play
a role in their proliferation. SEVs can contain metabolites and metabolism enzymes that can
modulate cancer cells’ metabolism. For example, GLUT-1 glucose transporter was enriched
in BC cells SEVs [237]. MDA-MB-231 BC cell line SEVs increase the peripheral blood
mononuclear cells’ expression of GLUT1 and hexokinase HK2 genes, which are effective in
the glycolysis pathway [238]. BC cell-secreted miR-122 reprograms glucose metabolism in
the premetastatic niche to promote metastasis [239]. MDA-MB-231 BC cell-derived SEVs led
to pyruvate kinase M2 (PKM2) phosphorylation in MCF7 cells that acquired a more aggres-
sive phenotype, which resulted in increased aerobic glycolysis and cell proliferation [240].
Exosomal miR-105 from BC cells can alter the glucose metabolism of stromal cells and thus
promote the growth of cancer cells under nutrient-deprived conditions [241]. In addition,
miR-105 combined with miR-204 targets RAGC to regulate mTORC1 upon amino acid
stimulation. Affected fibroblasts exhibit reduced mRNA translation and selective protein
synthesis [242]. miR-144 containing SEVs downregulates the MAP3K8/ERK1/2/PPARγ
axis, thus inducing beige/brown differentiation, while miR-126 remodels metabolism by
disrupting IRS/Glut-4 signaling and activating the AMPK/autophagy pathway in resident
adipocytes [189]. Exosomal miR-155 promotes lipolysis in adipocytes and facilitates an
aggressive phenotype of BC-derived tumor cells [243].

In parallel, SEVs from tumor microenvironment cells can modulate BC cells’ metabolism.
SNHG3 knockdown in CAF-secreted exosomes suppressed glycolysis metabolism and cell
proliferation by the increase of miR-330-5p and decrease of pyruvate kinase PKM expression
in tumor cells. SNHG3 functions as a miR-330-5p sponge to positively regulate PKM expres-
sion, inhibit OXPHOS, increase GLYC, and enhance BC cells’ proliferation [196]. Metabolic
remodeling in cancer-associated adipocytes surrounding BC cells enhances tumor aggres-
siveness by promoting cancer cell survival and proliferation through SEV production [244].
As for CAFs, miR-105 can also activate MYC signaling in cancer-associated adipocytes to
induce a metabolic program secreting energy-rich metabolites to fuel neighboring cancer
cells [241].

4.5. Angiogenesis Induction

Angiogenesis is an essential feature for tumor proliferation and further metastasis. The
uptake of tumor-derived SEVs by ordinary endothelial cells activates angiogenic signaling
pathways in endothelial cells (ECs) and stimulates new vessel formation [245]. Once inter-
nalized, SEVs are immediately directed to the perinuclear zone and actin filaments-rich
area. When tubules are formed, SEVs move to the cell periphery and enter advanced
pseudopods [246]. After complete remodeling, adjacent ECs probably transport SEVs to
neighboring ECs and other cells within the tumor microenvironment [111]. In hypoxic con-
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ditions, BC cells can secrete angiogenic factors, such as VEGF-A, inducing ECs migration
and tumor angiogenesis [247]. Aside from Notch signaling [248] and angiopoietins [249],
VEGF is one of the more potent angiogenesis promoters, thus behaving as an important
mitogen with high specificity for ECs [250]. Studies have reported that SEVs released
from hypoxic tumors are more likely to cause angiogenesis and vascular leakage; hypoxia
gradually promoting, through HIF-1α signaling, BC cells SEVs release [251]. SEVs transfer
with miR-210 from hypoxic BC cells to cells into the tumor microenvironment-induced
expression of vascular remodeling-related genes, such as Ephrin A3 and PTP1B, to pro-
mote angiogenesis [252]. The same miR-210 and a set of other angiogenic miRNAs are
enriched in SEVs released by metastatic BC cells, a secretory process regulated by neutral
sphingomyelinase 2 (nSMase2, SMPD2). These SEVs, once transferred to ECs, enhance
the capillary formation and migration capability [253]. Docosahexaenoic acid (DHA) has
potent anticancer properties, mainly through VEGF suppression [254]. A recent report
showed that DHA increased the expression of anti-angiogenic miRNAs (i.e., miR-34a, miR-
125b, miR221, and miR-222) while decreased levels of proangiogenic miRNAs (i.e., miR-9,
miR-17-5p, miR-19a, miR-126, miR-130a, miR-132, miR-296, and miR-378) in SEVs derived
from DHA-treated BC cells [255]. SNHG1 enclosed in BC cells SEVs induces angiogenesis
via regulating the miR-216b-5p/JAK2 axis [219]. circHIPK3 enhanced MTDH expression
in the EC by sponging miR-124-3p, favoring endothelial tube formation [256]. Another
miR, miR-22-3p, mediated tumor vessel abnormalization by suppressing transgelin, thus
promoting tumor budding and BC progression in vivo [257].

Aside from the various forms of SEV RNAs involved in its promotion, SEV-specific
proteins can also stimulate angiogenesis. STIM1 promotes angiogenesis by reducing
exosomal miR-145 in BC MDA-MB-231 cells [258]. Annexin II (AnxA2), a Ca2+-dependent
phospholipid-binding protein associated with the plasma membrane, is one of the most
expressed proteins in SEVs [259]. BC-derived SEVs transfer proangiogenic AnxA2 to
ECs and induce angiogenesis by the tPA-dependent increase in plasmin generation [186].
Ephrin-A2 (EPHA2) was also rich in highly metastatic BC-derived exosomes and confers
a proangiogenic effect [260]. Heparanase helps drive SEVs secretion and alters exosome
composition (increase in matrix metalloproteinase-9 (MMP-9), VEGF, hepatic growth factor
2 (HGF2), and receptor activator of nuclear factor κ-B ligand (RANKL)) that impact both
tumor and host cell behavior [261]. Lastly, EC-derived SEVs themselves can play a role in BC
cells. ECs SEVs contained soluble and membrane-anchored forms of VE-cadherin that drive
a cadherin switch in BC cells and neo-expression of VE-cadherin [198]. On the other hand, it
has been previously reported that mesenchymal stromal cells MSC-derived SEVs negatively
modulate angiogenesis by down-regulating BC cells’ VEGF synthesis through miR-16
transfer [262]. Additionally, MSC-derived SEVs enrichment with miR-100 suppresses
angiogenesis in vitro by VEGF down-regulation through mTOR/HIF-1α)/VEGF signaling
axis modulation [263]). Such findings emphasize SEVs’ multifaceted role in tumor-to-
stroma communication within the TME.

4.6. Immune Evasion

Before the clinical presentation, most malignant cells are eliminated by immune
surveillance through combined stimulation of innate and adaptive immune responses [264].
Nevertheless, BC cells, like other cancer cells, must evade immune control, a prerequisite
in the transition from preinvasive to potentially lethally invasive disease [265]. In the
early steps of tumor development, host immune factors play a crucial role in rejecting
cancer cells [266]. Thus, clonal evolution patterns during progression will depend on
the immune context [267]. Some progressing clones become immune privileged, despite
tumor-infiltrating lymphocytes, while immunoedited tumor clones are eliminated [268].
To evade the immune system, tumors release immunosuppressive cytokines (e.g., TGF-
β, interleukins IL8, IL6, IL10, etc.) and skew the tumor microenvironment to a more
immunosuppressive one through either inhibiting CD8+ T cells, NK cells, dendritic cell
maturation or increasing Tregs and tumor-associated macrophages (TAMs) [269]. SEV
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signaling in BC has been shown to play a crucial role in the crosstalk between immune
and cancer cells [270]. Tumor-derived SEVs interacting with immune cells deliver negative
signals to these cells and interfere with their antitumor functions [271,272].

The immunosuppressive nature of BC SEVs was confirmed in vitro where it promoted
T-cell exhaustion and NK-cell cytotoxicity [273] (Figure 3). Hypoxia enhances SEVs se-
cretion by BC cells, which acts to suppress T cell proliferation via TGF-β [274]. In the
meantime, tumor-derived SEVs also promote Treg expansion and increase their immuno-
suppressive functions [275]. SEVs from 4T1 murine BC cells blocked the differentiation
of myeloid precursor cells into CD11c+ DCs and induced cell apoptosis. They also drasti-
cally decreased CD4+IFN-γ+ Th1 differentiation but increased the rates of Treg cells [276].
While promoting the in vitro expansion of CD4(+)CD25(+)FOXP3(+) Treg cells and enhanc-
ing their suppressor activity, BC cells Mage 3/6 positive SEVs also inhibited signaling
and proliferation of activated CD8(+) but not CD4(+) T cells and induced apoptosis of
CD8(+) T cells [275]. BC cells SEVs SNHG16 lncRNA induced CD73 + γδT1 cells to act as
immunosuppressive regulatory T cells by activating the TGF-β1/SMAD5 pathway [277].

Human MDA-MB-231–derived SEVs induce M2-type macrophage polarization (up-
regulation of CD206 and arginase-1), supporting enhanced tumor growth and axillary
lymph node metastasis in an orthotopic triple-negative TNBC model [278]. miR-34a in
triple-negative TNBCs mediate M1 polarization, while antagomiR-34a promotes M2 plas-
ticity [279]. miR-503 in BC patients is vital in promoting brain metastasis by programming
the microglia through M1 to M2 macrophage polarization induction [280]. Additionally, BC
cells’ SEVs LncRNAs repertoire correlates with macrophage polarization [281]. Specifically,
SEVs lncRNA BCRT1 promoted M2 polarization of macrophages, further accelerating BC
progression [184]. The combination in TNBC SEVs of surface CSF-1 promoting survival and
cargoes promoting cGAS/STING or other activation pathways led to the differentiation of
this particular macrophage subset [182].

Cancer-associated fibroblasts (CAFs)-derived exosomes suppress immune cell function
in BC by regulating PD-L1 levels in BC cells via the miR-92/LATS2/YAP1 pathway [282].
Lin28B promotes lung metastasis of BC cells by building an immune-suppressive pre-
metastatic niche. Lin28B enables neutrophil recruitment and N2 conversion. The N2
neutrophils are then essential for immune suppression in the pre-metastatic lung by PD-
L2 up-regulation and a dysregulated cytokine milieu [283]. Lastly, tumor-derived SEVs
inhibited NK cell immunity using murine mammary (TS/A) tumor cell lines. TS/A SEVs
are taken up by NK cells and account for decreased cytotoxic activity. Not only TS/A SEVs
but also SEVs from human MDA231 or murine 4T1 BC cells could significantly block the
proliferation of NK cells induced by IL-2 [284].

4.7. Metastatic Spread Induction and Secondary Settlement

Metastasis, which causes over 90% of BC-related deaths, behaves as a cascade compris-
ing local invasion, intravasation, survival in the circulation, premetastatic niche modeling,
and extravasation, and then metastatic niche colonization [285].

4.7.1. Extracellular Vesicles and Epithelial to Mesenchymal Transition of BC Cells

Within the primary tumor, epithelial-to-mesenchymal transition (EMT) that confers
enhanced mobile capabilities to tumor cells is likely to be one of the primary metastatic
events. In BC, EMT activation has been shown to increase stemness [286], with most of the
hematogenous circulating cancer cells harboring a mesenchymal phenotype [287]. Tumor-
derived SEVs can facilitate EMT [288–290]. SEVs derived from mesenchymal stromal cells
contained several molecules able to induce EMT such as well-known inducing proteins such
as transforming growth factor-beta (TGF-β), hypoxia-inducible factor-alpha (HIF1α), or
β-catenin as well as miRNAs, lncRNAs, and circRNAs [291]. CAF-derived exosomal miR-
181d-5p can regulate CDX2 and HOXA5 in BC cells, thereby promoting their EMT [193].
Increased concentrations of MiR-9, miR-424, and miR-155 in SEVs led to BC cell EMT
and aggressiveness [243,292,293]. SEVs are associated with pro-metastatic phenotype
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reprogramming in recipient surrounding cancer cells [294]. SEVs from human adipose-
derived mesenchymal SCs promote migration through the Wnt signaling pathway in a BC
cell model [205].

4.7.2. Extracellular Vesicles Impact on Extracellular Matrix Disruption

The extracellular matrix (ECM) is also an essential regulator of BC progression [295].
BC SEVs can increase cancer cell invasion by containing mediators of cancer progression
and critical factors in tissue remodeling, a prerequisite for seeding [296,297]. In that process,
ECM stiffening due to excess deposition and crosslinking of collagen dramatically influ-
ences tumor behavior and fate by orienting fibers, thus facilitating metastatic cell intravasa-
tion [298]. Stiff ECM promotes SEV secretion in a YAP/TAZ pathway-dependent manner
and triggers BC invasiveness using thrombospondin-1 (THBS1) as a master player [299]. BC
cell-derived SEVs can also cargo ECM degradation enzymes such as MMPs, etc., as well as
their regulators [290,300]. Tumor-derived SEVs transferred surface-bound proteases such
as glycosidases to cleave ECM components, resulting in ECM remodeling and facilitating
tumor development [296,301]. Interestingly, silencing Rab GTPases that tune biogenesis
and secretion of pro-metastatic SEVs in BC cells, upregulate the levels of MCAM and CD146
adhesion molecules and limit BC metastasis [302].

To initiate the metastatic process, BC cells will also recruit and educate stromal cells
to induce cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs)
with the immune-suppressive M2 phenotype, and endothelial cells that promote tumor
angiogenesis [303]. SEVs are likely to be critical players in this mandatory recruitment
that contributes to the ability of BC cells to metastasize [304,305]. CAF-derived SEVs can
promote BC cell motility through two independent mechanisms involving Wnt [306] or
Notch [307] signaling in the cancer cells. Tumor SEVs mediate the migration of MDSCs and
contribute to the metastasis of murine BC cells (4T1 cells) to the lung in a CCL2-dependent
manner [308].

4.7.3. Extracellular Vesicles and BC Cells Spread

Once the extracellular matrix is disrupted, the distant spread can then arise in two steps.
The first concerns local tumor cell dissemination, where epithelial cells migrate through the
tumor microenvironment at the front of the tumor through the generation of membrane
protrusions (invadopodia) and basal lamina break-in [309]. It was clearly shown for BC
using an injection of MTLn3 cells. This highly invasive rat mammary adenocarcinoma
cell line forms invadopodia in vitro into the mammary gland of immunocompromised
mice and rats and allows them to form tumors [310]. Cancer-associated fibroblasts CAFs-
SEVs enhance this BC cell protrusive activity and motility via Wnt-planar cell polarity
signaling [306]. The second involves vascular disruption to allow tumor cells hematogenous
spread. Tumor SEVs can increase vascular permeability to promote the extravasation of
circulating tumor cells (CTCs). Both exosomal miR105 and miR-939 secreted by metastatic
BC cells are involved in VE barrier destruction, thereby increasing vascular permeability
and promoting distant metastasis [180,311]. Identically, metastatic BC cells facilitate brain
metastasis by releasing miR-181c-containing SEVs capable of destroying the blood-brain
barrier [312].

4.7.4. Extracellular Vesicles, Pre-Metastatic Niche, and Secondary Organ Settlement

As SEVs are not limited to the local tumor microenvironment, they can also cargo
“tumor-nourishing” environments at distant sites to encourage metastatic settlement. SEVs
educate a metastatic microenvironment, commonly defined as the pre-metastatic niche
allowing circulating tumor cells (CTCs) to find a suitable environment in which they can set-
tle and then proliferate. Such niche generation is characterized by local tissue inflammation,
immune suppression, stromal cell activation, and ECM remodeling. Pre-metastatic niches
are characterized by key tissue architecture, composition, and metabolism modifications,
facilitating CTCs’ arrival, survival, and further expansion [313]. SEV-mediated intercellular
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interactions can generate a pro-metastatic tumor microenvironment [314]. By modifying
glucose utilization by recipient pre-metastatic niche cells, BC-derived extracellular miR-
122 can reprogram systemic energy metabolism to facilitate metastatic progression [239].
MiR-940 overexpression induced in MDA-MB-231 BC cells has been shown to induce
extensive osteoblastic lesions in mice by facilitating the osteogenic differentiation of host
mesenchymal cells [315].

An important characteristic of tumor cells relies on their capacity to colonize prefer-
entially specific organs (organotropic metastasis) that are often determined by anatomic
aspects. According to the Paget “seed and soil” theory [316], SEVs can even be consid-
ered as the “soil conditioner in BC metastasis” [317,318], leading to an inflammatory and
mechanical niche promoting survival and colonization of immigrant CTCs. Indeed, bone
marrow lesions were observed in mice bearing mammary cancer far before the arrival of
tumor cells [319]. Integrin (ITG) SEVs repertoire seems to drive organ-specific metastasis,
ITG α6β4 and αvβ3 on the surface of BV SEVs increasing lung metastasis [320]. During the
establishment of an inflammatory environment in organs to which tumors will metastasize,
SEVs contribute to the upregulation of proinflammatory cytokines and inflammation-
activating factors, as well as the recruitment of immune cells to the pre-metastatic niche.
BC-derived SEVs containing CCL3, CCL27, and other molecules are found to remodel
the bone microenvironment, characterized by stimulating osteoclastogenesis and angio-
genesis [321]. BC and lung tumor-derived SEVs containing Cell Migration-Inducing and
hyaluronan-binding Protein (CEMIP) could induce a proinflammatory vascular niche by
upregulating cytokines Ptgs2, TNF, and CCL/CXCL cytokines to promote brain metas-
tasis [322]. Annexin A2 released by BC cells’ SEVs can induce macrophage-mediated
activation of either p38 MAPK, nuclear factor κB (NF-κB), or STAT3 pathways, thus in-
creasing IL-6 and tumor necrosis factor (TNF)-α secretion, thereby contributing to the
formation of a premetastatic inflammatory microenvironment in distant organs such as the
lung and brain [186]. Interestingly, once in the brain, BC cells’ survival is increased by SEV-
encapsulated miR-19a released by astrocytes that act by decreasing PTEN expression [323].

Cancer cell SEVs can reprogram resident cells like in primary tumors to promote
metastatic niche achievement and attract newly released CTCs. BC-derived exosomal
microRNA-200b-3p uptaken by alveolar epithelial type II cells (AEC II) induces the high
expression of CCL2, S100A8/9, MMP9, and CSF-1 in the lung to recruit myeloid-derived
suppressor cells (MDSCs) and promote inflammatory pre-metastatic niche formation [324].
SEVs secreted by highly metastatic murine BC cells inhibit antitumor immune responses in
premetastatic organs, directly suppressing T-cell proliferation and NK cell cytotoxicity [325].
BC cells SEVs remodeled lung parenchyma via a macrophage-dependent pathway to create
an altered inflammatory and mechanical response to tumor cell invasion [326]. Immune
cells can also play an important role in these distant organs [327]. BC-derived SEVs
containing ANXA6 are targeted to the lung and activate the CCL2-CCR signaling axis,
thus recruiting monocytes, which then differentiate into macrophages at this future site
of metastasis [328]. These metastasis-associated macrophages (MAMs) have been first
described in mouse models of BC lung metastasis [329]. At both bone and lung sites,
MAMs promote BC cell extravasation, seeding, and metastatic outgrowth [330,331].

4.8. Cancer Cells Dormancy

Metastatic disease can occur years or even decades after the first diagnosis and sub-
sequent treatment, suggesting that cells initiating recurrence are often long-lived and
able to reactivate proliferation after long latency periods (also referred to as clinical dor-
mancy) [332]. In BC, late recurrences (>5 years) account for most of the deaths among
patients [333]. It is likely that these specific metastatic tumor cells exit the cell cycle
and remain in a growth-arrested state [334]. Dormant tumor cells are commonly re-
ferred to as slow-cycling cancer stem cells that combine quiescent properties with tumor-
initiating and chemoresistant properties, which favor later relapse and for the formation of
metastases [335,336]. Dormant BC cells exhibit a distinct gene expression signature from
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metastatic ones regardless of the metastatic site [337]. When circulating tumor cells (CTCs)
first extravasate from the vessels, they may reside in a niche surrounding the microvas-
culature, the perivascular niche (PVN) [338] that comprises resident hematopoietic cells,
endothelial cells, and mesenchymal stromal cells (MSCs). Evidence has accumulated over
recent years that the PVN in BC orchestrates CTC dormancy, principally responsible for cell
survival and growth arrest [339]. CTCs may receive intrinsic factors (microenvironmental
factors and signaling molecules) relevant to dormancy [340]. In bone marrow representing a
niche for BC cell homing, SEVs from surrounding MSCs contain specific miRNAs that drive
metastatic BC cells to dormancy. Gap junction-mediated import of microRNAs, including
miR-222/223, mir-127, and mir-197 from bone marrow stromal cells, have been shown to
elicit cell cycle quiescence in BC cells [341]. Interestingly, stromal SEVs are likely to also play
an essential role as those containing miRNAs, such as miR-222/223, promote quiescence in
a subset of BC cells [171]. Additionally, they also contribute to the dormancy of BC cells by
reducing either CXCL12 levels [342] or targeting ERK1/2 signaling via miR-148a-3p [343].
Overexpression of MSCs-SEVs miR-23b in highly metastatic BC BM2 cells induced dor-
mant phenotypes through the suppression of a target gene, MARCKS, which encodes a
protein that promotes cell cycling and motility [344]. SEVs-enclosed miR-205 and miR-31,
targeting the ubiquitin-conjugating enzyme E2N (UBE2N/Ubc13) and downregulating
its activity, induced dormancy in MDA-MB-231 cells [345]. Interestingly, BC cells primed
with MSCs SEVs were more highly resistant to chemotherapy [346]. In addition, SEVs
from differentially activated macrophages influence the dormancy or resurgence of BC cells
within the bone marrow stroma. M2 metastasis-associated macrophages (MAMs) form gap
junctions with CSCs, resulting in cycling quiescence, reduced proliferation, and carboplatin
resistance. Activation of M2 MAMs via the toll-like receptor 4 (TLR4) switched to the M1
phenotype can occur directly or indirectly through the activation of MSCs. Thus, M1 MAM
SEVs activated NFκB reverse quiescent BC cells to cycling cells [347]).

4.9. Resistance to Therapy

BC is a heterogeneous disease in which each patient has individual characteristics that
must drive treatment choices. In such a context, searching for new markers to improve the
diagnosis and prognosis and achieve a better treatment response is mandatory. Currently,
strategies for treating BC depend on the tumor subtype, and the selected treatments are
directed to specific targets that are functionally altered in each cancer subtype. Conven-
tional treatments for the management of BC patients have included endocrine therapy,
targeted immunotherapy, and chemotherapy, all of these agents being used in adjuvant,
neoadjuvant, and metastatic settings [5]. However, despite the improvement and diversi-
fication of therapeutics for BC patients and the emergence of new drugs during the last
years, resistance to treatment remains a deadlock for women with an advanced BC for
whom medicines no longer work.

4.9.1. Resistance to Hormone Therapy

Nearly 80% of BC are estrogen receptor positive (ER+) [348], the vast majority of them
being initially dependent upon the activation of ER by estrogens [349]. Because of the
importance of the estrogen-ER axis in breast tumorigenesis, the main treatment options
for these patients are still endocrine therapies such as aromatase inhibitors, selective
modulators of ER activity, or selective ER down-regulators. Among all patients with
BC who have hormone receptor-positive tumors, 84% receive hormonal therapy [350].
Nevertheless, the major challenge in treating ER+ BC is to overcome endocrine resistance,
whose mechanisms can be very complex [351–354]. SEV secretion can be involved in
these processes [355]. SEVs from tamoxifen-resistant MCF7 (MCF7TR) BC cells transfer
resistance inducing epithelial–mesenchymal transition and resistance to apoptosis to wild-
type ones [356]. Several SEVs transfers of noncoding RNAs conferring tamoxifen resistance
have been reported: miR-221/222 that confers stem cell-like properties [357], miR-9-5p [358],
circ_UBE2D2 by binding to miR-200a-3p [359], miR-22 [360], and UCA1 LncRNAs [361].
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SEV-mediated transfer of mitochondrial DNA (mtDNA) has been shown to promote an
escape of BC cells from metabolic quiescence and led to hormone therapy resistance both
in vitro and in vivo [362]. Aside from tamoxifen treatment, enhanced SEVs production has
also been reported in aromatase inhibitor-resistant BC cells [363].

4.9.2. Resistance to Chemotherapy

Chemotherapy is generally used as neoadjuvant or adjuvant treatment in stage I-III BC
(Miller 2022), while 60% of women diagnosed with metastatic disease (stage IV) most often
receive radiation and chemotherapy alone [364]. Anthracyclines and taxane derivatives are
two agents commonly used in the treatment of BC, but the emergence of chemoresistance
often limits their efficacy. SEVs can be involved in the development of resistance. BC cells
could export the chemotherapeutic drug doxorubicin (DOX) into the extracellular medium
through vesicle formation, limiting its action [365]. SEVs isolated from the HCC1806 triple-
negative TNBC cells can induce proliferation and drug resistance in the non-tumorigenic
MCF10A breast cells [176].

Many studies have shown that resistance can arise through SEVs-mediated horizontal
transfer of membrane-embedded drug efflux pumps to sensitive cancer cells. SEV-like
structures containing the ATP-binding cassette (ABC) transporter protein ABCG2 have
been reported to be increased in a variant of MCF-7 cell line with 20-fold resistance to
mitoxantrone [366]. SEV delivery of P-gp (ABCB1) transporter was suggested to play an
essential role in transferring drug resistance from DOX-resistant cells to drug-sensitive
BC ones [367]. The transient receptor potential channel (TrpC) seems to play a crucial
role in the upregulation of P-gp in drug-resistant BC cells [368]. Interestingly, SEVs from
DOX-resistant MCF-7 cells were found to transfer TrpC5 (and also P-gp) to recipient human
microvessel endothelial cells (HMECs) and further induce de novo expression of P-gp in
these cells [369]. In sensitive MCF-7 cells, TrpC5-containing SEVs internalization led to
Ca2+ influx through TrpC5s, which resulted in the upregulation of P-gp [370]. Interestingly,
a strong correlation in nonresponsive tumors was observed between treatment resistance
and increased TrpC5 expression by immunohistochemistry on BC patients’ tissues [371].
Ubiquitin carboxyl-terminal hydrolase-L1 UCHL1 (UCH-L1) was also found to upregulate
P-gp expression by activating the MAPK/ERK pathway. UCH-L1-containing SEVs secreted
by DOX-resistant human BC cells were taken up by DOX-sensitive human BC cells in a time-
dependent manner and ultimately contributed to the chemoresistance phenotype [372].
SEVs transfer can confer neither DOX nor docetaxel (DTX) nor paclitaxel (PTX) resistance.
PTX treatment induced the secretion of survivin-enriched SEVs from MDA-MB-231 cells,
which highly promoted the survival of PTX-treated fibroblasts and SK-BR-3 cells [373].

Aside from protein transfer, noncoding RNAs have been involved in chemotherapy
resistance induction. Resistant cells SEVs miR-100, miR-222, and miR-30a transfer confer re-
sistance to wild-type ones [374]. Transfer of miR155 by inhibiting tetraspan 5 and promoting
stemness [375,376], miR1246 by inhibiting Cyclin-G2 induced BC cells resistance [377], and
miR-887-3p by targeting BTBD7 and activating the Notch1/Hes1 signaling pathway [378]
can induce chemoresistance. Adaptation of cancer stem-like cell traits through SEVs trans-
fer, including miR-9-5p, miR-195-5p, and miR-203a-3p targeting ONECUT2 has been shown
to confer resistance [172]. SEVs derived from cisplatin-resistant MDA-MB-231 cells are
characterized by a high expression of miR-423-5p that can be transferred to non-resistant
cells [379]. LncRNA H19 was strikingly overexpressed in DOX-resistant BC cells and
encapsulated into SEVs to transfer drug resistance. Similarly, the downregulation of H19
reversed DOX chemoresistance in sensitive BC cells [380].

Up to date, to overcome chemoresistance in BC treatment, several large-scale validation
studies have been performed to determine the exosomal protein and miRNA expression
profiles in drug-resistant BC after chemotherapy to find new potential markers and to
better understand the transmission of SEVs-mediated chemoresistance [381–385].
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4.9.3. Resistance to Radiotherapy

Resistance transfer through SEVs seems to also be a potent mechanism that confers
resistance to radiotherapy [386]. SEVs derived from radioresistant cells can increase cell
viability and colony formation in naïve recipient ones and increase their radiotherapy resis-
tance [387]. Cargo from irradiated cell-derived SEVs was distinct from non-irradiated cells,
indicating alterations in the exosomal formation system [388]. SEV levels of proteins such as
PERP, GNAS2, GNA13, ITB1, and RAB10 correlate with BC cell trastuzumab response [389].
X-ray irradiation activates SEV biogenesis and secretion in a dose-dependent manner in
MCF7 cells and induces their resistance to radiotherapy [390]. Such effects of radiation not
only concern BC cells but also surrounding tumor microenvironment ones. In a mouse
BC model, SEVs derived from irradiated cells elicited immune responses of tumor-specific
CD8+ T cells and inhibition of tumor size [391]. Likewise, radioresistant SEVs stimulate
tumor-supporting fibroblast activity, facilitating tumor survival and promoting cancer
stem-like cell expansion [392].

4.9.4. Resistance to Targeted Therapy

As human epidermal growth factor receptor 2 (HER2) overexpression is often associ-
ated with BC poor prognosis, HER2-targeted therapy has been developed and achieved ex-
cellent efficacy in treating HER2+ BC [393]. Whereas trastuzumab generally has an excellent
initial clinical response, most BC patients turn refractory to HER2-targeted drugs as early
as one year after initiation of treatment. SEV-containing lncRNA AFAP1-AS1 (AFAP1 anti-
sense RNA 1) overexpression was associated with poor prognosis in triple-negative TNBC
patients where its upregulation activated Wnt/β-catenin pathway to promote tumorigene-
sis and cell invasion by increasing the expression of C-myc and epithelial-mesenchymal
transition-related molecules [394]. It also functioned as a miR-2110 sponge to increase
Sp1 expression, the AFAP1-AS1/miR-2110/Sp1 axis behaving as a potent modulator of
the proliferation, migration, and invasion of triple-negative TNBC cells [395]. Another
lncRNA, AGAP2-AS1, is also dysregulated in trastuzumab-resistant BC cells and plays a
critical role in enhancing trastuzumab resistance by packaging into SEVs in an hnRNPA2B1-
dependent manner [396]. SEV-mediated transfer of circHIPK3 also enhanced trastuzumab
resistance [397]. SEV miR-1246 and miR-155 presence can be used as predictive and prog-
nostic biomarkers for trastuzumab-based therapy resistance in HER2-positive BC [398].
Aside from the direct effect on cell proliferation, SEVs can enhance resistance to the anti-
tumor immune response. SEVs from HER2-resistant cells have increased amounts of
the immunosuppressive cytokine TGFβ1 and the lymphocyte activation inhibitor PD-L1,
suggesting that they can induce immune evasion through neuromedin U [399].

CDK4/6 inhibition is now part of the array of targeted tools for patients with ER+ BC.
SEVs’ miR-432-5p levels were higher in CDK4/6 resistant patients. Increased CDK6 expres-
sion is commonly observed in resistant cells and depends on TGF-b pathway suppression
via miR-432-5p expression [400]. High baseline CDK4 mRNA levels in SEVs have been
associated with response to palbociclib plus hormonal therapy, while the increase in TK1
and CDK9 mRNA copies/mL is associated with clinical resistance [401]. Deep proteomic
analysis of plasma SEVs from resistant patients will help better understand underlying
resistance mechanisms and give new potential resistance biomarkers [402].

To the best of our knowledge, no reports involving SEVs in the resistance process of
BC cells have been yet reported for either other kinases, PARP, PI3K, mTOR, or immune
checkpoint inhibitors.

5. Exosomes as Relevant Breast Cancer Biological Markers

Diagnosing BC in the early stages can make an essential difference in the patient’s
treatment and prognosis. Aside from breast imaging which is crucial in the screening,
diagnosis, and preoperative work-up of BC, biomarkers can provide additional insight
into a patient’s diagnosis, prognosis, and response to treatment. Numerous biomarkers are
currently used in BC management, notably tissue marker expression of different receptors
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(estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER2)) that is daily used for patients’ staging [403,404]. Aside from tissue ones,
blood biomarkers are attractive means to monitor disease recurrence or progression, to
follow treatment response, or to evidence targetable mutations that will direct therapy. Nev-
ertheless, while iterative measurements of serum proteins such as CA15-3, CA27-29, and
CEA have proved valuable tools in advanced cancers to monitor BC response to treatment,
their poor sensitivity in early BC impairs their use in either diagnosis or prognosis [405].
New predictive and prognostic protein markers are still mandatory [406]. Liquid biopsies,
which are supposed to get tumor-derived materials such as tumor DNA, RNA, and intact
tumor cells in body fluids, are less invasive than tissue biopsies. They appear as an alterna-
tive for discovering new biomarkers for BC screening to diagnosis, prognosis, treatment
response, and discovery of relapse [407,408]. As part of liquid biopsy, SEVs can be detected
in patients’ biological fluids, such as blood, urine, CSF, and saliva [38] where they remain
stable and protected from the degradation of serum ribonucleases and DNases [409]. SEVs
can now be easily isolated [410] even though a universal standardized and widely accepted
method for isolating and then analyzing SEVs is still mandatory [411–414]. As several
miRNAs, lncRNAs, and proteins are differentially expressed in SEVs originating from
tumor and normal cells, they are likely to be potential sources of biomarkers and become a
promising field in BC management (Figure 4).

As valuable BC biomarker sources, SEVs can be divided into surface protein biomark-
ers and intraluminal biomarkers (mostly nucleic acids, among which figure miRNAs).
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5.1. Exosome Nucleic Acid Cargo as Biomarkers
5.1.1. Exosome mRNAs as Interesting BC Markers

Messenger RNAs (mRNAs) encapsulated within SEVs are transferred to recipient
cells and translated into proteins, altering the behavior of the cells [166,415,416]. Highly
cancerous cells communicated with less cancerous cells through SEVs transfer, increasing
migratory behavior and metastatic capacity [417]. Fragile mRNAs encapsulated within the
SEVs’ phospholipid bilayer structure are protected from the harsh external environment,
which would otherwise degrade them [81,418]. While SEVs transcriptomic profile reflects
only partly that of the cell of origin [419], the whole transcriptomic analysis identifies a
global SEV mRNA signature and BC signal in patients [420]. A typical “stemness and
metastatic” signature was reported in SEVs of patients with worse prognosis. This signature
comprises several mRNAs, such as those coding for NANOG, NEUROD1, HTR7, KISS1R,
and HOXC6 [217].

5.1.2. SEVs miRNAs as Relevant BC Biological Markers

Circulating miRNAs (c-miRNAs) can travel in the bloodstream in two forms: in
cell-free miRNAs (Ago2-related) or embedded in circulating tumor cells (CTCs), apop-
totic bodies, or SEVs [421]. SEVs miRNAs are stable as they are protected from serum
RNases [422]. Many papers have been published about using c-miRNAs in BC (for re-
view [423]). A vast number of those report their modified expression either being up-or
downregulated (for extensive reviews, [424–427]).

Either single miRNA (miR-21 [428], miR-155 [429], miR-223-3p [430], mir-373 [431],
and mir-7641 [432]) or a combination of two or multiple miRNAs have been reported.
Indeed, numerous reports have designed specific miRNA sets associated with BC. Combi-
nation of two plasma SEVs miRNAs (miR-21 and miR-1246 [433], miR-21 and miR-221 [434],
miR-21 and miR-155 [435], and miR-92a, and miR-25-3p [436]), three miRNAs (miR-16,
miR-30b, and miR-93 [437]; miR-21, miR-105, and miR-222 [438]; miR-21, miR-155, and
miR-365 [439]; and miR-145, miR-155, and miR-382 [440]), four miRNAs (miR-21, miR-55,
miR-10b, and Let-7a [441]), up to thirteen miRNAs (miR-21-3p, miR-192-5p, miR-221-3p,
miR-451a, miR-574-5p, miR-1273g-3p, miR-152, miR-22-3p, miR-222-3p, miR-30a-5p, miR-
30e-5p, miR-324-3p, and miR-382-5p) [442] have been described. To optimize and find
new relevant miRNA combinations, some algorithms have been developed to detect BC
specifically ([443].

As diagnosing BC at an early stage is still challenging, several sets of c-miRNAs have
been specifically assayed for that purpose. Both sensitivity and specificity of SEVs miR-
17-5p concentration were superior to conventional serum biomarkers such as CEA and
CA15-3 [444]. A combination of five miRNA, miR-1246, miR-1307-3p, miR-4634, miR-6861-
5p, and miR-6875-5p, was shown to detect BC with high sensitivity, specificity, and accuracy,
even in the case of ductal carcinoma in situ (DCIS) [445]. Both increased concentrations
of miR-21-5p and miR-10b-5p levels in serum-derived SEVs of BC patients correlate with
BC grade [446]. The overall expression of nine microRNAs was higher in patients with
stages I, II, and III compared to stage IV, with potential utilization for early detection [447].
Serum miR-423-5p was significantly associated with the tumor’s clinical stage and Ki-67
level [448]. A combination of miR-375, miR-655-3p, miR-548b-5p, and miR-24-2-5p has
been found relevant for early BC diagnosis [449]. A dual microRNA signature based on
miR-30b-5p and miR-99a-5p levels in plasma is a good diagnostic biomarker for BC [450].
Combinations of four miRNAs (miR-1246, miR-206, miR-24, and miR-373) were reported to
have a sensitivity of 98%, a specificity of 96%, and an accuracy of 97% for BC detection [451].
Very recently, the miR-15a, miR-16, and miR-221 combination turned out to be promising
for BC diagnostic [452].

BC prognosis is also an important issue. A recent review reported that 110 aberrantly
expressed miRNAs have been associated with prognosis in BC [453]. Association of miR-
126, miR-122, miR-92-1, miR-19a, and miR-29c together with circular miRNAs, such as
miR-21-5p, miR-96-5p, and miR-125b-5p, can provide a promising evaluation marker in
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BC prognosis [454]). Moreover, a specific set of plasma SEVs miRNAs can be used for
staging to evidence BC subtypes. Analysis of SEVs derived from plasma of 435 HER2+
and TNBC subtypes has identified 18 exosomal miRNAs that differed between HER2+
and TNBC subtypes, nine miRNAs also differing from healthy women [455]. Association
of miR-34 and miR-520 can be used for ER+ and TNBC subtypes [454]. Such kinds of
sets can also be used to predict early recurrence or metastasis. Seven miRNAs were
differentially expressed between BC patients with and without recurrences, including
four miRNAs upregulated (miR-21-5p, miR-375, miR-205-5p, and miR-194-5p) and three
miRNAs downregulated (miR-382-5p, miR-376c-3p, and miR-411-5p) [456]. The association
of miR-19a, miR-20a, miR-126, and miR-155 can discriminate against the metastatic outcome
of BC patients [457,458].

A set of dysregulated selected exosomal miRNAs that could modulate target genes
responsible for MAPK, TGF-beta, Wnt, mTOR, and PI3K/Akt signaling pathways have
been associated with DOX resistance [384]. A specific miRNA signature was differentially
expressed in SEVs derived from adriamycin-resistant (A/exo) and parental breast cancer
cells (S/exo), with 309 miRNAs being increased and 66 significantly decreased in A/exo
compared with S/exo [383]. The association of miRNAs targeting metabolic pathways has
been reported with differential response to neoadjuvant chemotherapy (NACT) [459]. Three
miRNAs before NACT (miR-30b, miR-328, and miR-423) predicted complete pathological
response (pCR) in BC while upregulation of miR-127 correlated with pCR in triple-negative
TNBC patients [460]. In a meta-analysis review, 60 of 123 reported miRNAs in the literature
were found to be related to NACT response [461]. Dynamic evaluation of three miRNAs, in-
cluding miR-222, miR-20a, and miR-451 was associated with NACT chemo-sensitivity [462].
Interestingly, a combined signature of four miRNAs (miR-4448, miR-2392, miR-2467-3p,
and miR-4800-3p) could be used to discriminate between chemotherapy responders and
nonresponders TNBC patients [463].

Given the vast number of publications on miRNA differential expression in BC patients’
SEVs, the development of relevant meta-analysis is strongly mandatory, and several have
so far been performed. One suggested that miR-21 is likely to be a potential biomarker
for early diagnosis, with high sensitivity and specificity being significantly upregulated
in BC [464]. This result was confirmed later [465]. Another reported that plasma SEVs
miR-23b upregulation is linked to poor overall BC survival [466]. A third one pinpoints
miR-9 as an interesting BC biomarker [467]. Globally, there is little consistency among
the circulating miRNA signatures identified in these different studies, mainly due to the
lack of standardization and result reproducibility, which remains the most significant
issue [468]. So far, no panels of circulating miRNAs are still ready for BC diagnosis in a
clinical setting [469,470].

5.1.3. SEVs lncRNAs as Interesting Emerging Biomarkers

Long-noncoding RNAs are regulatory transcripts longer than 200 nucleotides that
play an essential part in many fundamental cellular processes [471], and their deregulation
is considered to contribute to carcinogenesis [472] and metastasis [473,474]. The increased
serum concentration of several SEVs lncRNAs has been associated with poor prognosis
in BC patients. LncRNA DANCR [475] and lncRNA metastasis-associated lung adenocar-
cinoma transcript 1 (MALAT1) [476] have been associated with BC worsened evolution.
Serum exosomal lncRNA XIST has been described as a potential biomarker to diagnose
TNBC recurrence [477]. Fifteen exosome-related differentially expressed lncRNAs were
recently identified to be correlated with BC prognosis [478].

Overexpression of specific lncRNAs has been evidenced as a marker of treatment
resistance. Trastuzumab resistance is associated with the action of LncRNA OIP5-AS1
through miR-381-3p/HMGB3 axis [479], lncRNA ATB by competitively binding miR-
200c, upregulating ZEB1 and ZNF-217, then inducing EMT [480], lncRNA AGAP2-AS1
by inducing BC cells autophagy [481], and lncRNA SNHG14 [482]. Higher expression
levels of exosomal lncRNA-H19 compared to parental cells have been reported in DOX
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resistance [380]. A recent meta-analysis has confirmed that lncRNAs in SEVs could be a
promising bioindicator for the diagnosis and prognosis of solid tumors [483].

5.1.4. SEVs Circular Nucleic Acids as New Potential Diagnostic Tool

Extrachromosomal circular DNA (circDNA) is a type of cell-free DNA (cfDNA) that
is more structurally stable than linear cfDNA currently used for cancer-related detections
in clinical settings [484]. CirDNA is resistant to the action of extracellular nucleases due
to the formation of macromolecular complexes with proteins (including histones) [485].
Commonly observed in both standard and cancer cells (Wang 2021), it can bind to the outer
surface of exosomes (Tamkovich 2016) (Tutanov 2022) and be detected in serum (Ling 2021).

Aside from circDNA, circular RNAs (circRNA) also exist. CircRNA is a class of
covalently closed single-stranded circular RNA molecules without free 5′ or 3′ ends [486].
Unlike traditional linear RNAs such as lncRNAs and miRNAs, circRNAs were not degraded
by RNases or RNA exonucleases and were more stable and conserved in peripheral blood
or plasma [487]. CircRNAs can exert various functions according to their parental genes,
among which figure their ability to serve as a sponge for multiple miRNAs, suppressing
their activity [488]. Many circRNAs have been discovered in various cancers, and they are
activated in either inhibiting tumor progression or promoting tumorigenesis.

Both cDNA and circRNA can be observed in BC and hold promise to be used as
SEVs biomarkers. CirRNA circ_0004771 accelerates BC cell carcinogenic phenotypes via
upregulating dimethylarginine dimethylaminohydrolase 1 (DDAH1) expression through
absorbing miR-1253 [489]. Circ_0000615, which was spliced from the ZNF609 gene, dis-
plays an expression level markedly upregulated in BC cell lines compared with normal
ductal epithelial cells. It displays a better diagnostic efficiency in BC patients than rou-
tine tumor biomarkers such as CA153, CA125, and CEA. Its high expression was closely
associated with advanced tumor stage, lymph node metastasis, and high grade of recur-
rence risk [490]. In TNBC, several cirRNAs are likely to be exciting biomarkers. lncRNA
MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) regulates linear iso-
forms of VEGFA, inducing the back-splicing of VEGFA exon 7 and producing circular RNA
circ_0076611. Circ_0076611 is detectable in TNBC cells [491]. The expression of circHSDL2,
targeting let-7a-2-3p during the progression of TNBC, was found to be significantly up-
regulated in serum SEVs and tumor tissues from TNBC patients [492]. Overexpression of
circ-proteasome 20S subunit alpha 1 (circ-PSMA1) promoted tumorigenesis, metastasis,
and migration through miR-637/Akt1/β-catenin (cyclin D1) axis in TNBC both in vitro
and in vivo. circ-PSMA1 is upregulated in vitro in TNBC cells’ SEVs and in SEVs isolated
from triple-negative TNBC patients’ sera [493].

5.2. SEVs Protein Cargo as a Source of New Cancer Biomarkers

Proteins located on the surface of and within SEVs may also be used as relevant
cancer biomarkers as they may differ between healthy individuals and BC patients [494].
SEVs surface protein markers such as members of the tetraspanin family (CD9, CD63,
CD81, CD82, and CD151), some integrins, multivesicular bodies (MVBs) formation proteins
(TSG101, Alix, and Clathrin), and lipid raft proteins (flotillins) [495]. The level of CD82 was
significantly higher in the serum of BC patients compared to the healthy controls, while the
expression of CD82 significantly increased with malignant BC progression [496]. On the
contrary, CD151-deleted SEVs significantly decreased the migration and invasion of TNBC
cells [497]. In addition to these self-proteins for constructing SEVs, several proteins from
BC-derived cells are likely to be potential biomarkers for early screening and diagnosis.

Enzymes and specific signaling proteins (EpCAM, EFGR, and survivin-2B) along
with metalloproteinase ADAM10, heat-shock protein HSP70, and Annexin-1 can also be
evidenced as general marker proteins detected in serum and pleural effusion-derived SEVs
from BC cell lines or BC patients [237,498]. Epithelial cell adhesion molecules such as
EpCAM and CD24 could be used as markers to identify cancer-derived SEVs in ascites and
pleural effusions from BC patients [498]. As compared to healthy controls, higher levels of
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SEVs with glypican 1 (GPC1) on their surface (GPC1+) are found in BC patients’ sera (Melo
2015). GPC-1, glucose transporter 1 (GLUT-1), and disintegrin ADAM10 were potential
TNBC biomarkers [237]. FAK and EGFR proteins can also be found, where FAK presence
in SEV fractions is associated with in situ and stages I–III, while EGFR is associated with in
situ and stage I BC [499,500]. SEVs containing amphiregulin (AREG) which binds to cell
surface EGFR, were revealed to increase receptor BC invasive ability of cells [501] and can
be used as prognostic and/or predictive markers [502]. Comparative proteome analysis
of circulating SEVs in healthy and BC patients has shown that the association of three
favorable (Serpin A1 (SERPINA1), keratin 6 (KRT6B), and SOCS3) and one unfavorable
(insulin growth factor 2 receptor (IGF2R)) SEV protein markers allow diagnosing with
73% sensitivity and 100% specificity BC stage I and II [495]. The diagnostic value of
fibronectin [503] and developmental endothelial locus-1 (Del-1) [504] in BC cell-derived
SEVs were reported to display a sensitivity of 94.70% and a specificity of 86.36%. Some
other markers are promising. Serum SEV annexin2 (AnxA2) holds promise as a potential
prognosticator of TNBC as it is high in African American women with TNBC (Chaudhary
2020). The distinct expression pattern of SEV survivin-2B in serum is considered a sign
of early-stage BC [505]. Some specific SEVs proteins have been correlated to response to
treatment. Enrichment of CD44 in SEVs of doxycycline DOX-treated BC cells promotes
their chemoresistance [506]. Programmed death ligand-1 (PD-L1), an essential immune
checkpoint molecule, is expressed on BC SEVs and correlated with the progression and
immunotherapy response [507]. Plasma SEV NGF concentration in BC patients undergoing
neoadjuvant chemotherapy is associated with significantly poorer overall survival [508].

6. SEVs as Attractive Targets to Inhibit BC

SEVs are a source of cancer dissemination and a promoter of patients’ resistance to
treatment. It is, therefore, mandatory to explore new therapeutic possibilities to suppress
SEV-induced tumor progression and reduce SEV-related drug resistance.

6.1. Inhibition of SEV Uptake by Target Cells

The first possibility to limit SEVs’ adverse effects would be to inhibit their uptake
by target cells [509]. SEV uptake capability has been reported to vary depending on the
recipient cell type but not on the donor cell type [109]. It largely depends on surface
molecules and glycoproteins on the vesicle membrane and the plasma membrane of the
recipient cell [510]. Multiple uptake mechanisms are involved in the cellular internaliza-
tion of SEVs, including caveolin- or clathrin-dependent endocytosis, macropinocytosis,
phagocytosis, lipid raft-mediated internalization, and membrane fusion [510,511]. Many
studies have found pharmacological inhibitors that could inhibit SEVs internalization.
Heparin can inhibit SEVs uptake in a dose-dependent manner through direct action on
heparan sulfate proteoglycans which themselves play a role in SEVs endocytosis [512].
Both cytochalasin D, through a direct inhibitory effect on actin polymerization, and
methyl-β-cyclodextrin (MβCD), by depleting membranes’ cholesterol hence disrupting
lipid rafts stability, inhibit phagocytosis/endocytosis mechanisms, and thus SEV up-
take [513,514]. Disruption of clathrin-mediated and caveolin-dependent endocytosis by
chlorpromazine or dynasore, a specific inhibitor of dynamin 2, as well as macropinocyto-
sis inhibition by amiloride or omeprazole (OME) also inhibits SEVs uptake [515–518].
However, the extensive repertoire of mechanisms involved in SEV uptake in cancer
impairs the overall efficiency of these molecules.

6.2. Inhibition of SEV Biogenesis

Another way to limit SEVs action would be to inhibit SEV biogenesis. Such an issue
involves complex mechanisms and is likely to be challenging to implement. However,
many pharmacological agents have been found and seem promising. The fluidity of the cell
plasma membrane is fundamental during membrane lipid bilayer re-organization and SEV
formation. In cancer, lipid mediators such as sphingosine 1-phosphate and ceramide, which
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are known to be associated with inflammation [519], also regulate SEV production [32,520].
Sphingomyelinases, acid (SMPD1), and neutral sphingomyelinase (SMPD2) are ubiquitous
enzymes required for ceramide synthesis that can be specifically inhibited. GW4869,
cambinol, and spiroepoxide inhibit SMPD2. Blocking SMPD2 by either GW4869 drug
or specific SMPD2 siRNA results in a dose-dependent inhibition of SEV release [521].
GW4869 blocks SEV biogenesis by preventing the ceramide-modulated inward budding of
multivesicular bodies and the subsequent release of SEVs [522]. Complementarily, SMPD2
overexpression increases miRNAs’ extracellular amounts [523]. The link between SMPD2
and SEVs has been associated with BC aggressiveness [253]. The association of OME that
inhibits SEVs uptake with GW4869 that limits SEV biogenesis reduces paclitaxel (PTX)
amount in SEVs, thus increasing the therapeutic effect of PTX on BC cells [524]. As GW4869
seems promising, imipramine, a tricyclic antidepressant, is also a source of interest because
of its inhibitory activity on SMPD1 [525,526].

TSG101 is a protein involved in endosome trafficking and SEV biogenesis [527].
TSG101 knockdown in BC cells induces apoptosis and inhibits proliferation, suggesting
that TSG101 is a potential therapeutic target in cancer [528].

SEV Release Inhibition

A third possibility to target SEVs relies on limiting or inhibiting their release. A
drug that can inhibit SEV release is manumycin A, an antibiotic that is a selective and
robust inhibitor of Ras farnesyl transferases. Farnesyltransferase inhibitors inhibit Ras
activity and, therefore, SEV release [522]. Rasal2, a Ras-GTPase-activating protein (Ras-
GAP), is a known tumor suppressor in luminal B breast cancer, frequently metastatic and
recurrent. Rasal2 knockout (KO) in MCF-7 cells enhanced SEVs release and increased
autophagy-related proteins in exosomal fraction while attenuated by SEV release in-
hibitor GW4869 (Wang 2019). Aside from Ras proteins, there are also Rab proteins that
are also modulators of SEVs biogenesis [12].

Interestingly, associated with an increase in SEV secretion, the most up-regulated
proteins in long-term estrogen-deprived MCF-7 LTED cells were represented by Rab GT-
Pases [363]. Among Rab proteins, Rab27a and Rab27b seem to play a significant role in
SEVs docking and exocytosis [48] and are involved in mammary gland development [125]
and cancer [529]. Either knockdown of Rab27a in lung cancer [530] or gold nanoparticles
conjugated with anti-sense Rab27a oligonucleotides to mute Rab27a in BC [531] generate
significant inhibition of SEV release.

As plasma membrane fluidity is essential for SEV shedding, drugs targeting lipid
raft formation or cholesterol synthesis will interfere with SEV release. Lipid depletion
results in SEV release reduction (Skotland 2017). Pantethine, a pantothenic acid (vitamin B5)
derivative, is used as an intermediate in the production of coenzyme A and plays a role in
lipid metabolism, reducing total cholesterol levels. Pantethine inhibits cholesterol synthesis
by 80% and fatty acid synthesis (Ranganathan 1982). Pantethine prevents murine systemic
sclerosis by inhibiting microparticle shedding (Kavian 2015), an effect also observed on
chemoresistant BC cells (Roseblade 2015).

Actin and actin-regulating proteins are also strongly involved in SEV secretion. In-
vadopodia are cellular structures used by cancer cells to degrade extracellular matrix and
invade. Because of high levels of actin, such structures are critical sites for EV release.
Indeed, invadopodia inhibition limits EV release [532]. Targeting cortactin, the actin-
nucleation-promoting factor acting as an actin dynamics regulator, decreased SEV release,
whereas its overexpression increased [533]. The non-receptor tyrosine kinase Pyk2 is highly
expressed in BC and mediates invadopodia formation and function via interaction with cor-
tactin. Targeting Pyk2 with a specific Pyk2-derived peptide inhibits invadopodia-mediated
breast cancer metastasis [534].

Other drugs targeting SEV release have been used in BC. A novel anti-cancer SMR
peptide that antagonizes BC cell SEVs release results in cell cycle arrest and tumor growth
suppression [535]. D-Rhamnose β-hederin (DRβ-H), a novel oleanane-type triterpenoid
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saponin [536], and shikonin, a naphthoquinone [537], both isolated from traditional Chinese
medicinal plants, attenuate resistance traits in doxycycline DOX-resistant BC cells and
reduce tumor burden by decreasing SEV secretion. Cannabidiol (CBD) has been reported to
be a potential inhibitor for SEV release in BC as it inhibits, in a dose-dependent manner, SEV
release in MDA-MB-231 cells [538]. PEG-SMRwt-Clu, a drug derived from the secretion
region of HIV-1 Nef protein, regulates exosomal pathway trafficking and seems promising.
PEG-SMRwt-Clu was able to inhibit cell growth in BC cell lines and, more interestingly, to
increase chemosensitivity partially. PEG-SMRwt-Clu was also associated with a decrease
in the number of released SEVs [539].

Despite the current efforts and the number of SEV endocytosis, biogenesis, and release
inhibitors already available, SEV inhibition remains a very complex issue because of the
multifactorial nature of the different pathways involved in these processes. Nevertheless,
there is no doubt that SEV uptake, biogenesis, or release inhibition is still a potential and
attractive therapeutic cancer target.

7. SEVs as Nanovectors to Drive Therapy in BC

SEVs are significant players in tumor progression via the transfer of the cargo within
them. Another possible way to cure BC would be to use an SEV-based therapy that uses
SEVs as therapeutic nanovectors.

In the very last years, several reports have mainly focused on the idea that SEVs
could be natural delivery vehicles to transport therapeutic drugs, antibodies, or RNAs to
modify gene expression, especially in the cancer field [540–546] with a specific dedication
to BC [547–550]. Indeed, SEVs are biocompatible, biodegradable, and, therefore, less toxic
and immunogenic than other nanoparticle drug delivery systems such as liposomes or
polymeric nanoparticles [551]. SEVs have innate limited immunogenicity and cytotoxic-
ity [552] and can pass through anatomical barriers [553]. Additionally, as SEVs avoid drug
degradation by extracellular enzymes, drug stability is enhanced [554]. Altogether, SEV’s
capacity to target tumor cells is ten times higher than liposomes of a similar size. Such
property is undoubtedly linked to particular ligand-receptor interactions and to efficient
endocytosis mechanisms linked to the SEV membrane lipid composition that contributes
significantly to cellular adherence and internalization [555].

Several reports have demonstrated the potential of using SEV therapy, and clinical
trials are currently underway to find the best treatments that extend patient survival.
Many kinds of SEV-based therapies have been shown to improve chemotherapy effec-
tiveness. SEVs have been used to deliver chemotherapeutic drugs such as paclitaxel
(PTX) [556–558] or doxycycline (DOX) [559–561]. While loading DOX in SEVs reduces
its cardiotoxicity [562,563], it also enhances its efficacy when compared to traditional ad-
ministration [562,564]. Packaging DOX into SEVs increases its stability, thus allowing a
better collection within the tumor [564] with more limited side toxicity [565]. It holds the
same for PTX, SEVs being more efficient than free PTX and liposomal PTX in inhibiting
cancer cell growth [566]. However, developing SEV fusion with liposomes to produce a
hybrid exosome (HE) with improved PTX loading capacity and enhanced tumor-targeting
ability seems promising for triple-negative TNBC chemotherapy [567]. Loaded SEVs can
overcome drug efflux transporter adverse effects, decreasing tumor metastasis compared
to controls [568]. Interestingly, SEVs can provide cargo combinational therapy, as shown
for the PTX/5-FU association in BC [558]. Very recently, lapatinib-loaded exosomes were
developed as a drug delivery system in BC (Değirmenci 2022).

Aside from drug transport, SEVs are natural nucleic acid molecule carriers and can
be genetically engineered to deliver specific DNA or RNA molecules. More recently,
exosome–liposome hybrid nanoparticles have been developed to deliver the gene editing
system CRISPR/Cas9 in mesenchymal stromal cells (MSCs) [569]. SEV vectorization of
specific miRNAs has also been used. BC cell proliferation and migration were significantly
suppressed when cells were treated with SEVs loaded with miR-142-3p [570] and let7c-
5p [571]. EGFR-expressing cells can be targeted with GE11-positive SEVs loaded with
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miR-let-7a, a tumor suppressor microRNA. The results showed an efficient delivery of SEV
cargo and tumor growth inhibition [572]. While miR-134 SEV delivery has been shown to
enhance TNBC cells’ drug sensitivity [573], TNBC aggressiveness was suppressed using
either miR-381-3p- or miR-145-containing MSC-derived SEVs [574,575]. A synergistic
efficacy of co-delivering miR-159 and DOX in SEVs was reported for TNBC therapy [576].
Not only miRNAs can be transferred through SEV delivery. DARS-AS1, a newly reported
CUMS-responsive lncRNA, was enriched in TNBC cells and positively correlated with the
late clinical stage in patients with TNBC. Treatment with DARS-AS1 siRNA-loaded SEVs
substantially slowed CUMS-induced TNBC cell growth and liver metastasis [577].

SEVs can also be used as a new type of tumor vaccine [578]. SEVs have been explored
as modulators of the immune response against tumor cells. In BC, treatment with topotecan
(TPT, an inhibitor of topoisomerase I) induces BC cells to release SEVs containing DNA that
activates dendritic cells (DC) [579]. DCs are antigen-presenting cells that are central to the
initiation and regulation of innate and adaptive immunity in the tumor microenvironment.
DCs have been shown to secrete antigen-presenting SEVs that coexpress major histocompat-
ibility complex molecules. Such SEVs activate specific cytotoxic T lymphocytes in vivo that
can reduce or SEVen suppress tumor growth [580]. SEVs from DCs are likely to initiate an
immune response against tumor cells more precisely and accurately than cell therapy and
other non-cell-based therapy [581]. Vaccination of transgenic HLA-A2/HER2 mice with a
single dose of SEVs from DCs transfected with an adenoviral vector led to activating CD8+
T cell cytolytic functions against BC cells in vitro and reduced tumor growth in vivo [582].

Interestingly, tumor cell-derived SEVs have been shown to have an immunostim-
ulatory effect on antitumor DCs [583]. Such evidence prompts to start engineering DC
using targeted-SEV delivery of antigens and adjuvants to DCs, representing a fundamental
approach for developing DC vaccines [584]. BC cell line 4T1-derived SEV-mediated transfer
of let-7i, miR-155, and miR-142 to DC enhances DC maturation [585].

Cells under different conditions will determine SEV heterogeneity, generating vast and
complex combinatorial possibilities. Cell-derived SEVs are generally directed to specific
cell types [12]. SEVs derived from hypoxic tumor cells tend to be more easily taken up
by hypoxic tumor cells [586]. Thus, to better use SEVs in cancer, engineering SEVs with
ligands that can specifically bind to targeted cancer cells is mandatory. Either SEV surface
expression of receptor/ligand, antibody/ligand, or microenvironment-specific molecules
can be used to modify SEVs. Recently, bioengineered SEVs have been able to specifically
bind to HER2 by expressing designed ankyrin repeat proteins (DARPins) on their mem-
brane surface [587]. Directing CD3 and EGFR expressions on SEV membranes was shown
to induce cross-linking of T cells and EGFR-expressing BC cells and elicit potent antitumor
immunity both in vitro and in vivo [588]. It holds the same when SEVs are engineered
through the genetic display of anti-human CD3 and anti-human HER2 antibodies, dually
targeting CD3 T cell and BC-associated HER2 receptors. Such SEVs redirect and activate
cytotoxic T cells toward attacking HER2-expressing BC cells [589]. Both hyaluronan (HA),
the most specific CD44 ligand [590], and CD44 itself, which are both mainly involved in
the metastasis process, have been evidenced in BC cells EVs and associated with chemore-
sistance [506]. High accumulation of HA in the tumor microenvironment leads to an
increase in the interstitial pressure and reduced perfusion of drugs. Hyaluronidase, an
enzyme that degrades HA, has been engineered into SEV. Hyaluronidase-containing SEVs
have been developed and shown to degrade tumor extracellular matrix and enhance the
permeability of T cells and drugs within the tumor [591], inhibiting BC metastasis and
improving tumor treatment efficiency [592]. Another smart reported strategy was to use
HA-engineered SEVs to direct chemotherapy to CD44 expressing BC cells. HA decoration
of milk DOX-containing SEVs directs tumor-specific delivery of DOX [593].

Using SEVs as therapeutic vectors in cancer seems very promising, and clinical trials
are nowadays being carried out [594]. Unfortunately, breakthroughs still need to occur
because of the complexity of handling such new therapeutic methods in vivo. There is also
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an urgent need to better understand SEV biology and nature to accelerate SEV vectorization
in BC patient treatment.

8. Conclusions

It is now clearly stated that SEVs exert various biological functions, mainly via deliv-
ering signaling molecules that regulate an extensive repertoire of cellular processes. Their
role in cancer development seems central as they are significant players in multidirectional
signaling between cancer cells and various other ones (from neighboring tumor microenvi-
ronment cells at the primary tumor site to more distant ones). It covers every step of BC
carcinogenesis up to metastatic dissemination. SEV detection in a large variety of biological
fluids represents the future of cancer detection, an easy and reproducible means to identify
new specific diagnostic and prognostic biomarkers. SEVs also represent new targets for
treatment as their inhibition could limit or stop cancer development. Additionally, these
extracellular signaling cargos could be used as specific vectors to convey conventional or
innovative therapies to targeted cancer cells.

However, fundamental research is still mandatory to understand SEV function in
cancer progression. Although pre-clinical data appear very promising, validation from
large clinical trials is needed to support the daily use of SEVs as either tumor biomarkers
for monitoring cancer progression and driving treatment decisions or new vectors for
specifically targeted treatments.
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