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Abstract: Solution behavior of K;5[(Mn(H2O))PW11O39]·7H2O (1), Na3.66(NH4)4.74H3.1[(MnII

(H2O))2.75(WO(H2O))0.25(α-B-SbW9O33)2]·27H2O (2), and Na4.6H3.4[(MnII(H2O)3)2(WO2)2(β-B-
TeW9O33)2]·19H2O (3) was studied with NMR-relaxometry and HPLC-ICP-AES (High Performance
Liquid Chromatography coupled with Inductively Coupled Plasma Atomic Emission Spectroscopy).
According to the data, the [(Mn(H2O))PW11O39]5− Keggin-type anion is the most stable in water
among the tested complexes, even in the presence of ethylenediaminetetraacetic acid (EDTA) or
diethylenetriaminepentaacetic acid (DTPA). Aqueous solutions of 2 and 3 anions are less stable and
contain other species resulting from dissociation of Mn2+. Quantum chemical calculations show the
change in Mn2+ electronic state between [Mn(H2O)6]2+ and [(Mn(H2O))PW11O39]5−.

Keywords: Mn(II)-doped polyoxometalates; NMR-relaxometric studies; HPLC-ICP-AES

1. Introduction

One of the dominant research directions in the chemistry of nanomaterials is the
development of new nanoprobes for medical imaging [1]. In this respect, polyoxometalates
(POM) constitute promising candidates for development of such nanoprobes due to the
following advantages: (i) biological activity (e.g., anti-RNA [2], anti-influenza [3], anti-
COVID-19 [4]), which makes possible teranostic applications [5]; (ii) tendency for self-
organization into hierarchically ordered nanostructures [6–8]; and (iii) suitable magnetic-
relaxation characteristics of POM-based complexes [9,10]. From a structural point of view,
spherical or nearly spherical nano-sized polyoxometalates have an internal cavity and pores
on the surface, allowing an exchange between the mass of the solution and the internal
cavity of the clusters [11]. The inherent high negative charge on the polyoxoanions allows
control of their movement using electrophoresis [12,13].

In order to replace nephrotoxic Gd3+ in common magnetic resonance imaging (MRI)
contrast agents currently in use, complexes and nanoparticles of other paramagnetic metals,
in particular those of Mn2+, are currently under consideration as a viable alternative [14–17].
Though manganese complexes with lacunary polyoxometalates as ligands might be such
candidates, there are few data on relevant characteristics of Mn(II)–POM complexes. In 2007, T1-
relaxivity values were reported for “K6[MnSiW11O39]” (12.1 mM−1 s−1) and “K8[MnP2W17O61]”
(4.7 mM−1 s−1), which turned out to be comparable with that of GdDTPA relaxivity [18]. The
subsequent works on manganese-based contrast agents reported a significant improvement in
contrast properties when manganese oxide colloids were included in nanoparticles [19]. The
rotation correlation time contribution to the relaxivity can also be optimized by attachment,
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either covalent or non-covalent, of suitable paramagnetic complexes to various macromolecules
such as human serum albumin (HAS), DNA, liposomes, or micelles. Another possibility
is to increase the hydration number of the metal ion. In this regard, non-toxic, stable, and
water-soluble materials based on organic matrices with inclusion complexes of manganese
with polyoxometalate ligands can be envisaged as good candidates. As a prerequisite for such
studies, the stability of possible candidates must be evaluated, first in water and subsequently
in the presence of key components of biological liquids (salt buffers, HAS, etc.).

In this work, we chose three polyoxometalate complexes as such manganese-containing
compounds: K;5[(Mn(H2O))PW11O39]·7H2O (1), Na3.66(NH4)4.74H3.1[(MnII(H2O))2.75
(WO(H2O))0.25(α-B-SbW9O33)2]·27H2O (2), and Na4.6H3.4[(MnII(H2O)3)2(WO2)2(β-B-
TeW9O33)2]·19H2O (3). Mn2+ in complex 1 is hydrated with 1H2O, in 2—with 2 H2O,
and in 3—with 3H2O. Their solution behavior and magnetic-relaxation characteristics had
not been reported yet. Therefore, the NMR relaxation study of their aqueous solutions,
either alone or in the presence of additives, seems to be a necessary task.

The method of nuclear magnetic relaxation opens a possibility to detect changes in the
composition of the coordination environment of paramagnetic metal ions [20]. We have
shown [21] that the ratio of spin–spin and spin–lattice relaxation efficiency (relaxivity),
R2/R1, in Mn(II) solutions correlates with the number of water molecules (q) in the first
sphere of metal ions (Equation (1)):

R2

R1
=

(1/T2)p

(1/T1)p
=

(1/T2M)dd + (1/T2M)con
(1/T1M)dd + (1/T1M)con

≈ (1/T2M)dd
(1/T1M)dd

+
(1/T2M)con
(1/T1M)dd

= 1.2 + 0.6q (1)

In this way, it is easy to compare the values of R2/R1 ratio for a solution of a given Mn
compound with the number of water molecules (six) coordinating with the [Mn(H2O)6]2+

cation and rapidly exchanging with other water molecules from the bulk solution (Table
S1 of the Supplementary Materials). This ratio is 4.8 ± 0.2 for [Mn(H2O)6]2+ (q = 6), and
it decreases to 1.2 ± 0.2 for the complex with diethylenetriaminepentaacetic acid, where
all water molecules of the first coordination sphere are substituted with the donor atoms
of the chelating ligand (q = 0). Thus, the relaxation rate ratio R2/R1 is an important tool
for assessing the degree of substitution of water molecules in the first coordination sphere
of manganese(II) ions with donor atoms both during complex formation and association
processes [21–24].

In the Mn–POM complexes under consideration, manganese ions are embedded in a
rigid polyoxometalate framework, and concentration of free [Mn(H2O)6]2+ in equilibrium
may be quite low. Successful application of the NMR relaxation method to such objects
implies occurrence of a rapid exchange of water molecules bound to Mn2+ with other
H2O molecules in the bulk of the solution. In this case, it is necessary to make sure that
the specified condition is satisfied for all paramagnetic ions in the cluster. This can be
checked by analyzing the resistance of the Mn–POM complex to acid decomposition,
which will convert all manganese ions into [Mn(H2O)6]2+ aqua ions, or by using a strong
competing complexing agent (preferably, a chelator) to convert manganese ions into a
complexonate. After that, according to the measured characteristics of solutions of aqua
ions or the complexonate (which are well known for manganese(II) [25,26]), it is possible to
estimate how stable the cluster is in a particular environment and whether the complete or
partial release of Mn2+ is possible. For correct understanding of the information obtained
in the NMR-relaxation method, it is also necessary to find out whether all Mn2+ ions in a
complex actively contribute to the relaxation of protons of water molecules, that is, how
many ions should be taken into account when calculating the “active” concentration of
paramagnetic ions included in the equation for calculating the parameters R1 and R2.

In this work, we studied the stability of compounds 1–3 in water with NMR-relaxation
and HPLC-ICP-AES techniques.
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2. Results and Discussion
2.1. Synthesis and Characterization of Mn-Containing Complexes

As was previously reported, addition of Mn2+, as with any other 3d M2+ or M3+

cations to [PW11O39]7−, either prepared ad hoc or generated in situ, leads to incorporation
of Mn2+ inside the lacune of the monolacunary Keggin-type (the best known structural
form for heteropoly acids of [XM12O40]n− general formula, where X is the heteroatom
(e.g., PV, SiIV, etc), M is the addendum atom (e.g., MoVI or WVI)) anion backbone pro-
ducing [Mn(H2O)PW11O39]5− in high yield [27]. In our case, we isolated the complex as
K5[Mn(H2O)PW11O39]·7H2O (1). The purity of the product was confirmed using total
elemental analysis and chromatography. In the crystal structure, {Mn(H2O)}2+ unit is disor-
dered over all 12 metal positions, which makes single crystal X-ray diffraction (SCXRD)
analysis uninformative [27]. The idealized structure of [Mn(H2O)PW11O39]5− is shown in
Figure 1a.
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LANL2TZ(f) +ECP (for W) levels (see Computational Details), one of the two H atoms of 

the water molecule interacted with an O atom of the cluster (H-Oclus = 2.268 Å ), whereas 

the coordination of the Mn2+ was found to be distorted prolate octahedron. The equatorial 

position is occupied by four O atoms belonging to the W–O cluster (Mn-Oclus = 1.876, 1.914, 

1.945, 2.073 Å ), whereas the apical positions are occupied by an O atom of the phosphate 

Figure 1. Idealized structure of [Mn(H2O)PW11O39]5− (a); the structure of [(MnII

(H2O))2.75(WO(H2O))0.25(SbW9O33)2]11.5−, mixed Mn/W positions are shown in turquoise (b); the
structure of [(MnII(H2O)3)2(WO2)2(B-β-TeW9O33)2]10−. Polyhedral models based on {WO6} oc-
tahedral units (pink). Additional color codes: Mn—sea green; Sb—teal (b); Te—dark yellow (c);
O—red.
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Preparations of 2 and 3 were based on the protocols reported by Krebs et al. [28]. We
have found, however, that reaction between Na9[SbW9O33]·19.5H2O and MnCl2·4H2O
in water produces a mixture of [(MnII(H2O))3−x(WO(H2O))x(α-B-SbW9O33)2]n− anions
(Figure 1b) instead of the pure [(MnII(H2O))3(α-B-SbW9O33)2]12− reported by the authors.
The solid product was isolated as crystalline material upon air evaporation. According to
elemental analysis, its composition was formulated as Na3.66(NH4)4.74H3.1[(MnII(H2O))2.75
(WO(H2O))0.25(α-B-SbW9O33)2]·27H2O (2). Formation of such structures where {W(O)}4+

and {M(H2O)}n+ are competitively sandwiched between to {EW9} moieties is not uncom-
mon [29]. According to SCXRD, 2 crystallizes in monoclinic crystal system (P21/m space
group) with the following unit cell parameters: a = 12.9133, b = 19.0752, and c = 16.7256, β
101.216◦. The structure of the anion is shown in Figure 1b. The structure of [(MnII(H2O))3(α-
B-SbW9O33)2]12− has been reported [30–33]; that is why we obtained only a satisfactory
structural model of 2, which is enough to extract theoretical data for XRPD analysis. This
was used to confirm the phase purity according to XRPD (Figure S1).

The synthesis of 3 was carried out according to the procedure reported for Na8[(MnII

(H2O)3)2(MnII(H2O)2)2(TeW9O33)2]·34H2O [28]. The yellow crystalline product was iso-
lated after slow (several days) crystallization from the reaction solution in air. Poorly
diffracted single crystals of 3 were studied by SCXRD. The complex crystalizes in triclinic
crystal system (P-1 space group) with the following unit cell: a = 13.3405 Å, b = 14.1672 Å,
c = 15.0359 Å, α = 68.394◦, β = 71.165◦, and γ = 73.784◦. The refinement gives Krebs-type
[(MnII(H2O)3)2(WO2)2(B-β-TeW9O33)2]8− anion (Figure 1c). This structure is the same as
[(MnII(H2O)3)2(WO2)2(BiW9O33)2]10− [28]; that is why we obtained a satisfactory struc-
tural model only of 3. The product purity was confirmed usinf full elemental analysis
and chromatography. The crystalline material is unstable upon air drying and quickly
becomes amorphous.

2.2. Quantum-Chemical Calculations of Mn2+ Electronic States

Complexes 1–3 are all bright yellow, despite the fact that [Mn(H2O)6]2+ is almost
colorless (very pale pink) because d–d transitions for high-spin d5 ions in Oh field are both
spin- and Laporte-forbidden. When Mn2+ enters the lacunary site, the local symmetry
becomes D4h (idealized) or even Cs (exact). To confirm this distortion, we calculated
the idealized structure of [(Mn(H2O))PW11O39]5−, which is shown in Figure 1a. Upon
geometry optimization, carried out at DFT B3LYP[GD3BJ]/6-311++G** (for H, P, O, and Mn)
and LANL2TZ(f) +ECP (for W) levels (see Computational Details), one of the two H atoms
of the water molecule interacted with an O atom of the cluster (H-Oclus = 2.268 Å), whereas
the coordination of the Mn2+ was found to be distorted prolate octahedron. The equatorial
position is occupied by four O atoms belonging to the W–O cluster (Mn-Oclus = 1.876, 1.914,
1.945, 2.073 Å), whereas the apical positions are occupied by an O atom of the phosphate
ion (Mn-Ophos = 2.166 Å) and by an O atom of the water molecule (Mn-Owater = 2.259 Å);
Ophos, Mn, and Owater are not aligned, describing a bond angle of 169o. This Cs distortion
permits allowed d–d transitions for Mn2+ in the UV–Vis spectrum. In addition, charge
transfer from Mn(II) to W(VI) bands are also allowed. Time-dependent density-functional
theory (TD-DFT) calculations were performed usingω-B97X[D] functional and the same
basis sets used for the geometry optimisation to study the nature of the yellow coloration
associated with Mn2+ into the cavity of [PW11O39]7−. Five allowed electronic transitions
were identified between 2 and 4 eV; in particular, an intense peak at 2.198 eV, two low-
intensity peaks at 2.530 and 2.579 eV, and two middle-intensity peaks at 2.601 and 3.625 eV.
A good match between predicted and experimental bands was found, both for transition
energies and intensities. The UV–Vis absorption spectrum of 1 in water at neutral pH is
poorly informative, as it does not show any clear structure; in particular, the absorbance is
negligible above 500 nm whereas a rapid, monotonic increase was observed below 500 nm
probably due to charge transfer processes (Figure 2 (left)). On the contrary, the diffuse
reflectance (DR) spectrum in solid phase shows two main bands at 2.21 eV and 3.66 eV; the
former has a shoulder about 2.55 eV (Figure 2 (right)).
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Figure 2. UV–Vis spectrum of 1 in water at natural pH (left); Experimental (black curve) and
calculated (red curve) DR spectra of 1 (right).

In order to clarify the complex nature of the three more intense electronic transitions,
the Natural Transition Orbital (NTO) analysis was applied, using the same functional and
basis sets used for the TD-DFT calculations (Figure S2). The two transitions at 2.198 eV and
2.601 eV show a strong charge transfer character; Mn’s d orbitals are involved as acceptors
of electron density. On the other hand, the NTO analysis of the electronic transition at
3.625 eV indicates the involvement of Mn’s d orbitals both as donors and acceptors. We
can therefore conclude that the color of this MnII-containing compound is associated
to electronic transitions, whose oscillator strength is non null thanks to the distorted
coordination of the metal; despite the common involvement of Mn’s d orbitals, these
transitions are different in nature, viz. they have a charge transfer character (at 2.198 eV), a
delocalization character (at 2.601 eV), and a local excitation character (at 3.625 eV).

2.3. HPLC-ICP-AES

HPCL-ICP-AES hyphenated technique [34] is a powerful tool to study the reactiv-
ity/stability/evolution of different polyoxometalates in aqueous and organic solutions [35–37].
In the present research, this technique was a good complement for NMR-relaxation studies.
The HPLC-ICP-AES chromatogram of K5[(Mn(H2O))PW11O39]·7H2O shows a single peak
(tR = 4.6 min) with atomic ratio W:Mn = 11.1 ± 0.5. The data obtained from HPLC-ICP-AES
(Figure 3) were used to calculate the atomic ratios of the elements (Table S1). The phosphorus
content was close to the detection limit of the element by HPLC-ICP-AES; therefore, the
intensities of signals from P are significantly lower than Mn and W and cannot be adequately
treated. In order to confirm the peak purity of the observed signal, we calculated atomic
ratio at each point of the HPLC-ICP-AES chromatogram for all pairs of detected spectral lines
(Figure 3). Any impurity eluted along with the main peak will cause a deviation from the
horizontal line of the calculated atomic ratio. The atomic ratios of the pairs of spectral lines
W/Mn were constant during the entire HPLC-ICP-AES analysis. Therefore, it can be argued
that the peak does not contain impurities, and there is only one individual species in the
aqueous solution.

The HPLC-ICP-AES chromatogram of a solution of Na3.66(NH4)4.74H3.1[(MnII

(H2O))2.75(WO(H2O))0.25(α-B-SbW9O33)2]·27H2O in water is shown in Figure 4. The first
peak (1) with W:Mn = 6.5 ± 0.5, W:Sb = 9.1 ± 0.6 and the second (2) Mn-free peak cor-
responding to the antimonotungstate (W:Sb = 9.3 ± 0.5) overlap, which may indicate an
excess of tungsten or possible sample decomposition under the separation conditions.
These data show that [(MnII(H2O))3−x(WO(H2O))x(α-B-SbW9O33)2]11.5− is not a stable
species in water and equilibrate with Mn-free species (peak №2) and W- and Sb-free species
(Figure S3) that are not retained on the column and elute with a dead volume. Possible
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explanation for this effect could be the presence of the positively charged species (e.g.,
[Mn(H2O)6]2+) with no affinity for the HPLC-column in the absence of an ion-pair reagent
for cationic species. The same peak is also observed in the chromatograms of the complexes
1 and 3. Unfortunately, it is not possible to calculate the atomic ratio for the detected peak
as it contains only Mn spectral lines.
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The HPLC-ICP-AES chromatogram of a solution of Na4.6H3.4[(MnII(H2O)3)2(WO2)2(β-
B-TeW9O33)2]·19H2O in water at “natural” pH shows two baseline-unresolved peaks
(Figure 5). The first peak (1) was attributed to [(MnII(H2O)3)2(WO2)2(β-B-TeW9O33)2]8−

due to the following atomic ratios of the elements: W:Mn = 10.1 ± 0.4, W:Te = 9.9 ± 0.5,
and Mn:Te = 1.1 ± 0.2. The second peak (2) can be attributed to a manganese-free telluro-
tungstate with atomic ratio W:Te = 9.2 ± 0.5. This means that the complex dissociates
with the formation of free “{TeW9O33}”, which can be a monomeric or “dimeric” (such as
[Te2W18O62(OH)2]10− [38]) species.
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Figure 5. HPLC-ICP-AES chromatogram of Na4.6H3.4[(MnII(H2O)3)2(WO2)2(β-B-TeW9O33)2]·19H2O
in water at natural pH.

Thus, the complexes can be ranked, according to their stability in water, in the following
order: 1 > 3 >> 2. showing behavior of 1–3 in water according to NMR relaxation data.

2.4. Behavior of 1–3 in Water According to NMR Relaxation Data

As the first step, we studied influence of the medium acidity on the magnetic relaxation
characteristics of 1–3 in an aqueous solution. In order to correctly calculate the relaxivity
parameters, R1 and R2 relaxation times of a solution of 3 (0.1 mM) were measured. The
relaxivities and the R2/R1 ratio were calculated with Equation (3) taking into account two
possible Mn species in solution, with four ([(MnII(H2O)3)2(Mn(H2O)2)2(β-B-TeW9O33)2]8−)
or with two ([(MnII(H2O)3)2(WO2)2(β-B-TeW9O33)2]8−) manganese ions, that is, CMn = 0.4
or 0.2 mM, respectively (Figure 6).
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Figure 6. Dependence of the spin–lattice relaxivity R1 (a) and the ratio R2/R1 (b) on pH in a 0.1 M
solution of 3 in water. Calculations of relaxivity were carried out taking into account manganese(II)
concentrations of 0.4 mM (1) and 0.2 mM (2). For comparison, data are presented for a MnCl2 solution
with a manganese(II) aqua ion content of 0.4 mM (3).

It follows from the obtained data that in a strongly acidic medium, the R2/R1 ra-
tio approaches the values of 4.8–5.0, which are characteristic of [Mn(H2O)6]2+ (compare
curves 1–3, Figure 6b). Consequently, compound 3 is unstable to acid and already at
pH < 4 undergoes decomposition releasing Mn as [Mn(H2O)6]2+. At the same time, the
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relaxivity values R1 (7900–8000 M−1s−1), characteristic of [Mn(H2O)6]2+ in Figure 6a, are
observed for curve 2 obtained under the assumption that there are only two magnetically
active manganese ions in compound 3. (Measurement data for spin–spin relaxivity are
shown in Figure S4. For manganese aqua ions, the R2 values are 38,000–39,000 M−1s−1.)
In this case, the complete coincidence of curves 1 and 2 in Figure 6b is not surprising,
since the R2/R1 ratio does not depend on the chosen concentration of manganese ions.
Thus, according to the measured proton NMR-relaxation rates, it can be concluded that in
compound 3, there are only two manganese ions catalyzing the relaxation of protons of
water molecules. Compound 3 can be stable in water in the pH range of 4–8; in more acidic
solutions, it decomposes with the release of two manganese(II) aqua ions. This confirms
the XRD data on the presence of only two manganese ions in compound 3.

When analyzing the relaxivities R1 and R2 found for solutions of 3, and their ratios
R2/R1, two interesting points arose. The first is that in the pH range 4–8 R1 is almost two-
fold higher than R1 [Mn(H2O)6]2+ (curves 2 and 3, Figure 6a). This can be explained by the
fact that the proton spin–lattice relaxation in Mn(II) solutions is controlled by the correlation
rotation time τR [22,39]. It is well known that the relaxation rate can significantly increase
when manganese ions bind to large objects such as polymers, macrocycles, proteins, or
nanoparticles, as already observed in previous works [21,22].

The second point is that the value of the ratio R2/R1~1.5–1.6 at its own pH (5.5) corre-
sponds to the presence of no more than one water molecule in the internal coordination
sphere of each manganese ion. This contradicts the formula composition, according to
which compound 3 contains manganese ions associated with three water molecules. Possi-
bly, this effect is a consequence of the structural features of cluster 3, and only two water
molecules associated with two magnetically active manganese ions are active in relation to
exchange with other water molecules in the bulk of the solution. The structure in solution
can, of course, be different from that in crystal, even if the molar ration of building blocks
is retained. These explanations, of course, are based solely on NMR-relaxation data and
need to be verified with other methods.

With respect to 1 and 2, similar experiments were carried out to check the dependence
of their relaxivities R1,2 and the ratio R2/R1 on pH, which are shown in Figure 7 and Figure
S5 in comparison with the data for 3.
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From Figure 7, it can be seen that for 1 the coordination sphere of Mn2+ is the most
stable: the R1 values and the R2/R1 ratio are constant over a wide pH range. The R2/R1
value of 1.6±0.1 is close to the value of 1.8, corresponding to the presence of one water
molecule bound to Mn2+, which fully corresponds to the chemical composition of the
polyoxoanion. At the same time, over the pH range of 2.5–8, the relaxivity values are not
only significantly lower than the R1 values for 3, but they are also lower than the values
for [Mn(H2O)6]2+. This demonstrates again that relaxivity is a function of many factors,
including the number of coordinated water molecules and the correlation time [20]. Despite
the fact that compound 1 remains stable in water up to pH 2.5, further acidification finally
leads to a change in the degree of hydration of manganese ions, as indicated by an increase
in the R2/R1 ratio, accompanied by the approach of the R1 and R2 values to the relaxivity
values of [Mn(H2O)6]2+ (Figures 7 and S5). Thus, we can also propose the change in the
original structure of 1. Possibly, at pH < 2.5 the anion of 1 decomposes to yield plenary
Keggin phosphotungstate [PW12O40]3− and [Mn(H2O)6]2+.

For 2, which in ideal case contains three identical manganese atoms, the values of the
ratio R2/R1 = 1.75–1.95 are consistent with the structural data that each of the manganese
cations is bound to one water molecule. Meanwhile, the resistance of a solution of com-
pound 2 to acidification is significantly inferior to that observed for 3 and especially for 1,
since the R2/R1 ratio begins to increase already at pH below 5 (Figure 7b). It is interesting
to note that this process has almost no effect on the R1 values, which are initially quite
close to R1 for [Mn(H2O)6]2+, but the spin–spin relaxivity values increase, approaching the
R2 values for [Mn(H2O)6]2+ (Figure S5). This is in accordance with HPLC-ICP-AES data
(Figure S3).

Conclusions from the analysis of the data obtained in the NMR relaxation study of
solutions of compounds 1 and 2 in water are generally consistent with the structure of
these compounds obtained by X-ray diffraction analysis [28]. At the same time, according
to these data, it was possible to estimate the number of manganese atoms in compound 3
and to collect additional information concerning hydrolytic stability of polyoxocomplexes.

2.5. Effect of the Cationic Polymer on Compound 3 in Water

It was previously shown that the interaction of the cationic form of polyethyleneimine
(PEI) with anionic complexes of manganese with EDTA or DTPA in an acidic medium leads
to an increase in relaxivity due to the formation of complex-polymer associates [25,26]. The
selected polyoxoanions are anionic in nature; their behavior in solution was therefore checked
in the presence of a cationic polyelectrolyte. For this purpose, the effect of polyethyleneimine
(PEI) additives on the magnetic relaxation parameters of a solution of compound 3 was studied.
When PEI is introduced into a solution of 3, a significant change in the behavior of the pH
dependences of both the R1 and R2 values and the R2/R1 ratio is observed (Figures 8 and S6).
The region of elevated R1 relaxivity values, which was explained above by the slow rotation
of the cluster, disappeared, and, based on the high R2/R1 ratio values (4.75–4.95), almost up
to pH 7 manganese ions are present as aqua ions.

In general, the profile of curves 2 in Figures 8 and S6 is similar to that of curves 3
depicted in our previous study of the state of manganese(II) in polymer solutions [22]. The
decrease in relaxivity above pH 7 and the decrease in the hydration of manganese ions
are explained by the binding of these ions to numerous amino groups in the branched
polymer, which loses its cationic nature upon deprotonation of its ammonium groups.
Thus, it is obvious that this polyoxoanion will be extremely unstable in solutions containing
cationic polyelectrolytes.
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2), 0.4 mM (3), SPEI 10 mM (2, 3).

2.6. Stability of Compounds 1–3 in Complexone Solutions

When screening compounds for use in biosystems, considerable attention should be
paid to their stability to prevent degradation and poisoning of organisms by possible toxic
products, including multiply charged metal ions. For this purpose, for example, a complex
of gadolinium (or manganese) with polydentate chelators such as diethylenetriaminepen-
taacetic acid (DTPA) is used as an MRI contrast agent. Thus, by studying the behavior of a
polyoxoanion in a complexone solution, one can evaluate its relative stability and predict
its prospects for biomedical applications.

Previously, we studied the state of stable complexes of Mn2+ with EDTA and DTPA in
solutions of the cationic PEI polymer, where pH regions of the formation of Mn-L(EDTA
or DTPA)-PEI ternary compounds were found. It was interesting to study the possibility
of {Mn(H2O)n}polyoxoanion-L(EDTA or DTPA) ternary systems. To do this, the experiments
were organized in such a way that a variable amount of a complexone (less and more
than one equivalent) was added to the solutions of 1–3, while maintaining the acidity of
the solutions constant. For comparison, a similar experiment was also carried out with a
manganese salt solution of the same concentration.

At the first stage, EDTA was chosen as a complexing agent, and the results are shown
in Figures 9, 10, S7 and S8. Using compound 3 as an example, we tested the polyoxoan-
ion behavior in the presence of EDTA in a wide range of pH. Mn2+ forms strong com-
plexes with EDTA in solutions (lgK1 = 13.6 in 0.1 M KNO3, NIST Standard Reference
Database 46 (Critically Selected Stability Constants of Metal Complexes), Version 7.0), and
at pH > 3 the relaxivity does not change, which indicates the completion of the complex
formation process.

Of those presented in Figures 10 and S7, the relaxivity curves R1 and the ratio R2/R1
for [Mn(H2O)6]2+ and for 3 almost completely coincide with one another in an excess of
EDTA. Thus, in contrast to compound 2, the complete transition of manganese ions from
polyoxoanion 3 into the complexonate in solution with pH 5.5 needs more than equivalent
quantity of EDTA.
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Figure 10. Changes in the relaxation efficiency R1 (a) and the ratio R2/R1 (b) on the content of EDTA
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Compound 2 expectably turned out to be unstable in a complexone solution, and when
an equimolar amount of EDTA is added, a kink is observed in the relaxation curves with a
constant relaxation value (curves 2 in Figures 11 and S8) corresponding to the formation of
manganese complexonate (curves 4 in Figures 10 and S8). This pattern is typical for the
formation of a strong complex with a metal:ligand composition of 1:1.

For compound 1, however, the addition of EDTA to a solution with pH 5.5 did not
reveal any changes, since it turned out that the values of both relaxivities and the ratio R2/R1
of [(Mn(H2O))PW11O39]5− and manganese complexonate completely coincide (curves 1
and 4 in Figures 10 and S8 at an EDTA content above 0.4 mM). This result is unexpected and
can be explained with the fact that in both compounds in the first sphere of the manganese
ion there are five atoms of the coordinated environment (polyoxometalate in 1 or O and N
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atoms from EDTA), and the sixth place is occupied by a water molecule. Thus, to elucidate
the possibility of the transfer of Mn2+ from 1 to the complexonate, it is necessary to use a
ligand, the complex that will have different relaxivities than the complex with EDTA. This
requirement was met with DTPA, and the results are presented in Figures 11 and S9.
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Figure 11. Dependence of the relaxation efficiency R1 (a) and the ratio R2/R1 (b) on the concentration
of DTPA in aqueous solutions of Mn(II) (1) and compounds 1 (2) and 3 (3). CMn(II) 0.2 (3), 0.4 mM (1,
2), pH 5.5.

Addition of DTPA to solutions of Mn2+ indicates the formation of a 1:1 complex
(Figures 11a and S6), lg ML = 15.6 (NIST Standard Reference Database 46 (Critically Selected
Stability Constants of Metal Complexes), Version 7.0). It can be seen that, for complexes of
Mn2+ with DTPA, the relaxivities R1 and R2 are 1200 and 1600 M−1s−1, respectively, which
is noticeably lower than for 1 (3000 and 4500 M−1s−1). From all these data, it can be seen
that when DTPA is added to a solution of 1, Mn2+ transfer from [(Mn(H2O))PW11O39]5−

to the complexonate is negligible. Therefore, the tight fixation of Mn2+ in the structure of
[(Mn(H2O))PW11O39]5− can be a starting point for the design of paramagnetic markers
resistant to competitive ligands (for example, MRI contrast agents). In this regard, the only
disadvantage of compound 1 should be considered as a relatively low relaxation efficiency,
which is comparable to that obtained for the Mn(II) complex with EDTA; however, it
exceeds the parameters for DTPA complex. For compound 3, a decrease in relaxivities is
also observed, and at the maximum content of DTPA, the parameters turn out to be close to
those found for manganese complexonate (curves 3 in Figures 11a and S6). Thus, complex
3 is destroyed by DTPA, and, despite its high spin–lattice relaxation (11,000 M−1s−1), this
structure is not of interest as a platform for creating paramagnetic biomarkers.

3. Materials and Methods
3.1. General Information

Manganese(II) chloride (99%, Khimreaktiv, Moscow, Russia), EDTA (99%, Merck
Millipore, Burlington, MA, USA), DTPA (99%, Merck Millipore, Burlington, MA, USA),
branched polyethyleneimine (PEI) as 50% aqueous solution (M.n. 60000, Sigma-Aldrich
Co, St Louis, MO, USA), sodium hydroxide (99%, Khimreaktiv, Moscow, Russia), and
hydrochloride acid (99%, Khimreaktiv, Moscow, Russia) were used. Ultra-purified water
(18.2 MΩcm resistivity at 25 ◦C) was produced from Direct-Q 5 UV equipment (Millipore
S.A.S. 67120 Molsheim-France). Experiments and measurements were conducted at 298 K.
The temperature was maintained using Haake DC10 (Thermo Fisher Scientific GmbH,
Karlsruhe, Germany) cryo thermostat. PEI concentration is expressed in its “monomeric”
units relative to the respective molecular weight. Water content was determined with
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thermal gravimetric analysis using TG Analyzer TG 209 F3 Tarsus (NETZSCH). Infrared
spectra (4000–400 cm−1) were recorded on a Scimitar FTS 2000 spectrophotometer in KBr
pressed pellets.

3.2. Synthesis

Synthesis of K5[(MnII(H2O))PW11O39]·7H2O (1): K7[PW11O39]·14H2O (10 g, 3.1 mmol)
was dissolved in water (5 mL) under gentle heating. Solid MnCl2·4H2O (0.615 g, 3.1 mmol)
was added leading to a dark red solution. The reaction mixture was stirred for 5 h at room
temperature, and solid KCl (2 g, 26.8 mmol) was added. Pale yellow precipitate formed
during 1 h was isolated using filtration; washed with ethanol, diethyl ether; and air dried,
yield 87%. IR (KBr, ν/cm−1, Figure S10) was: 1624 (m); 1080 (m); 1051 (s); 976 (s, sh); 957 (vs);
891 s; 831 s, sh; 804 vs, br; 763 s; 715 s, br; 592 m; 511 m; and 484 m. TGA: An average loss of
ca. 8 water molecules between room temperature and 220 ◦C corresponding to crystallization
and coordinated water molecules.

Synthesis of Na3.66(NH4)4.74H3.1[(MnII(H2O))2.75(WO(H2O))0.25(SbW9O33)2]·27H2O (2):
Compound 2 was prepared according to the published procedure [28]. A dark orange micro-
crystalline product was collected using filtration; washed with ethanol, diethyl ether; and air
dried, yield 92%. IR (KBr, ν/cm−1, Figure S11) was: 1632 (m); 1416 (m); 930 (s); 862 (vs); 772
(s, sh); 714 (vs); 690 (vs); 637 (s, sh); 509 (s); 465 (s); and 436 (s). TGA: An average loss of ca. 30
water molecules between room temperature and 220 ◦C corresponding to crystallization and
coordinated water molecules.

Synthesis of Na4.6H3.4[(MnII(H2O)3)2(WO2)2(B-β-TeW9O33)2]·19H2O (3): Solution
1: TeO2 (0.22 g, 1.34 mmol) was dissolved under gentle heating in 10 M NaOH solution
(0.4 g in 1 mL of water) and diluted with 10 mL of water. Solution 2: Na2WO4·2H2O (3.96 g,
12.01 mmol) was dissolved in a mixture of water (20 mL) and 12 M HNO3 (0.7 mL) and
heated to 75 ◦C. Solution 1 was added dropwise to solution 2, and Na2CO3 (0.4 g, 4.8 mmol)
was added after. A solution of MnCl2·4H2O (0.532 g, 2.68 mmol) in water (10 mL) was
added slowly to the reaction mixture leading to a cloudy pale yellow solution with pH~9.3.
The pH was set to 3 with dropwise addition of a concentrated HNO3 solution, resulting
clear deep yellow mixture that was heated for 1 h at 80 ◦C, filtered, and allowed to cool
to ambient temperature. A yellow crystalline product was obtained after several days;
isolated; washed with ethanol, diethyl ether; and air dried, yield 35%. IR (KBr, ν/cm−1,
Figure S12) was: 1626 m; 984 m, sh; 972 s; 880 s, sh; 839 vs; 779 vs; 741 s; 691 s; 650 s,
br; 505 m; and 478 m. TGA: An average loss of ca. 25 water molecules between room
temperature and 220 ◦C corresponding to crystallization and coordinated water molecules.

3.3. NMR-Relaxation

Proton relaxation times T1,2 were measured using pulsed NMR-relaxometer Minispec
MQ20 (Bruker) with operational frequency 19.65 MHz applying standard radio frequency
pulse sequences: inversion-recovery method for spin–lattice relaxation time (T1), and
Carr–Purcell sequence modified by Meiboom–Gill for spin–spin relaxation time (T2) with
measuring accuracy better than 3%. The temperature was maintained using Haake DC10
(Thermo Electron) cryo thermostat.

The experimentally measured relaxation times (T2)obs, s, were inverted into the relax-
ation rates (1/T2)obs, s−1. The relaxation rate is the sum of the two main contributions: the
relaxation of protons in water (1/T2)d (diamagnetic component) and the relaxation of the
protons around the paramagnetic ion (1/T2)p (paramagnetic component):(

1
T1,2

)
obs

=

(
1

T1,2

)
p
+

(
1

T1,2

)
d

(2)
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The paramagnetic component, (1/T1,2)p, was calculated according to Equation (2)
as the difference between the measured relaxation rate (1/T1,2)obs (measured for Mn-
containing solutions) and the diamagnetic component (1/T1,2)d (for diluted aqueous solu-
tions is equal to 0.4 s−1).

Using manganese concentration, C, the paramagnetic component, (1/T1,2)p, was
converted into relaxivity R1,2, M−1s−1, according to Equation (3):

R1,2 =

(
1

CMT1,2p

)
(3)

3.4. Diffuse Reflectance Spectra

DR spectra were measured on a setup that consists of a Kolibri-2 spectrometer (VMK
Optoelektronica, Novosibirsk, Russia), fiber optic cable QR-400-7 (Ocean Optics, Orlando,
FL, USA), and deuterium–tungsten lamp AvaLight-DHS (Avantes, Apeldoorn, The Nether-
lands) [40]. The reference of 100% reflectance was BaSO4 powder.

3.5. X-ray Diffraction on Single Crystals

Crystallographic data and refinement details are given in Table S1. The diffraction data
for 1 and 2 were collected on a Bruker D8 Venture diffractometer with a CMOS PHOTON
III detector and IµS 3.0 source (Mo Kα radiation, λ = 0.71073 Å) at 150 K. Theϕ- andω-scan
techniques were employed. Absorption correction was applied by SADABS (Bruker Apex3
software suite: Apex3, SADABS-2016/2 and SAINT, version 2018.7-2; Bruker AXS Inc.:
Madison, WI, USA, 2017). Structures were solved using SHELXT [41] and refined with
full-matrix least-squares treatment against |F|2 in anisotropic approximation with SHELX
2014/7 [42] in ShelXle program [43].

3.6. X-ray Powder Diffraction

X-ray powder diffraction patterns were measured on a Bruker D8 Advance diffrac-
tometer using LynxEye XE T discriminated CuKα radiation. Samples were layered on a
flat plastic specimen holder.

3.7. HPLC-ICP-AES

Separation was performed with HPLC system Milichrom A-02 (EcoNova, Novosibirsk,
Russia) equipped with a two-beam spectrophotometric detector at the wavelength range
of 190−360 nm in ion-pair mode of reversed phase chromatography (ProntoSIL 120-5-
C18AQ, 2 × 75 mm), eluents: A—0.02% tetrabutylammonium hydroxide; B—acetonitrile.
Gradient elution with gradual increase in acetonitrile concentration was employed to
resolve the species. ICP-AES (inductively coupled plasma atomic emission spectrometry)
spectrometer iCap 6500 Duo (Thermo Scientific, Waltham, MA, USA) with a concentric
nebulizer was applied as detector in hyphenated HPLC-ICP-AES. For the element detection
of Mn 259.3 nm, Mn 260.5 nm, Mn 279.4 nm, W 209.8 nm, W 229.4 nm, and W 239.7 nm,
spectral lines were selected. In order to eliminate plasma quenching, we diluted the liquid
coming out of the column into the spray chamber with deionized water. The steady state
of the plasma and the optimal values of analytical signals were finally achieved at the
eluent flow rate of 0.25 mL min−1 and the eluent velocity of 3 mL min−1 (peristaltic pump
speed—75 rpm). Element contents in samples were determined using a high-resolution
spectrometer iCAP-6500 Duo (Thermo Scientific). A typical sample amount of 10 mg was
dissolved in deionized water (R ≈ 18 MΩ) and diluted to the volume of 10 mL prior
to the ICP-AES experiment. The working parameters of the ICP-AES system include:
power supply—1150 W, nebulizer argon flow rate—0.70 L min−1, auxiliary—0.50 L min−1,
and cooling—12 L min−1. All measurements were performed in three replicates. The
data acquisition and processing were carried out with iTEVA 2.0.0.39 (Thermo Scientific,
USA) software.
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3.8. Quantum-Chemical Calculations

The molecular geometry of [Mn(H2O)PW11O39]5− was fully optimised, with no sym-
metry constrain in the gas phase, used at the unrestricted Density Functional Theory (DFT)
level. The initial guess of the atomic spatial coordinate was taken from the experimental
structure. The hybrid functional B3LYP [44,45] coupled with the Pople triple-ζ basis set
6-311++G** for H, P, O, and Mn, and the LANL2TZ(f) triple-ζ basis was set on the W
valence shell with the LANL2TZ(f) effective core potential on the core [46–48]. The D3
version of Grimme’s dispersion with Becke–Johnson damping [49] was included.

The vibrational frequencies and thermochemical values were computed for the op-
timised geometries at the same levels of theory, within the harmonic approximation, at
T = 298.15 K and p = 1 atm; no imaginary frequencies were found, indicating that the
stationary points were “genuine” minima of the potential energy hypersurface.

The UV–Vis absorption spectra for the equilibrium geometries were calculated at time
dependent density functional theory (TD-DFT) level, accounting for D1 → D1+n (n = 1 to
20). The nature of the vertical excited electronic state was analyzed. This investigation was
performed by employing the long-range corrected functional ω-B97X[D] coupled with the
same bases set used for optimization. The Natural Transition Orbital (NTO) analysis [50]
was performed for the transitions of interest.

The atomic charge population analysis, electric multiple moments, electronic density,
and electrostatic potential were also computed within the Mulliken partition scheme.

The integration grid was set to 250 radial shells and 974 angular points. The conver-
gence criteria for the self-consistent field were set to 10−12 for the RMS change in the density
matrix and 10−10 for the maximum change in the density matrix. The convergence criteria
for optimizations were set to 2·10−6 a.u. for the maximum force, 10−6 a.u. for the RMS force,
6·10−6 a.u. for the maximum displacement, and 4·10−6 a.u. for the RMS displacement.

All calculations were performed using the GAUSSIAN G16.A01 package [51].

4. Conclusions

The NMR-relaxation method and HPLC-ICP-AES techniques were used to characterize
aqueous solutions of manganese(II)-containing polyoxometalates 1–3. To elucidate the
hydration state of manganese ions in polyoxoanions, we used an approach based on
the analysis of the R2/R1 ratio of relaxivities. According to the values of spin–lattice
relaxation, compounds can be ranked (in descending order): 3 > 2 > 1. The stability of
aqueous solutions of compounds 1–3 was studied in a wide pH range; the widest range of
hydrolytic stability (pH 2.5–8) was found for compound 1. Polyoxometalate 3 is unstable
in the presence of a cationic polyethyleneimine polymer. In the presence of complexones
(EDTA and DTPA), compounds show a noticeable difference in stability (in decreasing
order): 1 > 3 >> 2. Quantum chemical calculations were performed at (TD-)DFT level to
clarify the relationship existing between the (distorted) octahedral coordination of Mn(II)
and the UV–Vis absorption bands. Compound 1 is proposed as a promising platform for
the development of paramagnetic biomarkers.
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