
Citation: Yauy, K.; Van Goethem, C.;

Pégeot, H.; Baux, D.; Guignard, T.;

Thèze, C.; Ardouin, O.; Roux, A.-F.;

Koenig, M.; Bergougnoux, A.; et al.

Evaluating the Transition from

Targeted to Exome Sequencing: A

Guide for Clinical Laboratories. Int. J.

Mol. Sci. 2023, 24, 7330. https://

doi.org/10.3390/ijms24087330

Academic Editor: Apostolos

Zaravinos

Received: 15 March 2023

Revised: 3 April 2023

Accepted: 12 April 2023

Published: 15 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Evaluating the Transition from Targeted to Exome Sequencing:
A Guide for Clinical Laboratories
Kevin Yauy 1,2,†, Charles Van Goethem 1,† , Henri Pégeot 1, David Baux 1,3 , Thomas Guignard 4,
Corinne Thèze 1, Olivier Ardouin 5, Anne-Françoise Roux 1,3 , Michel Koenig 1,6, Anne Bergougnoux 1,6

and Mireille Cossée 1,6,*

1 Laboratoire de Génétique Moléculaire, LGM, Centre Hospitalier Universitaire de Montpellier,
IURC—Institut Universitaire de Recherche Clinique, 641 Avenue du Doyen G. Giraud,
34090 Montpellier, France; c-vangoethem@chu-montpellier.fr (C.V.G.)

2 Service de Génétique Médicale, CHU Montpellier, 371 Avenue du Doyen G. Giraud, 34090 Montpellier, France
3 INM, Université de Montpellier, INSERM, Hôpital Saint Eloi-Bâtiment INM 80, rue Augustin Fliche-BP 74103,

34090 Montpellier, France
4 Unité de Génétique Chromosomique, Département de Génétique Médicale, Maladies Rares et Médecine

Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, 371 Av. du Doyen Gaston Giraud,
34090 Montpellier, France

5 Plateau de Médecine Moléculaire et Génomique, Hôpital Arnaud de Villeneuve, CHU de Montpellier,
34090 Montpellier, France

6 PhyMedExp-Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier,
Inserm U1046, CNRS UMR 9214, 371 Avenue du Doyen G. Giraud, 34090 Montpellier, France

* Correspondence: mireille.cossee@inserm.fr; Tel.: +33-(0)4-11-75-98-79
† These authors contributed equally to this work.

Abstract: The transition from targeted to exome or genome sequencing in clinical contexts requires
quality standards, such as targeted sequencing, in order to be fully adopted. However, no clear
recommendations or methodology have emerged for evaluating this technological evolution. We
developed a structured method based on four run-specific sequencing metrics and seven sample-
specific sequencing metrics for evaluating the performance of exome sequencing strategies to replace
targeted strategies. The indicators include quality metrics and coverage performance on gene panels
and OMIM morbid genes. We applied this general strategy to three different exome kits and compared
them with a myopathy-targeted sequencing method. After having achieved 80 million reads, all-
tested exome kits generated data suitable for clinical diagnosis. However, significant differences
in the coverage and PCR duplicates were observed between the kits. These are two main criteria
to consider for the initial implementation with high-quality assurance. This study aims to assist
molecular diagnostic laboratories in adopting and evaluating exome sequencing kits in a diagnostic
context compared to the strategy used previously. A similar strategy could be used to implement
whole-genome sequencing for diagnostic purposes.

Keywords: NGS; exome sequencing; targeted sequencing; quality metrics; diagnostics

1. Introduction

Next-generation sequencing (NGS) technology is routinely used by clinical diagnostic
laboratories to identify variants and genes underlying human genetic diseases. Multiple
strategies based on gene-panel sequencing (GPS), exome sequencing (ES), or genome
sequencing (GS) exist, according to the clinical situation [1,2]. GPS represents the cheapest
and fastest NGS approach [3], with a deeper coverage important for the detection of
mosaicism [4]. However, GPS requires frequent updates considering new disease-causing
genes. The use of ES in clinical practice has reported evidence of better cost-effectiveness
and clinical utility in various indications [5–7]. GS is the most powerful, allowing the
detection of structural variants as well as deep intronic mutations that may affect splicing.
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However, because of its cost, time, and the workflow infrastructure requirements, GS is
currently mainly accessible to nationwide-scaled projects or in large-scale clinical genomic
sequencing centers [8,9].

In the late 2000s and early 2010s, most of the genetic diagnostic laboratories started
to apply the GPS strategy to replace Sanger sequencing [10]. This approach has been
reported to be efficient and widely adopted in clinical sequencing centers [3,11]. Guidelines
for genetic diagnostic laboratories with reliable and accurate evaluation to apply the ES
strategy instead of GPS is essential for their operation.

Our diagnostic laboratory previously implemented a GPS strategy for diagnosing
myopathies and muscular dystrophies, especially for the giant titin and nebulin genes [3].
To develop an ES strategy with at least the same reliability as GPS, we report here a
complete methodology of comparison based on several guidelines previously reported,
structured into four main sections: theoretical evaluation of coverage, sequencing quality
validation, clinical validation, and final selection of a strategy. We illustrate this method
with a comparative study of NGS results obtained on 27 DNA samples using three different
exome capture kits.

2. Results

We have defined a general strategy with four main steps to evaluate the performance
of ES solutions compared to GPS. The general workflow is described in Figure 1.
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Figure 1. Evaluating the transition from targeted to exome sequencing workflow.

We used this general strategy to compare ES data from three library preparation solu-
tions that differ in the genomic captured regions concerning the introns and untranslated re-
gions (UTR), the boosted capture in disease-associated regions, and the capture technology:
(i) SeqCap EZ MedExome (Medex) from Roche (Santa Clara, CA, USA); (ii) SureSelect Hu-
man All Exon v7 (SSV7) from Agilent Technologies (Santa Clara, CA, USA); and (iii) SureSe-
lect Clinical Research Exome V2 (CREV2) from Agilent Technologies (Santa Clara, CA, USA).
For each exome capture kit, nine distinct DNA samples were extracted from blood and
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fragmented according to the same protocol, then sequenced using an Illumina NextSeq500
as paired-end 2 × 150 bp reads (see Materials and Methods).

2.1. Theoretical Evaluation of Regions of Interest Coverage

The different exome sequencing kits have specific characteristics regarding the ge-
nomic sequences captured and the possible enrichment of disease-associated genes.

To choose the appropriate kit, one must analyze the regions each kit covers. Roche’s Se-
qCap EZ MedExome (Medex) offers enhanced exon coverage for medically relevant genes.
Agilent Technologies’ SureSelect Human All Exon v7 (SSV7) utilizes RefSeq, GENCODE,
CCDS, and UCSC Known Genes to focus on the interpretable genome. Their SureSelect
Clinical Research Exome V2 (CREV2) builds upon the Human All Exon V6 design, increas-
ing coverage in disease-associated regions and targeting a larger portion of introns and
untranslated regions (UTRs).

The genome regions targeted by the different ES designs were compared to the genome
assembly GRCh37 (hg19). As expected, all the exome kits have a very similar coding
sequence target and mainly differ concerning the non-coding regions (introns and UTR)
targeted (Figure 2). CREV2 has comparatively a very extended non-coding target (32.1 Mb)
compared to Medex and SSV7 (12.7 and 15.4 Mb, respectively).
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Figure 2. Venn diagram showing the overlap of targeted bases of the different ES designs for non-
coding (UTR + intron) regions and coding regions. The MedExome (Medex) has a target size of 47 Mb
covering 33 Mb of exonic regions, 10.8 Mb of intronic regions, and 1.9 Mb of UTR. The SureSelect
Human All Exon V7 exome (SSV7) presents a target size of 48 Mb composed of 31.9 Mb of exonic
regions, 13.4 Mb of intronic regions, and 2 Mb of UTR. The Clinical Research Exome V2 (CREV2)
has the largest target size with 67.3 Mb due to its larger intronic regions coverage (25.7 Mb) and
UTR (6.4 Mb), whereas the exonic regions size is similar to the two other designs (31.4 Mb). The
associated Venn diagrams were generated with Plotly (Plotly Technologies Inc. Collaborative data
science. Montréal, QC, Canada, 2015. https://plot.ly accessed on 10 March 2019).

2.2. Sequencing Quality Validation

The first step to evaluate each ES kit is to ensure the raw sequencing quality. For
this, we propose four criteria with acceptable thresholds represented in Table 1: density of
clusters, clusters passing filter, quality score Q30, and PhiX control. The density of clusters
refers to the number of clusters on the flow cell. Cluster passing filters are defined as
clusters that pass the filter based on various parameters, such as signal intensity and purity.
Quality score Q30 refers to the percentage of bases with a quality score of 30 or higher.
Finally, PhiX control is a measurement of the sequencing performance by using a known
library. In our experiments, NGS with the three kits reached the required quality scores.

https://plot.ly
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Table 1. Sequencing quality validation parameters.

Quality
parameters Description Tools to Evaluate Acceptable Threshold(s)

(Depending on Context)

Results Outside
Thresholds: Common

Causes and/or
Corrective Measures

Sources

Raw Sequencing Quality [12,13]

Density of clusters
(K/mm2)

The density of clusters on
the flow cell (in thousands

per mm2). This parameter is
a direct representation of the

amount of DNA loaded.

Sequencer Software (ex:
Sequencing Analysis

Viewer from Illumina®)

Depends on instruments.
For example:

MiniSeq-High and
Mid-170–220

MiSeq-v2-1000–1200
MiSeq-v3-1200–1400
NextSeq-v2 High and

Mid-170–220
HiSeq2500-v1 and v2-850–1000

HiSeq2500-v3-750–850
HiSeq2500-v4-950–1050

Inaccurate library
quantification is the

most common cause of
over or

under-clustering.

[14–16]

Clusters passing filter
(%PF)

The %PF is the number of
clusters that passed

Illumina’s “Chastity filter”.
The “Chastity Filter” is a
ratio of the brightest base

intensity (Ia) divided by the
sum of the brightest and
second brightest (Ib) base
intensities: Ia/(Ia + Ib). A
cluster does not pass this
filter if 1 base call has a

chastity value below 0.6 in
the first 25 cycles.

65%

In the most common
cases, a %PF under 65%

is due to an
over-clustering.

[17,18]

Quality score Q30 (%)

The percentage of bases with
a phred quality score of 30 or

higher. Phred-like quality
scores (Q-scores) are used to

measure the accuracy of
nucleotide identity data

from a sequencing run. This
value is an average across

the whole read length since
error rate increases towards

the end of the reads.
Q = −10.log10(e)

Error rate: percentage of
bases called incorrectly at
any one cycle. Q30 is the

best indicator to
check base quality.

80%.
This threshold may be adapted
following DNA quality; if the
sample is from FFPE or is old
then the DNA may be of poor

quality but precious.

The main cause of a low
Q30 is the poor quality
of DNA. The extraction

is a key step.
Another cause is the

quality of the reagents
or polymerase, the

reason why the Q30
score decreases as the

run progress.

[19,20]

PhiX control (%)

PhiX is an adapter-ligated
library used as an internal

control for Illumina
sequencing run quality
monitoring. PhiX% is

calculated from the reads
that are aligned to Illumina’s

PhiX control.

>0.3%
Ideally preconized around 1%.

The less
complex/diverse is the
library, the higher PhiX

control amount is
needed.

[21]

Sample Sequencing Data Quality

Insert size
Median or mean length of

sequenced fragments
calculated from fastq.

FastP
Picard (GATK)

FastQC

Around 200–250
Depending on library kits.

Adjusting
fragmentation could

lead to an optimal
sequencing and

coverage uniformity.

Duplicate rate Rate of deduplicated reads. Picard (GATK)
FastQC

An acceptable threshold is
under 20%.

Depending on library kit,
targets or depth.

Can be diminished by
optimizing the amount
of starting material and

the number of PCR
cycles in the laboratory.

[22,23]
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Table 1. Cont.

Quality
parameters Description Tools to Evaluate Acceptable Threshold(s)

(Depending on Context)

Results Outside
Thresholds: Common

Causes and/or
Corrective Measures

Sources

On-target rate

Percent of sequencing
data/reads which maps to
regions of interest: ratio of
the number of sequenced
bases covering the target

regions to the total number
of mapped bases output by

the sequencer.

Picard (GATK)

An acceptable
threshold is >80%.

Depending on library kit,
targets or depth.

Substantially influenced
by insert size.

Depth of coverage
Median or mean coverage on

all target bases
(expressed in X).

Strongly recommended, at
least, 100X.

Depending on application.

For a better uniformity
of coverage, a lower

threshold is acceptable.
Lower numbers of

samples will
increase coverage.

[24]

Coverage rate (% at nX) Percent of target bases with
coverage > nX.

Strongly recommended:
>90% at 30X.

Depending on application,
targets, or library.

Lower numbers of
samples will increase
coverage. A change in

capture design or
technology should

increase the
coverage rate.

Uniformity of coverage

Homogeneity in coverage of
the NGS targets, represented

by the evenness score (ES)
and fold 80 base penalty

(Fold-80). The fold 80 base
penalty is defined as the fold

change of non-zero read
coverage needed to bring

80% of the targeted bases to
the observed mean coverage.

MiSeqReporter/Local
Run Manager

HomeMade Script

Threshold depending of the
method of calculation. A lower
value of the Fold-80 and a high
percentage of the ES indicate

less variability among the
coverage of the individual
targets, a value of 1 of the

Fold-80 base penalty, and of
100% of the ES representing a

perfect uniformity.

A change in capture
design or technology
should increase the

coverage rate.

[25–27]

Ts/Tv ratio (SNV)

Transitions (Ts) (changes
from A <-> G and C <-> T)
compared to transversions

(Tv) (changes from A <-> C,
A <-> T, G <-> C or G <-> T)

BCFTools
SNPSift
GATK

VariantEval (BETA)

An acceptable threshold on
CDS sequencing is >2.4.

Depending on the application.

Across the entire
genome, the ratio of

transitions to
transversions is

typically around 2. In
protein coding regions,

this ratio is typically
higher, often a little

above 3. This metric can
be used as a long-term
control, if this metric
changes drastically it
can mean a problem

with the capture,
samples, or sequencer.

[28–30]

Then, we recommend assessing sample sequencing quality with seven parameters,
according to NGS practice guidelines [27,31,32]: insert size, PCR duplicate rate, on-target
rate, depth of coverage, coverage rate, uniformity of coverage, and Ts/Tv ratio. Table 1
compiles each quality parameter with the tools to assess it, acceptable thresholds, common
causes, corrective measures in case of unacceptable criteria, and publications or other
sources reported.

The results obtained for each ES kit tested are represented in Table 2.
As expected, due to the same mechanical fragmentation protocol used for the three

experiments, produced fragments are of similar size (Medex: 206 bp; SSV7: 215 bp; CREV2:
204 bp). Paired-end 150 bp sequencing produced overlapping coverage of 94 bp, 85 bp, and
96 bp for Medex, SSV7, and CREV2, respectively. The proportion of PCR duplicated reads
was one of the major differences between the methods as both Agilent kits displayed ~2-fold
less PCR duplicates than the Roche MedExome kit. The on-target rates were similar for both
kits from Agilent Technologies (~72%) but were slightly higher for the MedExome (~74%).
Each of these technologies achieved a high level of respective target region cumulative
coverage, the Agilent SSV7 presented the highest. In order to have at least 90% of targeted
bases covered at 30X, a minimum of 80M reads were required for Medex and SSV7, whereas
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100M was needed for CREV2. The three technologies showed a satisfactory percentage
of targeted bases covered at 15X at a sequencing effort as early as 40M (Medex: 96.3%;
SSV7: 97.9%; CREV2: 93.9%) (Figure 3).

Table 2. Sample sequencing data quality obtained for the three ES kits. The best performances are
shown in bold.

Number of
Reads

(Million)
Exome

Median
Insert Size

(bp)

On-Target
Rate

On-Target Mean
Coverage with
Duplicates (X)

Duplicate
Reads (%)

On-Target Mean
Coverage without

Duplicates (X)

Target
Base at

30 X (%)

Fold 80
Base

Penalty
Evenness Ts/Tv

Ratio

40M
Medexome 206 74.26 61.3 12.09 42.1 66 1.9 77.25 2.8

SSV7 215 72.04 66.1 5.16 45.5 73 1.8 79.46 2.7
CREV2 204 72.14 48.8 4.26 33.3 51 2.0 77.62 2.5

60M
Medexome 206 74.26 86.4 17.25 59.5 83 1.9 77.03 2.7

SSV7 218 72.04 96.32 7.54 66.3 89 1.7 79.52 2.6
CREV2 205 72.14 71.4 6.24 48.8 75 1.9 77.99 2.4

80M
Medexome 207 74.26 108.4 21.93 74.7 90 1.9 77.22 2.7

SSV7 218 72.04 124.9 9.79 86.1 94 1.8 80.01 2.6
CREV2 205 72.14 93.0 8.15 63.6 86 1.8 78.63 2.4

100M
Medexome 209 74.26 127.8 26.19 88.2 92 1.8 77.46 2.7

SSV7 218 72.04 151.9 11.94 104.9 96 1.7 80.22 2.6
CREV2 206 72.14 113.6 9.96 77.7 90 1.8 79.31 2.4
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Figure 3. Coverage efficiency obtained with the different ES kits. Coverage efficiency is represented
as the percent of the intended targeted bases for each technology at fixed depths (X) for different
sequencing effort, simulated with a random down sampling of (a) 40 million reads, (b) 60M reads,
(c) 80M reads, and (d) 100M reads.

To investigate the uniformity of coverage, we have computed two metrics, the fold
80 base penalty and the evenness score [27]. Lower numbers for the 80 base penalty and a
high percentage for this score indicate more uniform coverage; a value of 1 for the 80 base
penalty and 100% for this score represent perfect uniformity. Both metrics indicated the
same order of magnitude for the three capture protocols, with the SSV7 kit having slightly
higher performances.

We also evaluated the ratio of transitions to transversions (Ts/Tv) in the dataset as they
are an approximate measure of variant calling quality [33]. For human-exome sequencing
data, the Ts/Tv ratio is generally around 3.0 and about 2.0 outside the exome regions [30].
Ts/Tv ratios in this value range are associated with lower false positives, with high-quality
exome variant datasets expected to have Ts/Tv ratios between 2.8 and 3.0 [34]. Based on
this statement, all the methods evaluated were of good quality as SSV7 has a Ts/Tv ratio of
2.6 and Medex of 2.7. CREV2 has a lower value (2.4) that could be explained by the higher
proportion of non-coding regions in its design.
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2.3. Clinical Validation

In addition to a technology comparison focused on metrics, it is essential to validate
the different ES kits in the clinical context of genetic diseases. This includes ensuring that
panels of genes previously analyzed in the laboratory by GPS for diagnosis (particularly
regions that are difficult to sequence), as well as coding sequences of disease-associated
genes (OMIM genes database [35]), are well covered using ES.

We measured the coverage provided by the three ES kits on regions targeted by our
panel of genes implicated in myopathies, routinely used in our laboratory [3] (Figure 4a).
80M reads were necessary to achieve a 30X coverage on more than 99% of the targeted
regions and 50M were required to reach a coverage of 30X on more than 95% of the targeted
regions. We also evaluated on Integrative Genomic Viewer (IGV) [36,37] the coverage of
the repeated regions of TTN (exons 172 to 180, 181 to 189, and 190 to 198) and NEB (exons
82 to 89, 90 to 97, and 98 to 105) that were not adequately covered by older ES kits tested in
a previous study [3]. The three ES kits achieved a similar coverage to that obtained with
GPS (Supplementary Figure S1).
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Figure 4. Comparison of coverage as percentage of bases covered at fixed depths (15X, 30X, 50X, and
100X) for different sequencing efforts (5M, 10M, 20M, 40M, 60M, 80M, and 100M) obtained with the
three ES kits on (a) the panel of neuromuscular genes used in diagnosis in the laboratory [3] and
(b) OMIM disease-associated genes.

To evaluate the different ES kits in the context of all genetic diseases, we calculated
sequence coverage levels obtained with Medex, SSV7, and CREV2 on the OMIM genes
dataset. The percentage of regions covered at different sequencing depths (15X, 30X, 50X,
and 100X) showed that a sequencing effort of 80M reads is required to cover 95% of the
OMIM set with a coverage of at least 30X for the three ES kits (Figure 4b).

2.4. Final Selection of a Strategy

In summary, all evaluated ES kits met clinical diagnostic quality standards based
on four run sequencing metrics and seven sample sequencing metrics. Upon reaching
80 million reads, all three kits effectively covered at least 90% of targeted bases at 30X
coverage in our GPS and OMIM gene coding regions. The primary factors influencing our
ES strategy selection were the PCR duplicate rate, which varies among library kits, and
coverage of clinically relevant regions. Notably, the larger target size in the CREV2 kit may
present financial constraints for many clinical laboratories when implementing routine
diagnostic sequencing.

3. Discussion

In our study, we implemented a strategy to evaluate several ES technologies in order to
assess their reliability and adequacy to replace GPS for variant detection in diagnostic use.
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First, it is necessary to evaluate the target design philosophy of each manufacturer. Ex-
ome kits usually present very similar coding sequence targets and mainly differ concerning
the non-coding regions (introns and UTR) targeted. While few solutions are scheduled to
harbor very extended non-coding targets (cover more than 30 Mb), many designs focus on
coding regions that make them smaller and thus less expensive. These differences under-
pin various applications: the kits including extended non-coding targets aim to sequence
many non-coding regions of interest (including enhancers), whereas the kits limited to
coding sequences are easier for data interpretation and storage in the perspective of routine
sequencing for diagnostic purposes and provide a higher sequencing depth that could be
useful to detect mosaicism. The selection of exome strategy should be done according to
clinical regions and molecular mechanisms involved in the explored pathology.

It is then important to use metrics to evaluate NGS sequencing quality. We provide a
compilation of metrics usually used, with tools to evaluate them, acceptable threshold(s) if
relevant, common causes and corrective measures in case of results outside the thresholds,
and available sources. Evaluation of the performance of each ES kit for each in silico gene
panel used in clinical diagnostics is also important. In our study, we focused on myopathy
genes’ panel analyzed in our diagnostic laboratory and observed results with quality
standards for clinical diagnostics. In addition, when investigating visually the coverage
on the repeated regions of TTN and NEB, we observed performances comparable to GPS.
This is an actual improvement compared to the previous generation of exome capture
solutions that were evaluated in our laboratory [3]. In a broader way, the performance
of the ES capture kits on clinical gene regions coverage is also essential to evaluate for
different sequencing efforts. It is important to determine the minimum number of reads
per patient to sequence > 95% of clinical gene regions defined in the OMIM database. In
our example, we showed that the three tested ES kits demonstrate performance suitable to
clinical diagnostic quality standards. This clinical validation is essential because it assures
us of the correct sequencing of the myopathy genes of our initial panel and of the OMIM
genes, which will improve our diagnostic yield of myopathies [3].

A limitation of our study is that the experiment was solely based on blood DNA
samples and was mainly focused on detecting constitutional variants. While an individual’s
DNA remains consistent, the genetic composition may vary between different tissues. This
variation can include differences in genetic variants or structural alterations within the
exome, depending on the specific tissue. Although potential discrepancies between blood
DNA and tissue DNA exomes may exist, it is worth noting that these differences may not
necessarily be significant but could be in a cancer sequencing context [38]. Finally, in this
study, we did not explore the performance of ES in additional variant detection in off-target
reads, as mitochondrial variants [39].

More than an increased diagnostic yield, merging all GPS into a unique ES technique
could lead to easier work sharing between teams, fewer wet lab updates, and, therefore,
less work for validation and accreditations. Of course, the increased number of sequence
data obtained by ES, compared to GPS, implies higher storage capacities and adapted
analysis pipelines. A strategy for reporting results in case of incidental findings should also
be decided, according to international and national recommendations [40–43]. Moreover,
GPS trio sequencing does not have a higher diagnostic yield than an ES trio sequencing
approach. To justify the additional costs of genome vs. exome sequencing, improvement
of structural variation analysis will be required and/or the cost of genome analysis and
storage will need to decrease.

In conclusion, our work aims to be a practical guide for molecular diagnostics of
genetic disorders, helpful to perform kits’ benchmarking in order to introduce or change ES
kits with a high level of quality assurance. A closed strategy could be used to implement
GS, which will probably become the upcoming first-tier genetic test in the next years [44].
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4. Materials and Methods
4.1. NGS Experiments

Genomic DNA was extracted from blood samples following the manufacturer’s
standard procedure of the FlexiGene DNA kit (Qiagen, Courtaboeuf, France). For all
three ES protocols, 100 ng of fragmented genomic DNA with a Bioruptor (Diagenode,
Liège, Belgium) was used as input. DNA NGS libraries were prepared according to the
manufacturer’s protocol. Final library concentrations were measured with Invitrogen’s
Qubit Fluorometer High Sensitivity kit (Carlsbad, CA, USA), and library quality con-
trols were performed on a Bioanalyzer High Sensitivity DNA chip (Agilent Technologies,
Santa Clara, CA, USA). Sequencing of each exome capture library was performed using
an Illumina NextSeq500 as paired-end 2 × 150 bp reads according to the manufacturer’s
protocol (NextSeq System Denature and Dilute Libraries Guide, January 2016). For each
technology, nine distinct samples were sequenced (a total of 27 samples) using NextSeq
500/550 High Output Kit v2 cartridge 300 cycles (2 × 150 cycles).

4.2. NGS Data Analyses
4.2.1. Data Processing

For data analyses, the nenufaar [45] data analysis pipeline has been used. Briefly, this
pipeline performs the secondary analysis from fastq files to BAMs and raw VCFs. It uses,
in particular, BWA-MEM [46] for mapping, GATK 3.8 Haplotype Caller [47,48], and Platy-
pus [49] for variant calling. Several quality metrics are generated during the process, such
as Picard, Qualimap (BamQC tool) [50,51], GATK CollectHSMetrics, DepthOfCoverage [52],
and FastQC [22].

4.2.2. Theoretical Evaluation of Regions of Interest Coverage

The genome regions targeted by the different ES designs were compared to the genome
assembly GRCh37 (hg19) with multiIntersectBed from the bedtools suit [53]. The genomic
coordinates of the exon coding sequence (CDS), untranslated regions (UTR), and introns
were defined according to the National Center for Biotechnology Information (NCBI)
Reference Sequence [54].

4.2.3. Sequencing Quality Validation

The data concerning the four quality criteria of the run (density of clusters, cluster
passing filter, quality score Q30, and PhiX control) are provided by the sequencer software
(i.e., Illumina Sequencing Analysis). Concerning the seven parameters (insert size, PCR
duplicate rate, on-target rate, depth of coverage, coverage rate, uniformity of coverage,
and transition/transversion (Ts/Tv) ratio) that ensure that the samples meet the qual-
ity requirements for analysis, most of their measures can be provided by GATK picard
tools [55]. The uniformity of coverage can be computed using the Evenness Score [27]
and the Ts/Tv ratio can be measured using bcftools [56]. For each quality parameter,
we compiled the corresponding assessment tool, acceptable threshold, common causes
of poor results, and suggested corrective measures in case of unacceptable criteria. In
addition, we also provided publications or other sources that reported on each parameter,
as summarized in Table 2.

4.2.4. Clinical Validation: Coverage of Targeted Regions

To evaluate coverage, fastq files were down sampled randomly to simulate different
sequencing efforts. Coverage efficiency was evaluated by calculating cumulative coverage
over all intended target bases for different amounts of reads, 40M (millions of reads),
60M, 80M, and 100M using the seqtk package (https://github.com/lh3/seqtk accessed on
28 March 2022).

The genomic locations targeted by different ES kits for at least a given coverage rate
were computed using Qualimap [51].

https://github.com/lh3/seqtk
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The OMIM set was established based on the genes associated with a clinical phenotype
description in the OMIM database [35] (March 2019). The gene symbols were used to
generate a bed file from the RefSeq database with a 25 base pairs exon padding in order to
include nearby canonical sites impacting mRNA splicing.
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